ESC working group on cardiac cellular electrophysiology position paper: relevance, opportunities, and limitations of experimental models for cardiac electrophysiology research
Language English Country England, Great Britain Media print
Document type Journal Article, Review
PubMed
34313298
PubMed Central
PMC11636574
DOI
10.1093/europace/euab142
PII: 6328857
Knihovny.cz E-resources
- Keywords
- Animal models, Arrhythmias, Atrial fibrillation, Cardiac electrophysiology, Cellular electrophysiology, Experimental models, Ion channels, Mechanisms, Position paper,
- MeSH
- Electrophysiological Phenomena MeSH
- Electrophysiologic Techniques, Cardiac * MeSH
- Atrial Fibrillation * MeSH
- Humans MeSH
- Cardiac Electrophysiology MeSH
- Models, Theoretical MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Cardiac arrhythmias are a major cause of death and disability. A large number of experimental cell and animal models have been developed to study arrhythmogenic diseases. These models have provided important insights into the underlying arrhythmia mechanisms and translational options for their therapeutic management. This position paper from the ESC Working Group on Cardiac Cellular Electrophysiology provides an overview of (i) currently available in vitro, ex vivo, and in vivo electrophysiological research methodologies, (ii) the most commonly used experimental (cellular and animal) models for cardiac arrhythmias including relevant species differences, (iii) the use of human cardiac tissue, induced pluripotent stem cell (hiPSC)-derived and in silico models to study cardiac arrhythmias, and (iv) the availability, relevance, limitations, and opportunities of these cellular and animal models to recapitulate specific acquired and inherited arrhythmogenic diseases, including atrial fibrillation, heart failure, cardiomyopathy, myocarditis, sinus node, and conduction disorders and channelopathies. By promoting a better understanding of these models and their limitations, this position paper aims to improve the quality of basic research in cardiac electrophysiology, with the ultimate goal to facilitate the clinical translation and application of basic electrophysiological research findings on arrhythmia mechanisms and therapies.
Department of Biotechnology and Bioscience University of Milano Bicocca Milano Italy
Department of Cardiology University Hospital Birmingham NHS Trust Birmingham UK
Department of Experimental Cardiology Amsterdam UMC location AMC Amsterdam The Netherlands
Department of Physiology Faculty of Medicine in Pilsen Charles University Pilsen Czech Republic
DZHK Partner Site Berlin Germany
German Centre for Cardiovascular Research Partner Site Hamburg Kiel Lübeck Germany
German Centre for Cardiovascular Research Partner Site Heidelberg Mannheim Germany
Institut de Génomique Fonctionnelle Université de Montpellier CNRS INSERM Montpellier France
Institute for Experimental Cardiovascular Medicine University Freiburg Germany
Institute of Cardiovascular and Medical Sciences University of Glasgow UK
Institute of Cardiovascular Sciences University of Birmingham Birmingham UK
Institute of Physiology University of Bern Bern Switzerland
National Institute of Optics and European Laboratory for Non Linear Spectroscopy Italy
See more in PubMed
Goette A, Auricchio A, Boriani G, Braunschweig F, Terradellas JB, Burri H et al.; ESC Scientific Document Group. EHRA White Paper: knowledge gaps in arrhythmia management-status 2019. Europace 2019;21:993–4. PubMed
Kaese S, Frommeyer G, Verheule S, van Loon G, Gehrmann J, Breithardt G et al. The ECG in cardiovascular-relevant animal models of electrophysiology. Herzschrittmacherther Elektrophysiol 2013;24:84–91. PubMed
Killingsworth CR, Ritscher DE, Walcott GP, Rollins DL, Ideker RE, Smith WM. Continuous telemetry from a chronic canine model of sudden cardiac death. J Cardiovasc Electrophysiol 2000;11:1333–41. PubMed
Verheule S, Sato T, Everett T, Engle SK, Otten D, Rubart-von der Lohe M et al. Increased vulnerability to atrial fibrillation in transgenic mice with selective atrial fibrosis caused by overexpression of TGF-beta1. Circ Res 2004;94:1458–65. PubMed PMC
Odening KE, Kirk M, Brunner M, Ziv O, Lorvidhaya P, Liu GX et al. Electrophysiological studies of transgenic long QT type 1 and type 2 rabbits reveal genotype-specific differences in ventricular refractoriness and His conduction. Am J Physiol Heart Circ Physiol 2010;299:H643–55. PubMed PMC
Cluitmans MJM, Bonizzi P, Karel JMH, Das M, Kietselaer B, de Jong MMJ et al. In vivo validation of electrocardiographic imaging. JACC Clin Electrophysiol 2017;3:232–42. PubMed
Hohmann S, Rettmann ME, Konishi H, Borenstein A, Wang S, Suzuki A et al. Spatial accuracy of a clinically established noninvasive electrocardiographic imaging system for the detection of focal activation in an intact porcine model. Circ Arrhythm Electrophysiol 2019;12:e007570. PubMed
Franz MR. Current status of monophasic action potential recording: theories, measurements and interpretations. Cardiovasc Res 1999;41:25–40. PubMed
Lee P, Quintanilla JG, Alfonso-Almazan JM, Galan-Arriola C, Yan P, Sanchez-Gonzalez J et al. In vivo ratiometric optical mapping enables high-resolution cardiac electrophysiology in pig models. Cardiovasc Res 2019;115:1659–71. PubMed PMC
Langendorff O. Untersuchungen am überlebenden Säugethierherzen. Pflügers Arch 1895;61:291–332.
Skrzypiec-Spring M, Grotthus B, Szelag A, Schulz R. Isolated heart perfusion according to Langendorff—still viable in the new millennium. J Pharmacol Toxicol Methods 2007;55:113–26. PubMed
Bell RM, Mocanu MM, Yellon DM. Retrograde heart perfusion: the Langendorff technique of isolated heart perfusion. J Mol Cell Cardiol 2011;50:940–50. PubMed
Neely JR, Liebermeister H, Battersby EJ, Morgan HE. Effect of pressure development on oxygen consumption by isolated rat heart. Am J Physiol 1967;212:804–14. PubMed
Coraboeuf E, Weidmann S. Potentiel de repos et potentiels d'action du muscle cardiaque, mesures a l'aide d'electrodes internes. Comptes Rendus des Seances de la Societe de Biologie et de. Ses Filiales 1949;143:1329–31.
Dong R, Mu UMR, Reith AJM, O'Shea C, He S, Duan K et al. A protocol for dual calcium-voltage optical mapping in murine sinoatrial preparation with optogenetic pacing. Front Physiol 2019;10:954. PubMed PMC
Martinez ME, Walton RD, Bayer JD, Haissaguerre M, Vigmond EJ, Hocini M et al. Role of the Purkinje-muscle junction on the ventricular repolarization heterogeneity in the healthy and ischemic ovine ventricular myocardium. Front Physiol 2018;9:718. PubMed PMC
Lee P, Bollensdorff C, Quinn TA, Wuskell JP, Loew LM, Kohl P. Single-sensor system for spatially resolved, continuous, and multiparametric optical mapping of cardiac tissue. Heart Rhythm 2011;8:1482–91. PubMed PMC
Quinn TA, Kohl P. Cardiac mechano-electric coupling: acute effects of mechanical stimulation on heart rate and rhythm. Physiol Rev 2021;101:37–92. PubMed
Christoph J, Chebbok M, Richter C, Schroder-Schetelig J, Bittihn P, Stein S et al. Electromechanical vortex filaments during cardiac fibrillation. Nature 2018;555:667–72. PubMed
Bruegmann T, Malan D, Hesse M, Beiert T, Fuegemann CJ, Fleischmann BK et al. Optogenetic control of heart muscle in vitro and in vivo. Nat Methods 2010;7:897–900. PubMed
Yan GX, Shimizu W, Antzelevitch C. Characteristics and distribution of M cells in arterially perfused canine left ventricular wedge preparations. Circulation 1998;98:1921–7. PubMed
Wilders R. Dynamic clamp: a powerful tool in cardiac electrophysiology. J Physiol 2006;576:349–59. PubMed PMC
Berecki G, Wilders R, de Jonge B, van Ginneken AC, Verkerk AO. Re-evaluation of the action potential upstroke velocity as a measure of the Na+ current in cardiac myocytes at physiological conditions. PLoS One 2010;5:e15772. PubMed PMC
Kettlewell S, Saxena P, Dempster J, Colman MA, Myles RC, Smith GL et al. Dynamic clamping human and rabbit atrial calcium current: narrowing ICaL window abolishes early afterdepolarizations. J Physiol 2019;597:3619–38. PubMed PMC
Lu HR, Hortigon-Vinagre MP, Zamora V, Kopljar I, De Bondt A, Gallacher DJ et al. Application of optical action potentials in human induced pluripotent stem cells-derived cardiomyocytes to predict drug-induced cardiac arrhythmias. J Pharmacol Toxicol Methods 2017;87:53–67. PubMed
Zhang XH, Morad M. Calcium signaling in human stem cell-derived cardiomyocytes: evidence from normal subjects and CPVT afflicted patients. Cell Calcium 2016;59:98–107. PubMed PMC
Varro A, Tomek J, Nagy N, Virag L, Passini E, Rodriguez B et al. Cardiac transmembrane ion channels and action potentials: cellular physiology and arrhythmogenic behavior. Physiol Rev 2021;101:1083–1176. PubMed
Nerbonne JM. Molecular basis of functional voltage-gated K+ channel diversity in the mammalian myocardium. J Physiol 2000;525: 285–98. PubMed PMC
Nerbonne JM, Kass RS. Molecular physiology of cardiac repolarization. Physiol Rev 2005;85:1205–53. PubMed
Jost N, Virag L, Comtois P, Ordog B, Szuts V, Seprenyi G et al. Ionic mechanisms limiting cardiac repolarization reserve in humans compared to dogs. J Physiol 2013;591:4189–206. PubMed PMC
Varro A, Lathrop DA, Hester SB, Nanasi PP, Papp JG. Ionic currents and action potentials in rabbit, rat, and guinea pig ventricular myocytes. Basic Res Cardiol 1993;88:93–102. PubMed
Patel SP, Campbell DL. Transient outward potassium current, ‘Ito’, phenotypes in the mammalian left ventricle: underlying molecular, cellular and biophysical mechanisms. J Physiol 2005;569:7–39. PubMed PMC
Fedida D, Giles WR. Regional variations in action potentials and transient outward current in myocytes isolated from rabbit left ventricle. J Physiol 1991;442:191–209. PubMed PMC
Choi BR, Li W, Terentyev D, Kabakov AY, Zhong M, Rees CM et al. Transient outward K+ current (Ito) underlies the right ventricular initiation of polymorphic ventricular tachycardia in a transgenic rabbit model of long-QT syndrome type 1. Circ Arrhythm Electrophysiol 2018;11:e005414. PubMed PMC
Ravens U. Ionic basis of cardiac electrophysiology in zebrafish compared to human hearts. Prog Biophys Mol Biol 2018;138:38–44. PubMed
Verkerk AO, Remme CA. Zebrafish: a novel research tool for cardiac (patho)electrophysiology and ion channel disorders. Front Physiol 2012;3:255. PubMed PMC
Stankovicova T, Szilard M, De Scheerder I, Sipido KR. M cells and transmural heterogeneity of action potential configuration in myocytes from the left ventricular wall of the pig heart. Cardiovasc Res 2000;45:952–60. PubMed
Verkerk AO, van Ginneken AC, Berecki G, den Ruijter HM, Schumacher CA, Veldkamp MW et al. Incorporated sarcolemmal fish oil fatty acids shorten pig ventricular action potentials. Cardiovasc Res 2006;70:509–20. PubMed
Hegyi B, Bossuyt J, Griffiths LG, Shimkunas R, Coulibaly Z, Jian Z et al. Complex electrophysiological remodeling in postinfarction ischemic heart failure. Proc Natl Acad Sci U S A 2018;115:E3036–E3044. PubMed PMC
Li GR, Du XL, Siow YL, O K, Tse HF, Lau CP. Calcium-activated transient outward chloride current and phase 1 repolarization of swine ventricular action potential. Cardiovasc Res 2003;58:89–98. PubMed
Arlock P, Mow T, Sjoberg T, Arner A, Steen S, Laursen M. Ion currents of cardiomyocytes in different regions of the Gottingen minipig heart. J Pharmacol Toxicol Methods 2017;86:12–8. PubMed
Laursen M, Olesen SP, Grunnet M, Mow T, Jespersen T. Characterization of cardiac repolarization in the Gottingen minipig. J Pharmacol Toxicol Methods 2011;63:186–95. PubMed
Dixon JE, Shi W, Wang HS, McDonald C, Yu H, Wymore RS et al. Role of the Kv4.3 K+ channel in ventricular muscle. A molecular correlate for the transient outward current. Circ Res 1996;79:659–68. PubMed
Szentadrassy N, Banyasz T, Biro T, Szabo G, Toth BI, Magyar J et al. Apico-basal inhomogeneity in distribution of ion channels in canine and human ventricular myocardium. Cardiovasc Res 2005;65:851–60. PubMed
Szabo G, Szentandrassy N, Biro T, Toth BI, Czifra G, Magyar J et al. Asymmetrical distribution of ion channels in canine and human left-ventricular wall: epicardium versus midmyocardium. Pflugers Arch 2005;450:307–16. PubMed
Nagy N, Acsai K, Kormos A, Sebők Z, Farkas AS, Jost N et al. [Ca2+]i-induced augmentation of the inward rectifier potassium current (IK1) in canine and human ventricular myocardium. Pflugers Arch 2013;465:1621–35. PubMed
Liu DW, Gintant GA, Antzelevitch C. Ionic bases for electrophysiological distinctions among epicardial, midmyocardial, and endocardial myocytes from the free wall of the canine left ventricle. Circ Res 1993;72:671–87. PubMed
Liu DW, Antzelevitch C. Characteristics of the delayed rectifier current (IKr and IKs) in canine ventricular epicardial, midmyocardial, and endocardial myocytes. A weaker IKs contributes to the longer action potential of the M cell. Circ Res 1995;76:351–65. PubMed
Volders PG, Sipido KR, Carmeliet E, Spatjens RL, Wellens HJ, Vos MA. Repolarizing K+ currents ITO1 and IKs are larger in right than left canine ventricular midmyocardium. Circulation 1999;99:206–10. PubMed
O'Hara T, Rudy Y. Quantitative comparison of cardiac ventricular myocyte electrophysiology and response to drugs in human and nonhuman species. Am J Physiol Heart Circ Physiol 2012;302:H1023–1030. PubMed PMC
Caluori G, Wojtaszczyk A, Yasin O, Pesl M, Wolf J, Belaskova S et al. Comparing the incidence of ventricular arrhythmias during epicardial ablation in swine versus canine models. Pacing Clin Electrophysiol 2019;42:862–7. PubMed
Wijffels MC, Kirchhof CJ, Dorland R, Allessie MA. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation 1995;92:1954–68. PubMed
Ausma J, Wijffels M, Thone F, Wouters L, Allessie M, Borgers M. Structural changes of atrial myocardium due to sustained atrial fibrillation in the goat. Circulation 1997;96:3157–63. PubMed
Allessie M, Ausma J, Schotten U. Electrical, contractile and structural remodeling during atrial fibrillation. Cardiovasc Res 2002;54:230–46. PubMed
Vos MA, Verduyn SC, Gorgels AP, Lipcsei GC, Wellens HJ. Reproducible induction of early afterdepolarizations and torsade de pointes arrhythmias by d-sotalol and pacing in dogs with chronic atrioventricular block. Circulation 1995;91:864–72. PubMed
Vos MA, de Groot SH, Verduyn SC, van der Zande J, Leunissen HD, Cleutjens JP et al. Enhanced susceptibility for acquired torsade de pointes arrhythmias in the dog with chronic, complete AV block is related to cardiac hypertrophy and electrical remodeling. Circulation 1998;98:1125–35. PubMed
Brunner M, Peng X, Liu GX, Ren XQ, Ziv O, Choi BR et al. Mechanisms of cardiac arrhythmias and sudden death in transgenic rabbits with long QT syndrome. J Clin Invest 2008;118:2246–59. PubMed PMC
Volders PG, Sipido KR, Vos MA, Spatjens RL, Leunissen JD, Carmeliet E et al. Downregulation of delayed rectifier K+ currents in dogs with chronic complete atrioventricular block and acquired torsades de pointes. Circulation 1999;100:2455–61. PubMed
Sipido KR, Volders PG, de Groot SH, Verdonck F, Van de Werf F, Wellens HJ et al. Enhanced Ca2+ release and Na/Ca exchange activity in hypertrophied canine ventricular myocytes: potential link between contractile adaptation and arrhythmogenesis. Circulation 2000;102:2137–44. PubMed
Verduyn SC, Vos MA, van der Zande J, van der Hulst FF, Wellens HJ. Role of interventricular dispersion of repolarization in acquired torsade-de-pointes arrhythmias: reversal by magnesium. Cardiovasc Res 1997;34:453–63. PubMed
Thomsen MB, Verduyn SC, Stengl M, Beekman JD, de Pater G, van Opstal J et al. Increased short-term variability of repolarization predicts d-sotalol-induced torsades de pointes in dogs. Circulation 2004;110:2453–9. PubMed
Sprenkeler DJ, Beekman JDM, Bossu A, Dunnink A, Vos MA. Pro-arrhythmic ventricular remodeling is associated with increased respiratory and low-frequency oscillations of monophasic action potential duration in the chronic atrioventricular block dog model. Front Physiol 2019;10:1095. PubMed PMC
Ni L, Scott L Jr., Campbell HM, Pan X, Alsina KM, Reynolds J et al. Atrial-specific gene delivery using an adeno-associated viral vector. Circ Res 2019;124:256–62. PubMed PMC
Podliesna S, Bezzina CR, Lodder EM. Complex genetics of cardiovascular traits in mice: F2-mapping of QTLs and their underlying genes. Methods Mol Biol 2017;1488:431–54. PubMed
Nicod J, Davies RW, Cai N, Hassett C, Goodstadt L, Cosgrove C et al. Genome-wide association of multiple complex traits in outbred mice by ultra-low-coverage sequencing. Nat Genet 2016;48:912–8. PubMed PMC
Adriaens ME, Lodder EM, Moreno-Moral A, Silhavy J, Heinig M, Glinge C et al. Systems genetics approaches in rat identify novel genes and gene networks associated with cardiac conduction. J Am Heart Assoc 2018;7:e009243. PubMed PMC
Kovoor P, Wickman K, Maguire CT, Pu W, Gehrmann J, Berul CI et al. Evaluation of the role of IKACh in atrial fibrillation using a mouse knockout model. J Am Coll Cardiol 2001;37:2136–43. PubMed
Cerrone M, Colombi B, Santoro M, di Barletta MR, Scelsi M, Villani L et al. Bidirectional ventricular tachycardia and fibrillation elicited in a knock-in mouse model carrier of a mutation in the cardiac ryanodine receptor. Circ Res 2005;96:e77-82. PubMed
Sanbe A, James J, Tuzcu V, Nas S, Martin L, Gulick J et al. Transgenic rabbit model for human troponin I-based hypertrophic cardiomyopathy. Circulation 2005;111:2330–8. PubMed PMC
Major P, Baczko I, Hiripi L, Odening KE, Juhasz V, Kohajda Z et al. A novel transgenic rabbit model with reduced repolarization reserve: long QT syndrome caused by a dominant-negative mutation of the KCNE1 gene. Br J Pharmacol 2016;173:2046–61. PubMed PMC
Odening KE, Bodi I, Franke G, Rieke R, Ryan de Medeiros A, Perez-Feliz S et al. Transgenic short-QT syndrome 1 rabbits mimic the human disease phenotype with QT/action potential duration shortening in the atria and ventricles and increased ventricular tachycardia/ventricular fibrillation inducibility. Eur Heart J 2019;40:842–53. PubMed
Park DS, Cerrone M, Morley G, Vasquez C, Fowler S, Liu N et al. Genetically engineered SCN5A mutant pig hearts exhibit conduction defects and arrhythmias. J Clin Invest 2015;125:403–12. PubMed PMC
Jin G, Manninger M, Adelsmayr G, Schwarzl M, Alogna A, Schonleitner P et al. Cellular contribution to left and right atrial dysfunction in chronic arterial hypertension in pigs. ESC Heart Fail 2021;8:151–161. PubMed PMC
Pinto JM, Sosunov EA, Gainullin RZ, Rosen MR, Boyden PA. Effects of mibefradil, a T-type calcium current antagonist, on electrophysiology of Purkinje fibers that survived in the infarcted canine heart. J Cardiovasc Electrophysiol 1999;10:1224–35. PubMed
Meysen S, Marger L, Hewett KW, Jarry-Guichard T, Agarkova I, Chauvin JP et al. Nkx2.5 cell-autonomous gene function is required for the postnatal formation of the peripheral ventricular conduction system. Dev Biol 2007;303:740–53. PubMed
Lin X, Liu N, Lu J, Zhang J, Anumonwo JM, Isom LL et al. Subcellular heterogeneity of sodium current properties in adult cardiac ventricular myocytes. Heart Rhythm 2011;8:1923–30. PubMed PMC
Schluter KD, Schreiber D. Adult ventricular cardiomyocytes: isolation and culture. Methods Mol Biol 2005;290:305–14. PubMed
Molina CE, Leroy J, Richter W, Xie M, Scheitrum C, Lee IO et al. Cyclic adenosine monophosphate phosphodiesterase type 4 protects against atrial arrhythmias. J Am Coll Cardiol 2012;59:2182–90. PubMed
Brown H, Difrancesco D. Voltage-clamp investigations of membrane currents underlying pace-maker activity in rabbit sino-atrial node. J Physiol 1980;308:331–51. PubMed PMC
Verheijck EE, van Kempen MJ, Veereschild M, Lurvink J, Jongsma HJ, Bouman LN. Electrophysiological features of the mouse sinoatrial node in relation to connexin distribution. Cardiovasc Res 2001;52:40–50. PubMed
Maier SK, Westenbroek RE, Yamanushi TT, Dobrzynski H, Boyett MR, Catterall WA et al. An unexpected requirement for brain-type sodium channels for control of heart rate in the mouse sinoatrial node. Proc Natl Acad Sci U S A 2003;100:3507–12. PubMed PMC
Efimov IR, Nikolski VP, Rothenberg F, Greener ID, Li J, Dobrzynski H et al. Structure-function relationship in the AV junction. Anat Rec A Discov Mol Cell Evol Biol 2004;280:952–65. PubMed
Neco P, Torrente AG, Mesirca P, Zorio E, Liu N, Priori SG et al. Paradoxical effect of increased diastolic Ca2+ release and decreased sinoatrial node activity in a mouse model of catecholaminergic polymorphic ventricular tachycardia. Circulation 2012;126:392–401. PubMed PMC
Blinova K, Dang Q, Millard D, Smith G, Pierson J, Guo L et al. International multisite study of human-induced pluripotent stem cell-derived cardiomyocytes for drug proarrhythmic potential assessment. Cell Rep 2018;24:3582–92. PubMed PMC
Parikh SS, Blackwell DJ, Gomez-Hurtado N, Frisk M, Wang L, Kim K et al. Thyroid and glucocorticoid hormones promote functional T-tubule development in human-induced pluripotent stem cell-derived cardiomyocytes. Circ Res 2017;121:1323–30. PubMed PMC
Macadangdang J, Guan X, Smith AS, Lucero R, Czerniecki S, Childers MK et al. Nanopatterned human iPSC-based model of a dystrophin-null cardiomyopathic phenotype. Cell Mol Bioeng 2015;8:320–32. PubMed PMC
Martella D, Paoli P, Pioner JM, Sacconi L, Coppini R, Santini L et al. Liquid crystalline networks toward regenerative medicine and tissue repair. Small 2017;13:1702677. PubMed
Davis RP, Casini S, van den Berg CW, Hoekstra M, Remme CA, Dambrot C et al. Cardiomyocytes derived from pluripotent stem cells recapitulate electrophysiological characteristics of an overlap syndrome of cardiac sodium channel disease. Circulation 2012;125:3079–91. PubMed
Casini S, Verkerk AO, Remme CA. Human iPSC-derived cardiomyocytes for investigation of disease mechanisms and therapeutic strategies in inherited arrhythmia syndromes: strengths and limitations. Cardiovasc Drugs Ther 2017;31:325–44. PubMed PMC
Portero V, Casini S, Hoekstra M, Verkerk AO, Mengarelli I, Belardinelli L et al. Anti-arrhythmic potential of the late sodium current inhibitor GS-458967 in murine Scn5a-1798insD+/- and human SCN5A-1795insD+/- iPSC-derived cardiomyocytes. Cardiovasc Res 2017;113:829–38. PubMed
Lieu DK, Fu JD, Chiamvimonvat N, Tung KC, McNerney GP, Huser T et al. Mechanism-based facilitated maturation of human pluripotent stem cell-derived cardiomyocytes. Circ Arrhythm Electrophysiol 2013;6:191–201. PubMed PMC
Verkerk AO, Veerman CC, Zegers JG, Mengarelli I, Bezzina CR, Wilders R. Patch-clamp recording from human induced pluripotent stem cell-derived cardiomyocytes: improving action potential characteristics through dynamic clamp. Int J Mol Sci 2017;18:1873. PubMed PMC
Lee YK, Sala L, Mura M, Rocchetti M, Pedrazzini M, Ran X et al. MTMR4 SNVs modulate ion channel degradation and clinical severity in congenital long QT syndrome: insights in the mechanism of action of protective modifier genes. Cardiovasc Res 2021;117:767–779. PubMed PMC
Ronchi C, Bernardi J, Mura M, Stefanello M, Badone B, Rocchetti M et al. NOS1AP polymorphisms reduce NOS1 activity and interact with prolonged repolarization in arrhythmogenesis. Cardiovasc Res 2021;117:472–483. PubMed PMC
Ma D, Wei H, Lu J, Huang D, Liu Z, Loh LJ et al. Characterization of a novel KCNQ1 mutation for type 1 long QT syndrome and assessment of the therapeutic potential of a novel IKs activator using patient-specific induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther 2015;6:39. PubMed PMC
Braam SR, Tertoolen L, van de Stolpe A, Meyer T, Passier R, Mummery CL. Prediction of drug-induced cardiotoxicity using human embryonic stem cell-derived cardiomyocytes. Stem Cell Res 2010;4:107–16. PubMed
Giles WR, Noble D. Rigorous phenotyping of cardiac iPSC preparations requires knowledge of their resting potential(s). Biophys J 2016;110:278–80. PubMed PMC
Devalla HD, Schwach V, Ford JW, Milnes JT, El-Haou S, Jackson C et al. Atrial-like cardiomyocytes from human pluripotent stem cells are a robust preclinical model for assessing atrial-selective pharmacology. EMBO Mol Med 2015;7:394–410. PubMed PMC
Cyganek L, Tiburcy M, Sekeres K, Gerstenberg K, Bohnenberger H, Lenz C et al. Deep phenotyping of human induced pluripotent stem cell-derived atrial and ventricular cardiomyocytes. JCI Insight 2018;3:e99941. PubMed PMC
Schaaf S, Eder A, Vollert I, Stohr A, Hansen A, Eschenhagen T. Generation of strip-format fibrin-based engineered heart tissue (EHT). Methods Mol Biol 2014;1181:121–9. PubMed
Beauchamp P, Moritz W, Kelm JM, Ullrich ND, Agarkova I, Anson BD et al. Development and characterization of a scaffold-free 3D spheroid model of induced pluripotent stem cell-derived human cardiomyocytes. Tissue Eng Part C Methods 2015;21:852–61. PubMed
Noble D, Garny A, Noble PJ. How the Hodgkin-Huxley equations inspired the Cardiac Physiome Project. J Physiol 2012;590:2613–28. PubMed PMC
Winslow RL, Cortassa S, O'Rourke B, Hashambhoy YL, Rice JJ, Greenstein JL. Integrative modeling of the cardiac ventricular myocyte. Wiley Interdiscip Rev Syst Biol Med 2011;3:392–413. PubMed PMC
Heijman J, Erfanian Abdoust P, Voigt N, Nattel S, Dobrev D. Computational models of atrial cellular electrophysiology and calcium handling, and their role in atrial fibrillation. J Physiol 2016;594:537–53. PubMed PMC
Benson AP, Stevenson-Cocks HJ, Whittaker DG, White E, Colman MA. Multi-scale approaches for the simulation of cardiac electrophysiology: II - Tissue-level structure and function. Methods 2021;185:60–81. PubMed
Lyashkov AE, Behar J, Lakatta EG, Yaniv Y, Maltsev VA. Positive feedback mechanisms among local Ca releases, NCX, and ICaL ignite pacemaker action potentials. Biophys J 2018;114:1176–89. PubMed PMC
Trovato C, Passini E, Nagy N, Varro A, Abi-Gerges N, Severi S et al. Human Purkinje in silico model enables mechanistic investigations into automaticity and pro-arrhythmic abnormalities. J Mol Cell Cardiol 2020;142:24–38. PubMed PMC
Ravagli E, Bucchi A, Bartolucci C, Paina M, Baruscotti M, DiFrancesco D et al. Cell-specific dynamic clamp analysis of the role of funny if current in cardiac pacemaking. Prog Biophys Mol Biol 2016;120:50–66. PubMed
Shim J, Hwang M, Song JS, Lim B, Kim TH, Joung B et al. Virtual in-silico modeling guided catheter ablation predicts effective linear ablation lesion set for longstanding persistent atrial fibrillation: multicenter prospective randomized study. Front Physiol 2017;8:792. PubMed PMC
Prakosa A, Arevalo HJ, Deng D, Boyle PM, Nikolov PP, Ashikaga H et al. Personalized virtual-heart technology for guiding the ablation of infarct-related ventricular tachycardia. Nat Biomed Eng 2018;2:732–40. PubMed PMC
Boyle PM, Zghaib T, Zahid S, Ali RL, Deng D, Franceschi WH et al. Computationally guided personalized targeted ablation of persistent atrial fibrillation. Nat Biomed Eng 2019;3:870–9. PubMed PMC
Li Z, Ridder BJ, Han X, Wu WW, Sheng J, Tran PN et al. Assessment of an in silico mechanistic model for proarrhythmia risk prediction under the CiPA initiative. Clin Pharmacol Ther 2019;105:466–75. PubMed PMC
Li Z, Mirams GR, Yoshinaga T, Ridder BJ, Han X, Chen JE et al. General principles for the validation of proarrhythmia risk prediction models: an extension of the CiPA in silico strategy. Clin Pharmacol Ther 2020;107:102–11. PubMed PMC
Whittaker DG, Clerx M, Lei CL, Christini DJ, Mirams GR. Calibration of ionic and cellular cardiac electrophysiology models. Wiley Interdiscip Rev Syst Biol Med 2020;12:e1482. PubMed PMC
Ni H, Morotti S, Grandi E. A heart for diversity: simulating variability in cardiac arrhythmia research. Front Physiol 2018;9:958. PubMed PMC
Tomek J, Bueno-Orovio A, Passini E, Zhou X, Minchole A, Britton O et al. Development, calibration, and validation of a novel human ventricular myocyte model in health, disease, and drug block. Elife 2019;8:e48890. PubMed PMC
Yang PC, DeMarco KR, Aghasafari P, Jeng MT, Dawson JRD, Bekker S et al. A computational pipeline to predict cardiotoxicity: from the atom to the rhythm. Circ Res 2020;126:947–64. PubMed PMC
Sutanto H, Lyon A, Lumens J, Schotten U, Dobrev D, Heijman J. Cardiomyocyte calcium handling in health and disease: Insights from in vitro and in silico studies. Prog Biophys Mol Biol 2020;157:54–75. PubMed
Colman MA. Arrhythmia mechanisms and spontaneous calcium release: bi-directional coupling between re-entrant and focal excitation. PLoS Comput Biol 2019;15:e1007260. PubMed PMC
Altomare C, Bartolucci C, Sala L, Bernardi J, Mostacciuolo G, Rocchetti M et al. IKr impact on repolarization and its variability assessed by dynamic clamp. Circ Arrhythm Electrophysiol 2015;8:1265–75. PubMed
Biliczki P, Virag L, Iost N, Papp JG, Varro A. Interaction of different potassium channels in cardiac repolarization in dog ventricular preparations: role of repolarization reserve. Br J Pharmacol 2002;137:361–8. PubMed PMC
Pumir A, Arutunyan A, Krinsky V, Sarvazyan N. Genesis of ectopic waves: role of coupling, automaticity, and heterogeneity. Biophys J 2005;89:2332–49. PubMed PMC
Bartolucci C, Altomare C, Bennati M, Furini S, Zaza A, Severi S. Combined action potential- and dynamic-clamp for accurate computational modelling of the cardiac IKr current. J Mol Cell Cardiol 2015;79:187–94. PubMed
Qu Z, Weiss JN. Dynamics and cardiac arrhythmias. J Cardiovasc Electrophysiol 2006;17:1042–9. PubMed
Jeron A, Mitchell GF, Zhou J, Murata M, London B, Buckett P et al. Inducible polymorphic ventricular tachyarrhythmias in a transgenic mouse model with a long Q-T phenotype. Am J Physiol Heart Circ Physiol 2000;278:H1891–1898. PubMed
Liu N, Rizzi N, Boveri L, Priori SG. Ryanodine receptor and calsequestrin in arrhythmogenesis: what we have learnt from genetic diseases and transgenic mice. J Mol Cell Cardiol 2009;46:149–59. PubMed
Nishida K, Michael G, Dobrev D, Nattel S. Animal models for atrial fibrillation: clinical insights and scientific opportunities. Europace 2010;12:160–72. PubMed
Schüttler D, Bapat A, Kääb S, Lee K, Tomsits P, Clauss S et al. Animal models of atrial fibrillation. Circ Res 2020;127:91–110. PubMed
Dobrev D, Wehrens XHT. Mouse models of cardiac arrhythmias. Circ Res 2018;123:332–4. PubMed PMC
Aschar-Sobbi R, Izaddoustdar F, Korogyi AS, Wang Q, Farman GP, Yang F et al. Increased atrial arrhythmia susceptibility induced by intense endurance exercise in mice requires TNFalpha. Nat Commun 2015;6:6018. PubMed PMC
Manninger M, Zweiker D, van Hunnik A, Alogna A, Prassl AJ, Schipke J et al. Arterial hypertension drives arrhythmia progression via specific structural remodeling in a porcine model of atrial fibrillation. Heart Rhythm 2018;15:1328–36. PubMed
Dobrev D, Aguilar M, Heijman J, Guichard JB, Nattel S. Postoperative atrial fibrillation: mechanisms, manifestations and management. Nat Rev Cardiol 2019;16:417–36. PubMed
Miyauchi Y, Zhou S, Okuyama Y, Miyauchi M, Hayashi H, Hamabe A et al. Altered atrial electrical restitution and heterogeneous sympathetic hyperinnervation in hearts with chronic left ventricular myocardial infarction: implications for atrial fibrillation. Circulation 2003;108:360–6. PubMed
Alasady M, Shipp NJ, Brooks AG, Lim HS, Lau DH, Barlow D et al. Myocardial infarction and atrial fibrillation: importance of atrial ischemia. Circ Arrhythm Electrophysiol 2013;6:738–45. PubMed
Kettlewell S, Burton FL, Smith GL, Workman AJ. Chronic myocardial infarction promotes atrial action potential alternans, afterdepolarizations, and fibrillation. Cardiovasc Res 2013;99:215–24. PubMed PMC
van Gorp PRR, Trines SA, Pijnappels DA, de Vries AAF. Multicellular in vitro models of cardiac arrhythmias: focus on atrial fibrillation. Front Cardiovasc Med 2020;7:43. PubMed PMC
Ellinwood N, Dobrev D, Morotti S, Grandi E. In silico assessment of efficacy and safety of IKur inhibitors in chronic atrial fibrillation: role of kinetics and state-dependence of drug binding. Front Pharmacol 2017;8:799. PubMed PMC
Schmidt C, Wiedmann F, Zhou XB, Heijman J, Voigt N, Ratte A et al. Inverse remodelling of K2P3.1 K+ channel expression and action potential duration in left ventricular dysfunction and atrial fibrillation: implications for patient-specific antiarrhythmic drug therapy. Eur Heart J 2017;38:1764–74. PubMed
Saour B, Smith B, Yancy CW. Heart failure and sudden cardiac death. Card Electrophysiol Clin 2017;9:709–23. PubMed
Desai RV, Ahmed MI, Mujib M, Aban IB, Zile MR, Ahmed A. Natural history of concentric left ventricular geometry in community-dwelling older adults without heart failure during seven years of follow-up. Am J Cardiol 2011;107:321–4. PubMed PMC
Gomes AC, Falcao-Pires I, Pires AL, Bras-Silva C, Leite-Moreira AF. Rodent models of heart failure: an updated review. Heart Fail Rev 2013;18:219–49. PubMed
Shannon TR, Pogwizd SM, Bers DM. Elevated sarcoplasmic reticulum Ca2+ leak in intact ventricular myocytes from rabbits in heart failure. Circ Res 2003;93:592–4. PubMed
O’Rourke B, Kass DA, Tomaselli GF, KäÄB S, Tunin R, Marbán E, Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, I: experimental studies. Circ Res 1999;84:562–70. PubMed
Dries E, Santiago DJ, Gilbert G, Lenaerts I, Vandenberk B, Nagaraju CK et al. Hyperactive ryanodine receptors in human heart failure and ischaemic cardiomyopathy reside outside of couplons. Cardiovasc Res 2018;114:1512–24. PubMed PMC
Pinali C, Bennett H, Davenport JB, Trafford AW, Kitmitto A. Three-dimensional reconstruction of cardiac sarcoplasmic reticulum reveals a continuous network linking transverse-tubules: this organization is perturbed in heart failure. Circ Res 2013;113:1219–30. PubMed
Milani-Nejad N, Janssen PM. Small and large animal models in cardiac contraction research: advantages and disadvantages. Pharmacol Ther 2014;141:235–49. PubMed PMC
Ambrosi CM, Yamada KA, Nerbonne JM, Efimov IR. Gender differences in electrophysiological gene expression in failing and non-failing human hearts. PLoS One 2013;8:e54635. PubMed PMC
Lang D, Holzem K, Kang C, Xiao M, Hwang HJ, Ewald GA et al. Arrhythmogenic remodeling of beta2 versus beta1 adrenergic signaling in the human failing heart. Circ Arrhythm Electrophysiol 2015;8:409–19. PubMed PMC
Patel RB, Vaduganathan M, Shah SJ, Butler J. Atrial fibrillation in heart failure with preserved ejection fraction: insights into mechanisms and therapeutics. Pharmacol Ther 2017;176:32–9. PubMed
Vaduganathan M, Patel RB, Michel A, Shah SJ, Senni M, Gheorghiade M et al. Mode of death in heart failure with preserved ejection fraction. J Am Coll Cardiol 2017;69:556–69. PubMed
Lourenco AP, Leite-Moreira AF, Balligand JL, Bauersachs J, Dawson D, de Boer RA et al. An integrative translational approach to study heart failure with preserved ejection fraction: a position paper from the Working Group on Myocardial Function of the European Society of Cardiology. Eur J Heart Fail 2018;20:216–27. PubMed
Cho JH, Zhang R, Kilfoil PJ, Gallet R, de Couto G, Bresee C et al. Delayed repolarization underlies ventricular arrhythmias in rats with heart failure and preserved ejection fraction. Circulation 2017;136:2037–50. PubMed PMC
Cho JH, Zhang R, Aynaszyan S, Holm K, Goldhaber JI, Marban E et al. Ventricular arrhythmias underlie sudden death in rats with heart failure and preserved ejection fraction. Circ Arrhythm Electrophysiol 2018;11:e006452. PubMed PMC
Primessnig U, Schonleitner P, Holl A, Pfeiffer S, Bracic T, Rau T et al. Novel pathomechanisms of cardiomyocyte dysfunction in a model of heart failure with preserved ejection fraction. Eur J Heart Fail 2016;18:987–97. PubMed
Primessnig U, Bracic T, Levijoki J, Otsomaa L, Pollesello P, Falcke M et al. Long-term effects of Na+/Ca2+ exchanger inhibition with ORM-11035 improves cardiac function and remodelling without lowering blood pressure in a model of heart failure with preserved ejection fraction. Eur J Heart Fail 2019;21:1543–52. PubMed
Mesquita TRR, Zhang R, de Couto G, Valle J, Sanchez L, Rogers RG et al. Mechanisms of atrial fibrillation in aged rats with heart failure with preserved ejection fraction. Heart Rhythm 2020;17:1025–33. PubMed PMC
Miyake CY, Teele SA, Chen L, Motonaga KS, Dubin AM, Balasubramanian S et al. In-hospital arrhythmia development and outcomes in pediatric patients with acute myocarditis. Am J Cardiol 2014;113:535–40. PubMed
Sagar S, Liu PP, Cooper LT Jr. Myocarditis. Lancet 2012;379:738–47. PubMed PMC
Ali-Ahmed F, Dalgaard F, Al-Khatib SM. Sudden cardiac death in patients with myocarditis: evaluation, risk stratification, and management. Am Heart J 2020;220:29–40. PubMed
D'Ambrosio A, Patti G, Manzoli A, Sinagra G, Di Lenarda A, Silvestri F et al. The fate of acute myocarditis between spontaneous improvement and evolution to dilated cardiomyopathy: a review. Heart 2001;85:499–504. PubMed PMC
Blyszczuk P. Myocarditis in humans and in experimental animal models. Front Cardiovasc Med 2019;6:64. PubMed PMC
Neu N, Rose NR, Beisel KW, Herskowitz A, Gurri-Glass G, Craig SW. Cardiac myosin induces myocarditis in genetically predisposed mice. J Immunol 1987;139:3630–6. PubMed
Hua X, Hu G, Hu Q, Chang Y, Hu Y, Gao L et al. Single-cell RNA sequencing to dissect the immunological network of autoimmune myocarditis. Circulation 2020;142:384–400. PubMed
Gianfranchesco Filippi M, de Castro Ferreira Lima M, Paes AC, Sarita Cruz Aleixo A, Oba E, Ferreira de Souza F et al. Evaluation of heart rate variability and behavior of electrocardiographic parameters in dogs affected by chronic Monocytic Ehrlichiosis. PLoS One 2019;14:e0216552. PubMed PMC
Mesirca P, Fedorov VV, Hund TJ, Torrente AG, Bidaud I, Mohler PJ et al. Pharmacologic approach to sinoatrial node dysfunction. Annu Rev Pharmacol Toxicol 2021;61:757–78. PubMed PMC
Peters CH, Sharpe EJ, Proenza C. Cardiac pacemaker activity and aging. Annu Rev Physiol 2020;82:21–43. PubMed PMC
Mangoni ME, Couette B, Bourinet E, Platzer J, Reimer D, Striessnig J et al. Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity. Proc Natl Acad Sci U S A 2003;100:5543–8. PubMed PMC
Lei M, Goddard C, Liu J, Leoni AL, Royer A, Fung SS et al. Sinus node dysfunction following targeted disruption of the murine cardiac sodium channel gene Scn5a. J Physiol 2005;567:387–400. PubMed PMC
Baig SM, Koschak A, Lieb A, Gebhart M, Dafinger C, Nurnberg G et al. Loss of Ca(v)1.3 (CACNA1D) function in a human channelopathy with bradycardia and congenital deafness. Nat Neurosci 2011;14:77–84. PubMed
Hoesl E, Stieber J, Herrmann S, Feil S, Tybl E, Hofmann F et al. Tamoxifen-inducible gene deletion in the cardiac conduction system. J Mol Cell Cardiol 2008;45:62–9. PubMed
Mesirca P, Alig J, Torrente AG, Muller JC, Marger L, Rollin A et al. Cardiac arrhythmia induced by genetic silencing of ‘funny’ (f) channels is rescued by GIRK4 inactivation. Nat Commun 2014;5:4664. PubMed PMC
Alig J, Marger L, Mesirca P, Ehmke H, Mangoni ME, Isbrandt D. Control of heart rate by cAMP sensitivity of HCN channels. Proc Natl Acad Sci U S A 2009;106:12189–94. PubMed PMC
Le Scouarnec S, Bhasin N, Vieyres C, Hund TJ, Cunha SR, Koval O et al. Dysfunction in ankyrin-B-dependent ion channel and transporter targeting causes human sinus node disease. Proc Natl Acad Sci U S A 2008;105:15617–22. PubMed PMC
Milano A, Vermeer AM, Lodder EM, Barc J, Verkerk AO, Postma AV et al. HCN4 mutations in multiple families with bradycardia and left ventricular noncompaction cardiomyopathy. J Am Coll Cardiol 2014;64:745–56. PubMed
Karnabi E, Qu Y, Mancarella S, Boutjdir M. Rescue and worsening of congenital heart block-associated electrocardiographic abnormalities in two transgenic mice. J Cardiovasc Electrophysiol 2011;22:922–30. PubMed PMC
Royer A, van Veen TA, Le Bouter S, Marionneau C, Griol-Charhbili V, Leoni AL et al. Mouse model of SCN5A-linked hereditary Lenegre's disease: age-related conduction slowing and myocardial fibrosis. Circulation 2005;111:1738–46. PubMed
Zicha S, Fernandezvelasco M, Lonardo G, Lheureux N, Nattel S. Sinus node dysfunction and hyperpolarization-activated (HCN) channel subunit remodeling in a canine heart failure model. Cardiovasc Res 2005;66:472–81. PubMed
Verkerk AO, Wilders R, Coronel R, Ravesloot JH, Verheijck EE. Ionic remodeling of sinoatrial node cells by heart failure. Circulation 2003;108:760–6. PubMed
Mackasey M, Egom EE, Jansen HJ, Hua R, Moghtadaei M, Liu Y et al. Natriuretic peptide receptor-C protects against angiotensin II-mediated sinoatrial node disease in mice. JACC Basic Transl Sci 2018;3:824–43. PubMed PMC
Yeh YH, Burstein B, Qi XY, Sakabe M, Chartier D, Comtois P et al. Funny current downregulation and sinus node dysfunction associated with atrial tachyarrhythmia: a molecular basis for tachycardia-bradycardia syndrome. Circulation 2009;119:1576–85. PubMed
Howarth FC, Al-Sharhan R, Al-Hammadi A, Qureshi MA. Effects of streptozotocin-induced diabetes on action potentials in the sinoatrial node compared with other regions of the rat heart. Mol Cell Biochem 2007;300:39–46. PubMed
D’Souza A, Bucchi A, Johnsen AB, Logantha SJRJ, Monfredi O, Yanni J et al. Exercise training reduces resting heart rate via downregulation of the funny channel HCN4. Nat Commun 2014;5:3775. PubMed PMC
Larson ED, St Clair JR, Sumner WA, Bannister RA, Proenza C. Depressed paceJmaker activity of sinoatrial node myocytes contributes to the age-dependent decline in maximum heart rate. Proc Natl Acad Sci U S A 2013;110:18011–6. PubMed PMC
Shimizu W, Antzelevitch C. Sodium channel block with mexiletine is effective in reducing dispersion of repolarization and preventing torsade des pointes in LQT2 and LQT3 models of the long-QT syndrome. Circulation 1997;96:2038–47. PubMed
Milberg P, Reinsch N, Wasmer K, Monnig G, Stypmann J, Osada N et al. Transmural dispersion of repolarization as a key factor of arrhythmogenicity in a novel intact heart model of LQT3. Cardiovasc Res 2005;65:397–404. PubMed
Patocskai B, Yoon N, Antzelevitch C. Mechanisms underlying epicardial radiofrequency ablation to suppress arrhythmogenesis in experimental models of Brugada syndrome. JACC Clin Electrophysiol 2017;3:353–63. PubMed PMC
Sendfeld F, Selga E, Scornik FS, Perez GJ, Mills NL, Brugada R. Experimental models of Brugada syndrome. Int J Mol Sci 2019;20:2123. PubMed PMC
Rivolta I, Abriel H, Tateyama M, Liu H, Memmi M, Vardas P et al. Inherited Brugada and long QT-3 syndrome mutations of a single residue of the cardiac sodium channel confer distinct channel and clinical phenotypes. J Biol Chem 2001;276:30623–30. PubMed
Remme CA, Verkerk AO, Nuyens D, van Ginneken AC, van Brunschot S, Belterman CN et al. Overlap syndrome of cardiac sodium channel disease in mice carrying the equivalent mutation of human SCN5A-1795insD. Circulation 2006;114:2584–94. PubMed
Casini S, Albesa M, Wang Z, Portero V, Ross-Kaschitza D, Rougier JS et al. Functional consequences of the SCN5A-p.Y1977N mutation within the PY ubiquitylation motif: discrepancy between HEK293 cells and transgenic mice. Int J Mol Sci 2019;20:5033. PubMed PMC
Boukens BJ, Sylva M, de Gier-de Vries C, Remme CA, Bezzina CR, Christoffels VM et al. Reduced sodium channel function unmasks residual embryonic slow conduction in the adult right ventricular outflow tract. Circ Res 2013;113:137–41. PubMed
Kelly A, Salerno S, Connolly A, Bishop M, Charpentier F, Stolen T et al. Normal interventricular differences in tissue architecture underlie right ventricular susceptibility to conduction abnormalities in a mouse model of Brugada syndrome. Cardiovasc Res 2018;114:724–36. PubMed PMC
Rivaud MR, Baartscheer A, Verkerk AO, Beekman L, Rajamani S, Belardinelli L et al. Enhanced late sodium current underlies pro-arrhythmic intracellular sodium and calcium dysregulation in murine sodium channelopathy. Int J Cardiol 2018;263:54–62. PubMed
Zaza A, Rocchetti M. The late Na+ current - origin and pathophysiological relevance. Cardiovasc Drugs Ther 2013;27:61–8. PubMed PMC
Remme CA, Scicluna BP, Verkerk AO, Amin AS, van Brunschot S, Beekman L et al. Genetically determined differences in sodium current characteristics modulate conduction disease severity in mice with cardiac sodium channelopathy. Circ Res 2009;104:1283–92. PubMed
Fabritz L, Damke D, Emmerich M, Kaufmann SG, Theis K, Blana A et al. Autonomic modulation and antiarrhythmic therapy in a model of long QT syndrome type 3. Cardiovasc Res 2010;87:60–72. PubMed PMC
Rivaud MR, Jansen JA, Postema PG, Nannenberg EA, Mizusawa Y, van der Nagel R et al. A common co-morbidity modulates disease expression and treatment efficacy in inherited cardiac sodium channelopathy. Eur Heart J 2018;39:2898–907. PubMed
Ma D, Wei H, Zhao Y, Lu J, Li G, Sahib NB et al. Modeling type 3 long QT syndrome with cardiomyocytes derived from patient-specific induced pluripotent stem cells. Int J Cardiol 2013;168:5277–86. PubMed
Leong IU, Stuckey A, Lai D, Skinner JR, Love DR. Assessment of the predictive accuracy of five in silico prediction tools, alone or in combination, and two metaservers to classify long QT syndrome gene mutations. BMC Med Genet 2015;16:34. PubMed PMC
Clerx M, Heijman J, Collins P, Volders PGA. Predicting changes to INa from missense mutations in human SCN5A. Sci Rep 2018;8:12797. PubMed PMC
Xia L, Zhang Y, Zhang H, Wei Q, Liu F, Crozier S. Simulation of Brugada syndrome using cellular and three-dimensional whole-heart modeling approaches. Physiol Meas 2006;27:1125–42. PubMed
Hoogendijk MG, Potse M, Vinet A, de Bakker JM, Coronel R. ST segment elevation by current-to-load mismatch: an experimental and computational study. Heart Rhythm 2011;8:111–8. PubMed
Xu H, Guo W, Nerbonne JM. Four kinetically distinct depolarization-activated K+ currents in adult mouse ventricular myocytes. J Gen Physiol 1999;113:661–78. PubMed PMC
Nerbonne JM, Nichols CG, Schwarz TL, Escande D. Genetic manipulation of cardiac K+ channel function in mice: what have we learned, and where do we go from here? Circ Res 2001;89:944–56. PubMed
Charpentier F, Demolombe S, Escande D. Cardiac channelopathies: from men to mice. Ann Med 2004;36: 28–34. PubMed
Demolombe S, Lande G, Charpentier F, van Roon MA, van den Hoff MJ, Toumaniantz G et al. Transgenic mice overexpressing human KvLQT1 dominant-negative isoform. Part I: phenotypic characterisation. Cardiovasc Res 2001;50:314–27. PubMed
London B, Baker LC, Petkova-Kirova P, Nerbonne JM, Choi BR, Salama G. Dispersion of repolarization and refractoriness are determinants of arrhythmia phenotype in transgenic mice with long QT. J Physiol 2007;578:115–29. PubMed PMC
Arnaout R, Ferrer T, Huisken J, Spitzer K, Stainier DY, Tristani-Firouzi M et al. Zebrafish model for human long QT syndrome. Proc Natl Acad Sci U S A 2007;104:11316–21. PubMed PMC
Peal DS, Mills RW, Lynch SN, Mosley JM, Lim E, Ellinor PT et al. Novel chemical suppressors of long QT syndrome identified by an in vivo functional screen. Circulation 2011;123:23–30. PubMed PMC
Hassel D, Scholz EP, Trano N, Friedrich O, Just S, Meder B et al. Deficient zebrafish ether-a-go-go-related gene channel gating causes short-QT syndrome in zebrafish reggae mutants. Circulation 2008;117:866–75. PubMed
Odening KE, Choi BR, Liu GX, Hartmann K, Ziv O, Chaves L et al. Estradiol promotes sudden cardiac death in transgenic long QT type 2 rabbits while progesterone is protective. Heart Rhythm 2012;9:823–32. PubMed PMC
Lang CN, Koren G, Odening KE. Transgenic rabbit models to investigate the cardiac ion channel disease long QT syndrome. Prog Biophys Mol Biol 2016;121:142–56. PubMed
Baczko I, Hornyik T, Brunner M, Koren G, Odening KE. Transgenic rabbit models in proarrhythmia research. Front Pharmacol 2020;11:853. PubMed PMC
Moretti A, Bellin M, Welling A, Jung CB, Lam JT, Bott-Flugel L et al. Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med 2010;363:1397–409. PubMed
Sala L, Yu Z, Ward-van Oostwaard D, van Veldhoven JP, Moretti A, Laugwitz KL et al. A new hERG allosteric modulator rescues genetic and drug-induced long-QT syndrome phenotypes in cardiomyocytes from isogenic pairs of patient induced pluripotent stem cells. EMBO Mol Med 2016;8:1065–81. PubMed PMC
Mehta A, Ramachandra CJA, Singh P, Chitre A, Lua CH, Mura M et al. Identification of a targeted and testable antiarrhythmic therapy for long-QT syndrome type 2 using a patient-specific cellular model. Eur Heart J 2018;39:1446–55. PubMed
Lawrence CL, Pollard CE, Hammond TG, Valentin JP. Nonclinical proarrhythmia models: predicting Torsades de Pointes. J Pharmacol Toxicol Methods 2005;52:46–59. PubMed
Fernández-Velasco M, Rueda A, Rizzi N, Benitah J-P, Colombi B, Napolitano C et al. Increased Ca2+ sensitivity of the ryanodine receptor mutant RyR2-R4496C underlies catecholaminergic polymorphic ventricular tachycardia. Circ Res 2009;104:201–9, 212p following 209. PubMed PMC
Uchinoumi H, Yano M, Suetomi T, Ono M, Xu X, Tateishi H et al. Catecholaminergic polymorphic ventricular tachycardia is caused by mutation-linked defective conformational regulation of the ryanodine receptor. Circ Res 2010;106:1413–24. PubMed PMC
Zhao YT, Valdivia CR, Gurrola GB, Powers PP, Willis BC, Moss RL et al. Arrhythmogenesis in a catecholaminergic polymorphic ventricular tachycardia mutation that depresses ryanodine receptor function. Proc Natl Acad Sci U S A 2015;112:E1669–1677. PubMed PMC
Wang YY, Mesirca P, Marques-Sule E, Zahradnikova A Jr., Villejoubert O, D'Ocon P et al. RyR2R420Q catecholaminergic polymorphic ventricular tachycardia mutation induces bradycardia by disturbing the coupled clock pacemaker mechanism. JCI Insight 2017;2:e91872. PubMed PMC
Oberst L, Zhao G, Park JT, Brugada R, Michael LH, Entman ML et al. Dominant-negative effect of a mutant cardiac troponin T on cardiac structure and function in transgenic mice. J Clin Invest 1998;102:1498–505. PubMed PMC
Muthuchamy M, Pieples K, Rethinasamy P, Hoit B, Grupp IL, Boivin GP et al. Mouse model of a familial hypertrophic cardiomyopathy mutation in alpha-tropomyosin manifests cardiac dysfunction. Circ Res 1999;85:47–56. PubMed
Hasenfuss G. Animal models of human cardiovascular disease, heart failure and hypertrophy. Cardiovasc Res 1998;39:60–76. PubMed
Coppini R, Santini L, Olivotto I, Ackerman MJ, Cerbai E. Abnormalities in sodium current and calcium homoeostasis as drivers of arrhythmogenesis in hypertrophic cardiomyopathy. Cardiovasc Res 2020;116:1585–99. PubMed
Santini L, Palandri C, Nediani C, Cerbai E, Coppini R. Modelling genetic diseases for drug development: hypertrophic cardiomyopathy. Pharmacol Res 2020;160:105176. PubMed
Green EM, Wakimoto H, Anderson RL, Evanchik MJ, Gorham JM, Harrison BC et al. A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice. Science 2016;351:617–21. PubMed PMC
Olivotto I, Oreziak A, Barriales-Villa R, Abraham TP, Masri A, Garcia-Pavia P et al. Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2020;396:759–69. PubMed
Marian AJ, Wu Y, Lim DS, McCluggage M, Youker K, Yu QT et al. A transgenic rabbit model for human hypertrophic cardiomyopathy. J Clin Invest 1999;104:1683–92. PubMed PMC
van der Voorn SM, Te Riele A, Basso C, Calkins H, Remme CA, van Veen TAB. Arrhythmogenic cardiomyopathy: pathogenesis, pro-arrhythmic remodelling, and novel approaches for risk stratification and therapy. Cardiovasc Res 2020;116:1571–84. PubMed PMC
Lodder EM, Rizzo S. Mouse models in arrhythmogenic right ventricular cardiomyopathy. Front Physiol 2012;3:221. PubMed PMC
Rizzo S, Lodder EM, Verkerk AO, Wolswinkel R, Beekman L, Pilichou K et al. Intercalated disc abnormalities, reduced Na+ current density, and conduction slowing in desmoglein-2 mutant mice prior to cardiomyopathic changes. Cardiovasc Res 2012;95:409–18. PubMed
Kim JC, Perez-Hernandez M, Alvarado FJ, Maurya SR, Montnach J, Yin Y et al. Disruption of PubMed PMC
Modeling sepsis, with a special focus on large animal models of porcine peritonitis and bacteremia