Systematic Bioinformatic Analyses of Nutrigenomic Modifications by Polyphenols Associated with Cardiometabolic Health in Humans-Evidence from Targeted Nutrigenomic Studies
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, systematický přehled
Grantová podpora
FA-FA1403
European Cooperation in Science and Technology
PubMed
34371836
PubMed Central
PMC8308901
DOI
10.3390/nu13072326
PII: nu13072326
Knihovny.cz E-zdroje
- Klíčová slova
- cardiometabolic health, human, integrative bioinformatics, nutrigenomics, polyphenols, systematic literature search,
- MeSH
- dospělí MeSH
- fyziologie výživy genetika MeSH
- kardiometabolické riziko MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- lidé středního věku MeSH
- lidé MeSH
- messenger RNA krev MeSH
- metabolický syndrom genetika prevence a kontrola MeSH
- mikro RNA krev MeSH
- nutrigenomika MeSH
- ochranné látky farmakologie MeSH
- polyfenoly farmakologie MeSH
- signální transdukce genetika MeSH
- výpočetní biologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- systematický přehled MeSH
- Názvy látek
- messenger RNA MeSH
- mikro RNA MeSH
- ochranné látky MeSH
- polyfenoly MeSH
Cardiometabolic disorders are among the leading causes of mortality in the human population. Dietary polyphenols exert beneficial effects on cardiometabolic health in humans. Molecular mechanisms, however, are not completely understood. Aiming to conduct in-depth integrative bioinformatic analyses to elucidate molecular mechanisms underlying the protective effects of polyphenols on cardiometabolic health, we first conducted a systematic literature search to identify human intervention studies with polyphenols that demonstrate improvement of cardiometabolic risk factors in parallel with significant nutrigenomic effects. Applying the predefined inclusion criteria, we identified 58 differentially expressed genes at mRNA level and 5 miRNAs, analyzed in peripheral blood cells with RT-PCR methods. Subsequent integrative bioinformatic analyses demonstrated that polyphenols modulate genes that are mainly involved in the processes such as inflammation, lipid metabolism, and endothelial function. We also identified 37 transcription factors that are involved in the regulation of polyphenol modulated genes, including RELA/NFKB1, STAT1, JUN, or SIRT1. Integrative bioinformatic analysis of mRNA and miRNA-target pathways demonstrated several common enriched pathways that include MAPK signaling pathway, TNF signaling pathway, PI3K-Akt signaling pathway, focal adhesion, or PPAR signaling pathway. These bioinformatic analyses represent a valuable source of information for the identification of molecular mechanisms underlying the beneficial health effects of polyphenols and potential target genes for future nutrigenetic studies.
Department of Food Science Czech University of Life Sciences 16521 Prague Czech Republic
Department of Medicine Democritus University of Thrace Dragana 68100 Alexandroupolis Greece
Faculty of Medical Sciences Goce Delcev University 2000 Stip North Macedonia
Institute for Adriatic Crops and Karst Reclamation 21000 Split Croatia
National Research Council 73100 Lecce Italy
Norwich Medical School University of East Anglia Norwich NR4 7TJ UK
Unité de Nutrition Humaine Faculté de Médecine F 63000 Clermont Ferrand France
Zobrazit více v PubMed
Del Rio D., Rodriguez-Mateos A., Spencer J.P., Tognolini M., Borges G., Crozier A. Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal. 2013;18:1818–1892. doi: 10.1089/ars.2012.4581. PubMed DOI PMC
Tresserra-Rimbau A., Lamuela-Raventos R.M., Moreno J.J. Polyphenols, food and pharma. Current knowledge and directions for future research. Biochem. Pharmacol. 2018;156:186–195. doi: 10.1016/j.bcp.2018.07.050. PubMed DOI
Sharma A., Shahzad B., Rehman A., Bhardwaj R., Landi M., Zheng B. Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules. 2019;24:2452. doi: 10.3390/molecules24132452. PubMed DOI PMC
Cory H., Passarelli S., Szeto J., Tamez M., Mattei J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front. Nutr. 2018;5:87. doi: 10.3389/fnut.2018.00087. PubMed DOI PMC
Neveu V., Perez-Jimenez J., Vos F., Crespy V., du Chaffaut L., Mennen L., Knox C., Eisner R., Cruz J., Wishart D., et al. Phenol-Explorer: An online comprehensive database on polyphenol contents in foods. Database. 2010;2010:bap024. doi: 10.1093/database/bap024. PubMed DOI PMC
Scalbert A., Williamson G. Dietary intake and bioavailability of polyphenols. J. Nutr. 2000;130:2073S–2085S. doi: 10.1093/jn/130.8.2073S. PubMed DOI
Miranda A.M., Steluti J., Fisberg R.M., Marchioni D.M. Dietary intake and food contributors of polyphenols in adults and elderly adults of Sao Paulo: A population-based study. Br. J. Nutr. 2016;115:1061–1070. doi: 10.1017/S0007114515005061. PubMed DOI
Grosso G., Stepaniak U., Topor-Madry R., Szafraniec K., Pajak A. Estimated dietary intake and major food sources of polyphenols in the Polish arm of the HAPIEE study. Nutrition. 2014;30:1398–1403. doi: 10.1016/j.nut.2014.04.012. PubMed DOI PMC
Hertog M.G., Feskens E.J., Hollman P.C., Katan M.B., Kromhout D. Dietary antioxidant flavonoids and risk of coronary heart disease: The Zutphen Elderly Study. Lancet. 1993;342:1007–1011. doi: 10.1016/0140-6736(93)92876-U. PubMed DOI
Wedick N.M., Pan A., Cassidy A., Rimm E.B., Sampson L., Rosner B., Willett W., Hu F.B., Sun Q., van Dam R.M. Dietary flavonoid intakes and risk of type 2 diabetes in US men and women. Am. J. Clin. Nutr. 2012;95:925–933. doi: 10.3945/ajcn.111.028894. PubMed DOI PMC
Loffredo L., Baratta F., Ludovica P., Battaglia S., Carnevale R., Nocella C., Novo M., Pannitteri G., Ceci F., Angelico F., et al. Effects of dark chocolate on endothelial function in patients with non-alcoholic steatohepatitis. Nutr. Metab. Cardiovasc. Dis. 2017;28:143–149. doi: 10.1016/j.numecd.2017.10.027. PubMed DOI
Grassi D., Desideri G., Necozione S., Lippi C., Casale R., Properzi G., Blumberg J.B., Ferri C. Blood pressure is reduced and insulin sensitivity increased in glucose-intolerant, hypertensive subjects after 15 days of consuming high-polyphenol dark chocolate. J. Nutr. 2008;138:1671–1676. doi: 10.1093/jn/138.9.1671. PubMed DOI
Park E., Edirisinghe I., Choy Y.Y., Waterhouse A., Burton-Freeman B. Effects of grape seed extract beverage on blood pressure and metabolic indices in individuals with pre-hypertension: A randomised, double-blinded, two-arm, parallel, placebo-controlled trial. Br. J. Nutr. 2016;115:226–238. doi: 10.1017/S0007114515004328. PubMed DOI
Hokayem M., Blond E., Vidal H., Lambert K., Meugnier E., Feillet-Coudray C., Coudray C., Pesenti S., Luyton C., Lambert-Porcheron S., et al. Grape polyphenols prevent fructose-induced oxidative stress and insulin resistance in first-degree relatives of type 2 diabetic patients. Diabetes Care. 2013;36:1454–1461. doi: 10.2337/dc12-1652. PubMed DOI PMC
Pinto X., Fanlo-Maresma M., Corbella E., Corbella X., Mitjavila M.T., Moreno J.J., Casas R., Estruch R., Corella D., Bullo M., et al. A Mediterranean Diet Rich in Extra-Virgin Olive Oil Is Associated with a Reduced Prevalence of Nonalcoholic Fatty Liver Disease in Older Individuals at High Cardiovascular Risk. J. Nutr. 2019;149:1920–1929. doi: 10.1093/jn/nxz147. PubMed DOI
Storniolo C.E., Casillas R., Bullo M., Castaner O., Ros E., Saez G.T., Toledo E., Estruch R., Ruiz-Gutierrez V., Fito M., et al. A Mediterranean diet supplemented with extra virgin olive oil or nuts improves endothelial markers involved in blood pressure control in hypertensive women. Eur. J. Nutr. 2017;56:89–97. doi: 10.1007/s00394-015-1060-5. PubMed DOI
Menezes R., Rodriguez-Mateos A., Kaltsatou A., Gonzalez-Sarrias A., Greyling A., Giannaki C., Andres-Lacueva C., Milenkovic D., Gibney E.R., Dumont J., et al. Impact of Flavonols on Cardiometabolic Biomarkers: A Meta-Analysis of Randomized Controlled Human Trials to Explore the Role of Inter-Individual Variability. Nutrients. 2017;9:117. doi: 10.3390/nu9020117. PubMed DOI
Morand C., De Roos B., Garcia-Conesa M.T., Gibney E.R., Landberg R., Manach C., Milenkovic D., Rodriguez-Mateos A., Van de Wiele T., Tomas-Barberan F. Why interindividual variation in response to consumption of plant food bioactives matters for future personalised nutrition. Proc. Nutr. Soc. 2020;79:225–235. doi: 10.1017/S0029665120000014. PubMed DOI
Gibney E.R., Milenkovic D., Combet E., Ruskovska T., Greyling A., Gonzalez-Sarrias A., de Roos B., Tomas-Barberan F., Morand C., Rodriguez-Mateos A. Factors influencing the cardiometabolic response to (poly)phenols and phytosterols: A review of the COST Action POSITIVe activities. Eur. J. Nutr. 2019;58:37–47. doi: 10.1007/s00394-019-02066-6. PubMed DOI PMC
Milenkovic D., Morand C., Cassidy A., Konic-Ristic A., Tomas-Barberan F., Ordovas J.M., Kroon P., De Caterina R., Rodriguez-Mateos A. Interindividual Variability in Biomarkers of Cardiometabolic Health after Consumption of Major Plant-Food Bioactive Compounds and the Determinants Involved. Adv. Nutr. 2017;8:558–570. doi: 10.3945/an.116.013623. PubMed DOI PMC
Caradonna F., Consiglio O., Luparello C., Gentile C. Science and Healthy Meals in the World: Nutritional Epigenomics and Nutrigenetics of the Mediterranean Diet. Nutrients. 2020;12:1748. doi: 10.3390/nu12061748. PubMed DOI PMC
Caradonna F., Cruciata I., Luparello C. Nutrigenetics, nutrigenomics and phenotypic outcomes of dietary low-dose alcohol consumption in the suppression and induction of cancer development: Evidence from in vitro studies. Crit. Rev. Food Sci. Nutr. 2020;8:1–32. doi: 10.1080/10408398.2020.1850416. PubMed DOI
Ruskovska T., Maksimova V., Milenkovic D. Polyphenols in human nutrition: From the in vitro antioxidant capacity to the beneficial effects on cardiometabolic health and related inter-individual variability—An overview and perspective. Br. J. Nutr. 2020;123:241–254. doi: 10.1017/S0007114519002733. PubMed DOI
Krga I., Tamaian R., Mercier S., Boby C., Monfoulet L.E., Glibetic M., Morand C., Milenkovic D. Anthocyanins and their gut metabolites attenuate monocyte adhesion and transendothelial migration through nutrigenomic mechanisms regulating endothelial cell permeability. Free Radic. Biol. Med. 2018;124:364–379. doi: 10.1016/j.freeradbiomed.2018.06.027. PubMed DOI
Ruskovska T., Massaro M., Carluccio M.A., Arola-Arnal A., Muguerza B., Vanden Berghe W., Declerck K., Bravo F.I., Calabriso N., Combet E., et al. Systematic bioinformatic analysis of nutrigenomic data of flavanols in cell models of cardiometabolic disease. Food Funct. 2020;11:5040–5064. doi: 10.1039/D0FO00701C. PubMed DOI
Mitjavila M.T., Moreno J.J. The effects of polyphenols on oxidative stress and the arachidonic acid cascade. Implications for the prevention/treatment of high prevalence diseases. Biochem. Pharmacol. 2012;84:1113–1122. doi: 10.1016/j.bcp.2012.07.017. PubMed DOI
Tarragon E., Moreno J.J. Polyphenols and taste 2 receptors. Physiological, pathophysiological and pharmacological implications. Biochem. Pharmacol. 2020;178:114086. doi: 10.1016/j.bcp.2020.114086. PubMed DOI
Most J., Timmers S., Warnke I., Jocken J.W., van Boekschoten M., de Groot P., Bendik I., Schrauwen P., Goossens G.H., Blaak E.E. Combined epigallocatechin-3-gallate and resveratrol supplementation for 12 wk increases mitochondrial capacity and fat oxidation, but not insulin sensitivity, in obese humans: A randomized controlled trial. Am. J. Clin. Nutr. 2016;104:215–227. doi: 10.3945/ajcn.115.122937. PubMed DOI
Most J., Warnke I., Boekschoten M.V., Jocken J.W.E., de Groot P., Friedel A., Bendik I., Goossens G.H., Blaak E.E. The effects of polyphenol supplementation on adipose tissue morphology and gene expression in overweight and obese humans. Adipocyte. 2018;7:190–196. doi: 10.1080/21623945.2018.1469942. PubMed DOI PMC
Gaj S., Eijssen L., Mensink R.P., Evelo C.T. Validating nutrient-related gene expression changes from microarrays using RT(2) PCR-arrays. Genes Nutr. 2008;3:153–157. doi: 10.1007/s12263-008-0094-1. PubMed DOI PMC
Morey J.S., Ryan J.C., Van Dolah F.M. Microarray validation: Factors influencing correlation between oligonucleotide microarrays and real-time PCR. Biol. Proced. Online. 2006;8:175–193. doi: 10.1251/bpo126. PubMed DOI PMC
Moher D., Liberati A., Tetzlaff J., Altman D.G., Group P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009;151:264–269. doi: 10.7326/0003-4819-151-4-200908180-00135. PubMed DOI
Stockel D., Kehl T., Trampert P., Schneider L., Backes C., Ludwig N., Gerasch A., Kaufmann M., Gessler M., Graf N., et al. Multi-omics enrichment analysis using the GeneTrail2 web service. Bioinformatics. 2016;32:1502–1508. doi: 10.1093/bioinformatics/btv770. PubMed DOI
Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., Amin N., Schwikowski B., Ideker T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. doi: 10.1101/gr.1239303. PubMed DOI PMC
Bindea G., Mlecnik B., Hackl H., Charoentong P., Tosolini M., Kirilovsky A., Fridman W.H., Pages F., Trajanoski Z., Galon J. ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25:1091–1093. doi: 10.1093/bioinformatics/btp101. PubMed DOI PMC
Bindea G., Galon J., Mlecnik B. CluePedia Cytoscape plugin: Pathway insights using integrated experimental and in silico data. Bioinformatics. 2013;29:661–663. doi: 10.1093/bioinformatics/btt019. PubMed DOI PMC
Szklarczyk D., Morris J.H., Cook H., Kuhn M., Wyder S., Simonovic M., Santos A., Doncheva N.T., Roth A., Bork P., et al. The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 2017;45:D362–D368. doi: 10.1093/nar/gkw937. PubMed DOI PMC
Chen E.Y., Tan C.M., Kou Y., Duan Q., Wang Z., Meirelles G.V., Clark N.R., Ma’ayan A. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform. 2013;14:128. doi: 10.1186/1471-2105-14-128. PubMed DOI PMC
Kuleshov M.V., Jones M.R., Rouillard A.D., Fernandez N.F., Duan Q., Wang Z., Koplev S., Jenkins S.L., Jagodnik K.M., Lachmann A., et al. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44:W90–W97. doi: 10.1093/nar/gkw377. PubMed DOI PMC
Han H., Cho J.W., Lee S., Yun A., Kim H., Bae D., Yang S., Kim C.Y., Lee M., Kim E., et al. TRRUST v2: An expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res. 2018;46:D380–D386. doi: 10.1093/nar/gkx1013. PubMed DOI PMC
Su G., Morris J.H., Demchak B., Bader G.D. Biological network exploration with Cytoscape 3. Curr. Protoc. Bioinform. 2014;47:8–13. doi: 10.1002/0471250953.bi0813s47. PubMed DOI PMC
Kozomara A., Birgaoanu M., Griffiths-Jones S. miRBase: From microRNA sequences to function. Nucleic Acids Res. 2019;47:D155–D162. doi: 10.1093/nar/gky1141. PubMed DOI PMC
Koopmans F., van Nierop P., Andres-Alonso M., Byrnes A., Cijsouw T., Coba M.P., Cornelisse L.N., Farrell R.J., Goldschmidt H.L., Howrigan D.P., et al. SynGO: An Evidence-Based, Expert-Curated Knowledge Base for the Synapse. Neuron. 2019;103:217–234.e214. doi: 10.1016/j.neuron.2019.05.002. PubMed DOI PMC
Heberle H., Meirelles G.V., da Silva F.R., Telles G.P., Minghim R. InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinform. 2015;16:169. doi: 10.1186/s12859-015-0611-3. PubMed DOI PMC
Zhou Y., Zhou B., Pache L., Chang M., Khodabakhshi A.H., Tanaseichuk O., Benner C., Chanda S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019;10:1523. doi: 10.1038/s41467-019-09234-6. PubMed DOI PMC
Krzywinski M., Schein J., Birol I., Connors J., Gascoyne R., Horsman D., Jones S.J., Marra M.A. Circos: An information aesthetic for comparative genomics. Genome Res. 2009;19:1639–1645. doi: 10.1101/gr.092759.109. PubMed DOI PMC
Zhou G., Xia J. OmicsNet: A web-based tool for creation and visual analysis of biological networks in 3D space. Nucleic Acids Res. 2018;46:W514–W522. doi: 10.1093/nar/gky510. PubMed DOI PMC
Zhou G., Xia J. Using OmicsNet for Network Integration and 3D Visualization. Curr. Protoc. Bioinform. 2019;65:e69. doi: 10.1002/cpbi.69. PubMed DOI
Stelzer G., Rosen N., Plaschkes I., Zimmerman S., Twik M., Fishilevich S., Stein T.I., Nudel R., Lieder I., Mazor Y., et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr. Protoc. Bioinform. 2016;54:1–30. doi: 10.1002/cpbi.5. PubMed DOI
UniProt Consortium UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47:D506–D515. doi: 10.1093/nar/gky1049. PubMed DOI PMC
Castaner O., Covas M.I., Khymenets O., Nyyssonen K., Konstantinidou V., Zunft H.F., de la Torre R., Munoz-Aguayo D., Vila J., Fito M. Protection of LDL from oxidation by olive oil polyphenols is associated with a downregulation of CD40-ligand expression and its downstream products in vivo in humans. Am. J. Clin. Nutr. 2012;95:1238–1244. doi: 10.3945/ajcn.111.029207. PubMed DOI
Farras M., Valls R.M., Fernandez-Castillejo S., Giralt M., Sola R., Subirana I., Motilva M.J., Konstantinidou V., Covas M.I., Fito M. Olive oil polyphenols enhance the expression of cholesterol efflux related genes in vivo in humans. A randomized controlled trial. J. Nutr. Biochem. 2013;24:1334–1339. doi: 10.1016/j.jnutbio.2012.10.008. PubMed DOI
Martin-Pelaez S., Castaner O., Konstantinidou V., Subirana I., Munoz-Aguayo D., Blanchart G., Gaixas S., de la Torre R., Farre M., Saez G.T., et al. Effect of olive oil phenolic compounds on the expression of blood pressure-related genes in healthy individuals. Eur. J. Nutr. 2017;56:663–670. doi: 10.1007/s00394-015-1110-z. PubMed DOI
Seyyedebrahimi S., Khodabandehloo H., Nasli Esfahani E., Meshkani R. The effects of resveratrol on markers of oxidative stress in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled clinical trial. Acta Diabetol. 2018;55:341–353. doi: 10.1007/s00592-017-1098-3. PubMed DOI
Khorshidi M., Moini A., Alipoor E., Rezvan N., Gorgani-Firuzjaee S., Yaseri M., Hosseinzadeh-Attar M.J. The effects of quercetin supplementation on metabolic and hormonal parameters as well as plasma concentration and gene expression of resistin in overweight or obese women with polycystic ovary syndrome. Phytother. Res. 2018;32:2282–2289. doi: 10.1002/ptr.6166. PubMed DOI
Barber-Chamoux N., Milenkovic D., Verny M.A., Habauzit V., Pereira B., Lambert C., Richard D., Boby C., Mazur A., Lusson J.R., et al. Substantial Variability Across Individuals in the Vascular and Nutrigenomic Response to an Acute Intake of Curcumin: A Randomized Controlled Trial. Mol. Nutr. Food Res. 2018;62 doi: 10.1002/mnfr.201700418. PubMed DOI
Tome-Carneiro J., Larrosa M., Yanez-Gascon M.J., Davalos A., Gil-Zamorano J., Gonzalvez M., Garcia-Almagro F.J., Ruiz Ros J.A., Tomas-Barberan F.A., Espin J.C., et al. One-year supplementation with a grape extract containing resveratrol modulates inflammatory-related microRNAs and cytokines expression in peripheral blood mononuclear cells of type 2 diabetes and hypertensive patients with coronary artery disease. Pharmacol. Res. 2013;72:69–82. doi: 10.1016/j.phrs.2013.03.011. PubMed DOI
Tome-Carneiro J., Gonzalvez M., Larrosa M., Yanez-Gascon M.J., Garcia-Almagro F.J., Ruiz-Ros J.A., Tomas-Barberan F.A., Garcia-Conesa M.T., Espin J.C. Grape resveratrol increases serum adiponectin and downregulates inflammatory genes in peripheral blood mononuclear cells: A triple-blind, placebo-controlled, one-year clinical trial in patients with stable coronary artery disease. Cardiovasc. Drugs Ther. 2013;27:37–48. doi: 10.1007/s10557-012-6427-8. PubMed DOI PMC
Lopez-Candales A., Hernandez Burgos P.M., Hernandez-Suarez D.F., Harris D. Linking Chronic Inflammation with Cardiovascular Disease: From Normal Aging to the Metabolic Syndrome. J. Nat. Sci. 2017;3:e341. PubMed PMC
Hotamisligil G.S. Inflammation, metaflammation and immunometabolic disorders. Nature. 2017;542:177–185. doi: 10.1038/nature21363. PubMed DOI
Ormazabal V., Nair S., Elfeky O., Aguayo C., Salomon C., Zuniga F.A. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc. Diabetol. 2018;17:122. doi: 10.1186/s12933-018-0762-4. PubMed DOI PMC
Caputo T., Gilardi F., Desvergne B. From chronic overnutrition to metaflammation and insulin resistance: Adipose tissue and liver contributions. FEBS Lett. 2017;591:3061–3088. doi: 10.1002/1873-3468.12742. PubMed DOI
Longo M., Zatterale F., Naderi J., Parrillo L., Formisano P., Raciti G.A., Beguinot F., Miele C. Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. Int. J. Mol. Sci. 2019;20:2358. doi: 10.3390/ijms20092358. PubMed DOI PMC
Ruskovska T., Bernlohr D.A. Oxidative stress and protein carbonylation in adipose tissue—Implications for insulin resistance and diabetes mellitus. J. Proteom. 2013;92:323–334. doi: 10.1016/j.jprot.2013.04.002. PubMed DOI PMC
Nandipati K.C., Subramanian S., Agrawal D.K. Protein kinases: Mechanisms and downstream targets in inflammation-mediated obesity and insulin resistance. Mol. Cell. Biochem. 2017;426:27–45. doi: 10.1007/s11010-016-2878-8. PubMed DOI PMC
Khan H., Ullah H., Castilho P., Gomila A.S., D’Onofrio G., Filosa R., Wang F., Nabavi S.M., Daglia M., Silva A.S., et al. Targeting NF-kappaB signaling pathway in cancer by dietary polyphenols. Crit. Rev. Food Sci. Nutr. 2020;60:2790–2800. doi: 10.1080/10408398.2019.1661827. PubMed DOI
Milenkovic D., Vanden Berghe W., Boby C., Leroux C., Declerck K., Szarc vel Szic K., Heyninck K., Laukens K., Bizet M., Defrance M., et al. Dietary flavanols modulate the transcription of genes associated with cardiovascular pathology without changes in their DNA methylation state. PLoS ONE. 2014;9:e95527. doi: 10.1371/journal.pone.0095527. PubMed DOI PMC
Milenkovic D., Berghe W.V., Morand C., Claude S., van de Sandt A., Gorressen S., Monfoulet L.E., Chirumamilla C.S., Declerck K., Szic K.S.V., et al. A systems biology network analysis of nutri(epi)genomic changes in endothelial cells exposed to epicatechin metabolites. Sci. Rep. 2018;8:15487. doi: 10.1038/s41598-018-33959-x. PubMed DOI PMC
Claude S., Boby C., Rodriguez-Mateos A., Spencer J.P., Gerard N., Morand C., Milenkovic D. Flavanol metabolites reduce monocyte adhesion to endothelial cells through modulation of expression of genes via p38-MAPK and p65-Nf-kB pathways. Mol. Nutr. Food Res. 2014;58:1016–1027. doi: 10.1002/mnfr.201300658. PubMed DOI
Moreno-Ulloa A., Mendez-Luna D., Beltran-Partida E., Castillo C., Guevara G., Ramirez-Sanchez I., Correa-Basurto J., Ceballos G., Villarreal F. The effects of (-)-epicatechin on endothelial cells involve the G protein-coupled estrogen receptor (GPER) Pharmacol. Res. 2015;100:309–320. doi: 10.1016/j.phrs.2015.08.014. PubMed DOI PMC
Yeung F., Hoberg J.E., Ramsey C.S., Keller M.D., Jones D.R., Frye R.A., Mayo M.W. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 2004;23:2369–2380. doi: 10.1038/sj.emboj.7600244. PubMed DOI PMC
Yoshizaki T., Milne J.C., Imamura T., Schenk S., Sonoda N., Babendure J.L., Lu J.C., Smith J.J., Jirousek M.R., Olefsky J.M. SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes. Mol. Cell. Biol. 2009;29:1363–1374. doi: 10.1128/MCB.00705-08. PubMed DOI PMC
Yoshizaki T., Schenk S., Imamura T., Babendure J.L., Sonoda N., Bae E.J., Oh D.Y., Lu M., Milne J.C., Westphal C., et al. SIRT1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity. Am. J. Physiol. Endocrinol. Metab. 2010;298:E419–E428. doi: 10.1152/ajpendo.00417.2009. PubMed DOI PMC
Zhou S., Tang X., Chen H.Z. Sirtuins and Insulin Resistance. Front. Endocrinol. 2018;9:748. doi: 10.3389/fendo.2018.00748. PubMed DOI PMC
Olmos Y., Sanchez-Gomez F.J., Wild B., Garcia-Quintans N., Cabezudo S., Lamas S., Monsalve M. SirT1 regulation of antioxidant genes is dependent on the formation of a FoxO3a/PGC-1alpha complex. Antioxid. Redox Signal. 2013;19:1507–1521. doi: 10.1089/ars.2012.4713. PubMed DOI PMC
Ren Z., He H., Zuo Z., Xu Z., Wei Z., Deng J. The role of different SIRT1-mediated signaling pathways in toxic injury. Cell. Mol. Biol. Lett. 2019;24:36. doi: 10.1186/s11658-019-0158-9. PubMed DOI PMC
Stein S., Matter C.M. Protective roles of SIRT1 in atherosclerosis. Cell. Cycle. 2011;10:640–647. doi: 10.4161/cc.10.4.14863. PubMed DOI
Kane A.E., Sinclair D.A. Sirtuins and NAD(+) in the Development and Treatment of Metabolic and Cardiovascular Diseases. Circ. Res. 2018;123:868–885. doi: 10.1161/CIRCRESAHA.118.312498. PubMed DOI PMC
Mazloom H., Alizadeh S., Esfahani E.N., Razi F., Meshkani R. Decreased expression of microRNA-21 is associated with increased cytokine production in peripheral blood mononuclear cells (PBMCs) of obese type 2 diabetic and non-diabetic subjects. Mol. Cell. Biochem. 2016;419:11–17. doi: 10.1007/s11010-016-2743-9. PubMed DOI
Hijmans J.G., Diehl K.J., Bammert T.D., Kavlich P.J., Lincenberg G.M., Greiner J.J., Stauffer B.L., DeSouza C.A. Association between hypertension and circulating vascular-related microRNAs. J. Hum. Hypertens. 2018;32:440–447. doi: 10.1038/s41371-018-0061-2. PubMed DOI PMC
Ling H.Y., Hu B., Hu X.B., Zhong J., Feng S.D., Qin L., Liu G., Wen G.B., Liao D.F. MiRNA-21 reverses high glucose and high insulin induced insulin resistance in 3T3-L1 adipocytes through targeting phosphatase and tensin homologue. Exp. Clin. Endocrinol. Diabetes. 2012;120:553–559. doi: 10.1055/s-0032-1311644. PubMed DOI
Luo A., Yan H., Liang J., Du C., Zhao X., Sun L., Chen Y. MicroRNA-21 regulates hepatic glucose metabolism by targeting FOXO1. Gene. 2017;627:194–201. doi: 10.1016/j.gene.2017.06.024. PubMed DOI
Wang S., Liang C., Ai H., Yang M., Yi J., Liu L., Song Z., Bao Y., Li Y., Sun L., et al. Hepatic miR-181b-5p Contributes to Glycogen Synthesis Through Targeting EGR1. Dig. Dis. Sci. 2019;64:1548–1559. doi: 10.1007/s10620-018-5442-4. PubMed DOI
Hori D., Dunkerly-Eyring B., Nomura Y., Biswas D., Steppan J., Henao-Mejia J., Adachi H., Santhanam L., Berkowitz D.E., Steenbergen C., et al. miR-181b regulates vascular stiffness age dependently in part by regulating TGF-beta signaling. PLoS ONE. 2017;12:e0174108. doi: 10.1371/journal.pone.0174108. PubMed DOI PMC
Witkowski M., Witkowski M., Saffarzadeh M., Friebel J., Tabaraie T., Ta Bao L., Chakraborty A., Dorner A., Stratmann B., Tschoepe D., et al. Vascular miR-181b controls tissue factor-dependent thrombogenicity and inflammation in type 2 diabetes. Cardiovasc. Diabetol. 2020;19:20. doi: 10.1186/s12933-020-0993-z. PubMed DOI PMC
Oses M., Margareto Sanchez J., Portillo M.P., Aguilera C.M., Labayen I. Circulating miRNAs as Biomarkers of Obesity and Obesity-Associated Comorbidities in Children and Adolescents: A Systematic Review. Nutrients. 2019;11:2890. doi: 10.3390/nu11122890. PubMed DOI PMC
Shen Y., Xu H., Pan X., Wu W., Wang H., Yan L., Zhang M., Liu X., Xia S., Shao Q. miR-34a and miR-125b are upregulated in peripheral blood mononuclear cells from patients with type 2 diabetes mellitus. Exp. Ther. Med. 2017;14:5589–5596. doi: 10.3892/etm.2017.5254. PubMed DOI PMC
Xu Y., Xu Y., Zhu Y., Sun H., Juguilon C., Li F., Fan D., Yin L., Zhang Y. Macrophage miR-34a Is a Key Regulator of Cholesterol Efflux and Atherosclerosis. Mol. Ther. 2020;28:202–216. doi: 10.1016/j.ymthe.2019.09.008. PubMed DOI PMC
Pan Y., Hui X., Hoo R.L.C., Ye D., Chan C.Y.C., Feng T., Wang Y., Lam K.S.L., Xu A. Adipocyte-secreted exosomal microRNA-34a inhibits M2 macrophage polarization to promote obesity-induced adipose inflammation. J. Clin. Investig. 2019;129:834–849. doi: 10.1172/JCI123069. PubMed DOI PMC
Scoditti E., Carpi S., Massaro M., Pellegrino M., Polini B., Carluccio M.A., Wabitsch M., Verri T., Nieri P., De Caterina R. Hydroxytyrosol Modulates Adipocyte Gene and miRNA Expression Under Inflammatory Condition. Nutrients. 2019;11:2493. doi: 10.3390/nu11102493. PubMed DOI PMC
Oldenburg J., de Rooij J. Mechanical control of the endothelial barrier. Cell Tissue Res. 2014;355:545–555. doi: 10.1007/s00441-013-1792-6. PubMed DOI
Chistiakov D.A., Orekhov A.N., Bobryshev Y.V. Endothelial Barrier and Its Abnormalities in Cardiovascular Disease. Front. Physiol. 2015;6:365. doi: 10.3389/fphys.2015.00365. PubMed DOI PMC
Clark A.R., Ohlmeyer M. Protein phosphatase 2A as a therapeutic target in inflammation and neurodegeneration. Pharmacol. Ther. 2019;201:181–201. doi: 10.1016/j.pharmthera.2019.05.016. PubMed DOI PMC
Afzal M., Redha A., AlHasan R. Anthocyanins Potentially Contribute to Defense against Alzheimer’s Disease. Molecules. 2019;24:4255. doi: 10.3390/molecules24234255. PubMed DOI PMC
Vauzour D. Dietary polyphenols as modulators of brain functions: Biological actions and molecular mechanisms underpinning their beneficial effects. Oxid. Med. Cell. Longev. 2012;2012:914273. doi: 10.1155/2012/914273. PubMed DOI PMC