A conserved role of the duplicated Masculinizer gene in sex determination of the Mediterranean flour moth, Ephestia kuehniella
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34339412
PubMed Central
PMC8360546
DOI
10.1371/journal.pgen.1009420
PII: PGENETICS-D-21-00179
Knihovny.cz E-zdroje
- MeSH
- alternativní sestřih MeSH
- duplikace genu * MeSH
- hmyzí proteiny chemie genetika MeSH
- kompenzace dávky (genetika) MeSH
- můry embryologie genetika MeSH
- orgánová specificita MeSH
- pohlavní chromozomy genetika MeSH
- procesy určující pohlaví MeSH
- proteinové domény MeSH
- stanovení celkové genové exprese MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hmyzí proteiny MeSH
Sex determination in the silkworm, Bombyx mori, is based on Feminizer (Fem), a W-linked Fem piRNA that triggers female development in WZ individuals, and the Z-linked Masculinizer (Masc), which initiates male development and dosage compensation in ZZ individuals. While Fem piRNA is missing in a close relative of B. mori, Masc determines sex in several representatives of distant lepidopteran lineages. We studied the molecular mechanisms of sex determination in the Mediterranean flour moth, Ephestia kuehniella (Pyralidae). We identified an E. kuehniella Masc ortholog, EkMasc, and its paralog resulting from a recent duplication, EkMascB. Both genes are located on the Z chromosome and encode a similar Masc protein that contains two conserved domains but has lost the conserved double zinc finger domain. We developed PCR-based genetic sexing and demonstrated a peak in the expression of EkMasc and EkMascB genes only in early male embryos. Simultaneous knock-down experiments of both EkMasc and EkMascB using RNAi during early embryogenesis led to a shift from male- to female-specific splicing of the E. kuehniella doublesex gene (Ekdsx), their downstream effector, in ZZ embryos and resulted in a strong female-biased sex-ratio. Our results thus confirmed the conserved role of EkMasc and/or EkMascB in masculinization. We suggest that the C-terminal proline-rich domain, we have identified in all functionally confirmed Masc proteins, in conjunction with the masculinizing domain, is important for transcriptional regulation of sex determination in Lepidoptera. The function of the Masc double zinc finger domain is still unknown, but appears to have been lost in E. kuehniella.
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Laboratory of Entomology Wageningen University and Research Wageningen The Netherlands
Zobrazit více v PubMed
Nöthiger R, Steinmann-Zwicky M. A single principle for sex determination in insects. Cold Spring Harbor Symp Quant Biol. 1985; 50:615–621. doi: 10.1101/sqb.1985.050.01.074 PubMed DOI
Wilkins AS. Moving up the hierarchy: A hypothesis on the evolution of a genetic sex determination pathway. BioEssays. 1995; 17(1):71–77. doi: 10.1002/bies.950170113 PubMed DOI
Verhulst EC, van de Zande L, Beukeboom LW. Insect sex determination: it all evolves around transformer. Curr Opin Genet Dev. 2010; 20(4):376–383. doi: 10.1016/j.gde.2010.05.001 PubMed DOI
Gempe T, Beye M. Function and evolution of sex determination mechanisms, genes and pathways in insects. BioEssays. 2011; 33(1):52–60. doi: 10.1002/bies.201000043 PubMed DOI PMC
Bopp D, Saccone G, Beye M. Sex determination in insects: variations on a common theme. Sex Dev. 2014; 8(1–3):20–28. doi: 10.1159/000356458 PubMed DOI
Geuverink E, Beukeboom LW. Phylogenetic distribution and evolutionary dynamics of the sex determination genes doublesex and transformer in insects. Sex Dev. 2014; 8(1–3):38–49. doi: 10.1159/000357056 PubMed DOI
Nguantad S, Chumnanpuen P, Thancharoen A, Vongsangnak W, Sriboonlert A. Identification of potential candidate genes involved in the sex determination cascade in an aquatic firefly, Sclerotia aquatilis (Coleoptera, Lampyridae). Genomics. 2020; 112(3):2590–2602. doi: 10.1016/j.ygeno.2020.01.025 PubMed DOI
Zou Y, Geuverink E, Beukeboom LW, Verhulst EC, van de Zande L. A chimeric gene paternally instructs female sex determination in the haplodiploid wasp Nasonia. Science. 2020; 370(6520):1115–1118. doi: 10.1126/science.abb8949 PubMed DOI
Beye M, Hasselmann M, Fondrk MK, Page RE, Omholt SW. The gene csd is the primary signal for sexual development in the honeybee and encodes an SR-type protein. Cell. 2003; 114(4):419–429. doi: 10.1016/s0092-8674(03)00606-8 PubMed DOI
Hasselmann M, Gempe T, Schiøtt M, Nunes-Silva CG, Otte M, Beye M. Evidence for the evolutionary nascence of a novel sex determination pathway in honeybees. Nature. 2008; 454(7203):519–522. doi: 10.1038/nature07052 PubMed DOI
Jia LY, Xiao JH, Xiong TL, Niu LM, Huang DW. The transformer genes in the fig wasp Ceratosolen solmsi provide new evidence for duplications independent of complementary sex determination. Insect Mol Biol. 2016; 25(3):191–201. doi: 10.1111/imb.12210 PubMed DOI
Geuverink E, Kraaijeveld K, van Leussen M, Chen F, Pijpe J, Linskens MHK, et al.. Evidence for involvement of a transformer paralogue in sex determination of the wasp Leptopilina clavipes. Insect Mol Biol. 2018; 27(6):780–795. doi: 10.1111/imb.12522 PubMed DOI
Sharma A, Heinze SD, Wu Y, Kohlbrenner T, Morilla I, Brunner C, et al.. Male sex in houseflies is determined by Mdmd, a paralog of the generic splice factor gene CWC22. Science. 2017; 356(6338):642–645. doi: 10.1126/science.aam5498 PubMed DOI
Furlong MJ, Wright DJ, Dosdall LM. Diamondback moth ecology and management: problems, progress, and prospects. Annu Rev Entomol. 2013; 58:517–541. doi: 10.1146/annurev-ento-120811-153605 PubMed DOI
Suzuki MG. Sex determination: insights from the silkworm. J Genet. 2010; 89(3):357–363. doi: 10.1007/s12041-010-0047-5 PubMed DOI
Katsuma S, Kawamoto M, Kiuchi T. Guardian small RNAs and sex determination. RNA Biol. 2014; 11(10):1238–1242. doi: 10.1080/15476286.2014.996060 PubMed DOI PMC
Kiuchi T, Koga H, Kawamoto M, Shoji K, Sakai H, Arai Y, et al.. A single female-specific piRNA is the primary determiner of sex in the silkworm. Nature. 2014; 509(7502):633–636. doi: 10.1038/nature13315 PubMed DOI
Sugano Y, Kokusho R, Ueda M, Fujimoto M, Tsutsumi N, Shimada T, et al.. Identification of a bipartite nuclear localization signal in the silkworm Masc protein. FEBS Lett. 2016; 590(14):2256–2261. doi: 10.1002/1873-3468.12246 PubMed DOI
Katsuma S, Sugano Y, Kiuchi T, Shimada T. Two conserved cysteine residues are required for the masculinizing activity of the silkworm Masc protein. J Biol Chem. 2015; 290(43):26114–26124. doi: 10.1074/jbc.M115.685362 PubMed DOI PMC
Kiuchi T, Sugano Y, Shimada T, Katsuma S. Two CCCH-type zinc finger domains in the Masc protein are dispensable for masculinization and dosage compensation in Bombyx mori. Insect Biochem Mol Biol. 2019; 104:30–38. doi: 10.1016/j.ibmb.2018.12.003 PubMed DOI
Lee J, Kiuchi T, Kawamoto M, Shimada T, Katsuma S. Identification and functional analysis of a Masculinizer orthologue in Trilocha varians (Lepidoptera: Bombycidae). Insect Mol Biol. 2015; 24(5):561–569. doi: 10.1111/imb.12181 PubMed DOI
Fukui T, Kawamoto M, Shoji K, Kiuchi T, Sugano S, Shimada T, et al.. The endosymbiotic bacterium Wolbachia selectively kills male hosts by targeting the masculinizing gene. PLoS Pathog. 2015; 11(7):e1005048. doi: 10.1371/journal.ppat.1005048 PubMed DOI PMC
Fukui T, Kiuchi T, Shoji K, Kawamoto M, Shimada T, Katsuma S. In vivo masculinizing function of the Ostrinia furnacalis Masculinizer gene. Biochem Biophys Res Commun. 2018; 503(3):1768–1772. doi: 10.1016/j.bbrc.2018.07.111 PubMed DOI
Wang YH, Chen XE, Yang Y, Xu J, Fang GQ, Niu CY, et al.. The Masc gene product controls masculinization in the black cutworm, Agrotis ipsilon. Insect Sci. 2019; 26(6):1037–1044. doi: 10.1111/1744-7917.12635 PubMed DOI
Harvey-Samuel T, Norman VC, Carter R, Lovett E, Alphey L. Identification and characterization of a Masculinizer homologue in the diamondback moth, Plutella xylostella. Insect Mol Biol. 2020; 29(2):231–240. doi: 10.1111/imb.12628 PubMed DOI PMC
Katsuma S, Shoji K, Sugano Y, Suzuki Y, Kiuchi T. Masc-induced dosage compensation in silkworm cultured cells. FEBS Open Bio. 2019; 9(9):1573–1579. doi: 10.1002/2211-5463.12698 PubMed DOI PMC
Robinson R. Lepidoptera genetics. 1st ed. Oxford: Pergamon Press; 1971.
Traut W, Sahara K, Marec F. Sex chromosomes and sex determination in Lepidoptera. Sex Dev. 2007; 1(6):332–346. doi: 10.1159/000111765 PubMed DOI
Champ BR, Dyte CE. FAO global survey of pesticide susceptibility of stored grain pests. FAO Plant Protection Bulletin. 1977; 25(2):49–67.
Vangansbeke D, Nguyen DT, Audenaert J, Verhoeven R, Gobin B, Tirry L, et al.. Performance of the predatory mite Amblydromalus limonicus on factitious foods. BioControl. 2014; 59(1):67–77. doi: 10.1007/s10526-013-9548-5 DOI
St-Onge M, Cormier D, Todorova S, Lucas É. Conservation of Ephestia kuehniella eggs as hosts for Trichogramma ostriniae. J Appl Entomol. 2016; 140(3):218–222. doi: 10.1111/jen.12227 DOI
Bueno VHP, Montes FC, Sampaio MV, Calixto AM, van Lenteren JC. Performance of immatures of three Neotropical Miridae at five different temperatures, reared on Ephestia kuehniella eggs on tobacco plants. Bull Insectology. 2018; 71(1):77–87.
Cox PD, Mfon M, Parkin S, Seaman JE. Diapause in a Glasgow strain of the flour moth, Ephestia kuehniella. Physiol Entomol. 1981; 6(4):349–356. doi: 10.1111/j.1365-3032.1981.tb00650.x DOI
Cerutti F, Bigler F, Eden G, Bosshart S. Optimal larval density and quality control aspects in mass rearing of the Mediterranean flour moth, Ephestia kuehniella Zell. (Lep., Phycitidae). J Appl Entomol. 1992; 114(1–5):353–361. doi: 10.1111/j.1439-0418.1992.tb01139.x DOI
Xu J, Wang Q. Male moths undertake both pre- and in-copulation mate choice based on female age and weight. Behav Ecol Sociobiol. 2009; 63(6):801–808. doi: 10.1007/s00265-009-0713-x DOI
Traut W, Rathjens B. Das W-Chromosom von Ephestia kuehniella (Lepidoptera) und die Ableitung des Geschlechtschromatins. Chromosoma. 1973; 41(4):437–446. doi: 10.1007/BF00396501 DOI
Nguyen P, Sýkorová M, Šíchová J, Kůta V, Dalíková M, Čapková Frydrychová R, et al.. Neo-sex chromosomes and adaptive potential in tortricid pests. Proc Natl Acad Sci U S A. 2013; 110(17):6931–6936. doi: 10.1073/pnas.1220372110 PubMed DOI PMC
Van’t Hof AE, Nguyen P, Dalíková M, Edmonds N, Marec F, Saccheri IJ. Linkage map of the peppered moth, Biston betularia (Lepidoptera, Geometridae): a model of industrial melanism. Heredity. 2013; 110(3):283–295. doi: 10.1038/hdy.2012.84 PubMed DOI PMC
Dalíková M, Zrzavá M, Hladová I, Nguyen P, Šonský I, Flegrová M, et al.. New insights into the evolution of the W chromosome in Lepidoptera. J Hered. 2017; 108(7):709–719. doi: 10.1093/jhered/esx063 PubMed DOI
Suzuki MG, Ohbayashi F, Mita K, Shimada T. The mechanism of sex-specific splicing at the doublesex gene is different between Drosophila melanogaster and Bombyx mori. Insect Biochem Mol Biol. 2001; 31(12):1201–1211. doi: 10.1016/s0965-1748(01)00067-4 PubMed DOI
Shukla JN, Jadhav S, Nagaraju J. Novel female-specific splice form of dsx in the silkworm, Bombyx mori. Genetica. 2011; 139(1):23–31. doi: 10.1007/s10709-010-9479-3 PubMed DOI
Chang AYF, Liao BY. Reduced translational efficiency of eukaryotic genes after duplication events. Mol Biol Evol. 2020; 37(5):1452–1461. doi: 10.1093/molbev/msz309 PubMed DOI
Zhao Q, Li J, Wen MY, Wang H, Wang Y, Wang KX, et al.. A novel splice variant of the masculinizing gene Masc with piRNA-cleavage-site defect functions in female external genital development in the silkworm, Bombyx mori. Biomolecules. 2019; 9(8):318. doi: 10.3390/biom9080318 PubMed DOI PMC
Gopinath G, Arunkumar KP, Mita K, Nagaraju J. Role of Bmznf-2, a Bombyx mori CCCH zinc finger gene, in masculinisation and differential splicing of Bmtra-2. Insect Biochem Mol Biol. 2016; 75:32–44. doi: 10.1016/j.ibmb.2016.05.008 PubMed DOI
Gerber HP, Seipel K, Georgiev O, Höfferer M, Hug M, Rusconi S, et al.. Transcriptional activation modulated by homopolymeric glutamine and proline stretches. Science. 1994; 263(5148):808–811. doi: 10.1126/science.8303297 PubMed DOI
Williamson MP. The structure and function of proline-rich regions in proteins. Biochem J. 1994; 297(2):249–260. doi: 10.1042/bj2970249 PubMed DOI PMC
Marec F. Genetic control of pest Lepidoptera: induction of sex-linked recessive lethal mutations in Ephestia kuehniella (Pyralidae). Acta Entomol Bohemoslov. 1990; 87(6):445–458.
Fuková I, Nguyen P, Marec F. Codling moth cytogenetics: karyotype, chromosomal location of rDNA, and molecular differentiation of sex chromosomes. Genome. 2005; 48(6):1083–1092. doi: 10.1139/g05-063 PubMed DOI
Challis RJ, Kumar S, Dasmahapatra KK, Jiggins CD, Blaxter M. Lepbase: the Lepidopteran genome database. bioRxiv. 2016. doi: 10.1101/056994 DOI
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al.. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012; 28(12):1647–1649. doi: 10.1093/bioinformatics/bts199 PubMed DOI PMC
Frohman MA, Dush MK, Martin GR. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci U S A. 1988; 85(23):8998–9002. doi: 10.1073/pnas.85.23.8998 PubMed DOI PMC
Ferguson KB, Visser S, Dalíková M, Provazníková I, Urbaneja A, Pérez-Hedo M, et al.. Jekyll or Hyde? The genome (and more) of Nesidiocoris tenuis, a zoophytophagous predatory bug that is both a biological control agent and a pest. Insect Mol Biol. 2021; 30(2):188–209. doi: 10.1111/imb.12688 PubMed DOI PMC
Buntrock L, Marec F, Krueger S, Traut W. Organ growth without cell division: somatic polyploidy in a moth, Ephestia kuehniella. Genome. 2012; 55(11):755–763. doi: 10.1139/g2012-060 PubMed DOI
Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017; 27(5):722–736. doi: 10.1101/gr.215087.116 PubMed DOI PMC
Frydrychová R, Marec F. Repeated losses of TTAGG telomere repeats in evolution of beetles (Coleoptera). Genetica. 2002; 115(2):179–187. doi: 10.1023/a:1020175912128 PubMed DOI
Dalíková M, Zrzavá M, Kubíčková S, Marec F. W-enriched satellite sequence in the Indian meal moth, Plodia interpunctella (Lepidoptera, Pyralidae). Chromosome Res. 2017; 25(3–4):241–252. doi: 10.1007/s10577-017-9558-8 PubMed DOI
Hejníčková M, Koutecký P, Potocký P, Provazníková I, Voleníková A, Dalíková M, et al.. Absence of W chromosome in Psychidae moths and implications for the theory of sex chromosome evolution in Lepidoptera. Genes. 2019; 10(12):1016. doi: 10.3390/genes10121016 PubMed DOI PMC
R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
Elbashir SM, Martinez J, Patkaniowska A, Lendeckel W, Tuschl T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 2001; 20(23):6877–6888. doi: 10.1093/emboj/20.23.6877 PubMed DOI PMC
Pei Y, Tuschl T. On the art of identifying effective and specific siRNAs. Nat Methods. 2006; 3(9):670–676. doi: 10.1038/nmeth911 PubMed DOI
Wickham H. ggplot2: Elegant graphics for data analysis. 2nd ed. New York: Springer-Verlag; 2016.