Prognostic value of high-sensitivity cardiac troponin I in heart failure patients with mid-range and reduced ejection fraction

. 2021 ; 16 (7) : e0255271. [epub] 20210730

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu klinické zkoušky, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34329368

BACKGROUND: The identification of high-risk heart failure (HF) patients makes it possible to intensify their treatment. Our aim was to determine the prognostic value of a newly developed, high-sensitivity troponin I assay (Atellica®, Siemens Healthcare Diagnostics) for patients with HF with reduced ejection fraction (HFrEF; LVEF < 40%) and HF with mid-range EF (HFmrEF) (LVEF 40%-49%). METHODS AND RESULTS: A total of 520 patients with HFrEF and HFmrEF were enrolled in this study. Two-year all-cause mortality, heart transplantation, and/or left ventricular assist device implantation were defined as the primary endpoints (EP). A logistic regression analysis was used for the identification of predictors and development of multivariable models. The EP occurred in 14% of the patients, and these patients had higher NT-proBNP (1,950 vs. 518 ng/l; p < 0.001) and hs-cTnI (34 vs. 17 ng/l, p < 0.001) levels. C-statistics demonstrated that the optimal cut-off value for the hs-cTnI level was 17 ng/l (AUC 0.658, p < 0.001). Described by the AUC, the discriminatory power of the multivariable model (NYHA > II, NT-proBNP, hs-cTnI and urea) was 0.823 (p < 0.001). Including heart failure hospitalization as the component of the combined secondary endpoint leads to a diminished predictive power of increased hs-cTnI. CONCLUSION: hs-cTnI levels ≥ 17 ng/l represent an independent increased risk of an adverse prognosis for patients with HFrEF and HFmrEF. Determining a patient's hs-cTnI level adds prognostic value to NT-proBNP and clinical parameters.

Zobrazit více v PubMed

Parenica J, Spinar J, Vitovec J, Widimsky P, Linhart A, Fedorco M, et al.. Long-term survival following acute heart failure: the Acute Heart Failure Database Main registry (AHEAD Main). Eur J Intern Med. 2013;24: 151–160. doi: 10.1016/j.ejim.2012.11.005 PubMed DOI

Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al.. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37: 2129–2200. doi: 10.1093/eurheartj/ehw128 PubMed DOI

Rahimi K, Bennett D, Conrad N, Williams TM, Basu J, Dwight J, et al.. Risk prediction in patients with heart failure: a systematic review and analysis. JACC Heart Fail. 2014;2: 440–446. doi: 10.1016/j.jchf.2014.04.008 PubMed DOI

Spinar J, Spinarova L, Malek F, Ludka O, Krejci J, Ostadal P, et al.. Prognostic value of NT-proBNP added to clinical parameters to predict two-year prognosis of chronic heart failure patients with mid-range and reduced ejection fraction—A report from FAR NHL prospective registry. PloS One. 2019;14: e0214363. doi: 10.1371/journal.pone.0214363 PubMed DOI PMC

Simpson J, Jhund PS, Lund LH, Padmanabhan S, Claggett BL, Shen L, et al.. Prognostic Models Derived in PARADIGM-HF and Validated in ATMOSPHERE and the Swedish Heart Failure Registry to Predict Mortality and Morbidity in Chronic Heart Failure. JAMA Cardiol. 2020. doi: 10.1001/jamacardio.2019.5850 PubMed DOI PMC

Aimo A, Januzzi JL, Vergaro G, Ripoli A, Latini R, Masson S, et al.. Prognostic Value of High-Sensitivity Troponin T in Chronic Heart Failure: An Individual Patient Data Meta-Analysis. Circulation. 2018;137: 286–297. doi: 10.1161/CIRCULATIONAHA.117.031560 PubMed DOI

Hlatky MA, Greenland P, Arnett DK, Ballantyne CM, Criqui MH, Elkind MSV, et al.. Criteria for evaluation of novel markers of cardiovascular risk: a scientific statement from the American Heart Association. Circulation. 2009;119: 2408–2416. doi: 10.1161/CIRCULATIONAHA.109.192278 PubMed DOI PMC

Wang TJ. Assessing the role of circulating, genetic, and imaging biomarkers in cardiovascular risk prediction. Circulation. 2011;123: 551–565. doi: 10.1161/CIRCULATIONAHA.109.912568 PubMed DOI PMC

Van Calster B, Nieboer D, Vergouwe Y, De Cock B, Pencina MJ, Steyerberg EW. A calibration hierarchy for risk models was defined: from utopia to empirical data. J Clin Epidemiol. 2016;74: 167–176. doi: 10.1016/j.jclinepi.2015.12.005 PubMed DOI

Spinar J, Jarkovsky J, Spinarova L, Mebazaa A, Gayat E, Vitovec J, et al.. AHEAD score—Long-term risk classification in acute heart failure. Int J Cardiol. 2016;202: 21–26. doi: 10.1016/j.ijcard.2015.08.187 PubMed DOI

Ambardekar AV, Kittleson MM, Palardy M, Mountis MM, Forde-McLean RC, DeVore AD, et al.. Outcomes with ambulatory advanced heart failure from the Medical Arm of Mechanically Assisted Circulatory Support (MedaMACS) Registry. J Heart Lung Transplant. 2019;38: 408–417. doi: 10.1016/j.healun.2018.09.021 PubMed DOI PMC

Mehra MR, Goldstein DJ, Uriel N, Joseph C. Cleveland J, Yuzefpolskaya M, Salerno C, et al.. Two-Year Outcomes with a Magnetically Levitated Cardiac Pump in Heart Failure. N Engl J Med. 2018. [cited 1 Mar 2020]. doi: 10.1056/NEJMoa1800866 PubMed DOI

Levy WC, Mozaffarian D, Linker DT, Sutradhar SC, Anker SD, Cropp AB, et al.. The Seattle Heart Failure Model: prediction of survival in heart failure. Circulation. 2006;113: 1424–1433. doi: 10.1161/CIRCULATIONAHA.105.584102 PubMed DOI

Brunner-La Rocca H-P, Linssen GC, Smeele FJ, van Drimmelen AA, Schaafsma H-J, Westendorp PH, et al.. Contemporary Drug Treatment of Chronic Heart Failure With Reduced Ejection Fraction: The CHECK-HF Registry. JACC Heart Fail. 2019;7: 13–21. doi: 10.1016/j.jchf.2018.10.010 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...