• This record comes from PubMed

Resonance assignment of coiled-coil 3 (CC3) domain of human STIM1

. 2021 Oct ; 15 (2) : 433-439. [epub] 20210821

Language English Country Netherlands Media print-electronic

Document type Journal Article

Grant support
P 32947 Austrian Science Fund FWF - Austria
P 33283 Austrian Science Fund FWF - Austria
W 1250 Austrian Science Fund FWF - Austria

Links

PubMed 34417953
PubMed Central PMC8481183
DOI 10.1007/s12104-021-10042-7
PII: 10.1007/s12104-021-10042-7
Knihovny.cz E-resources

The protein stromal interaction molecule 1 (STIM1) plays a pivotal role in mediating store-operated calcium entry (SOCE) into cells, which is essential for adaptive immunity. It acts as a calcium sensor in the endoplasmic reticulum (ER) and extends into the cytosol, where it changes from an inactive (tight) to an active (extended) oligomeric form upon calcium store depletion. NMR studies of this protein are challenging due to its membrane-spanning and aggregation properties. Therefore follow the divide-and-conquer approach, focusing on individual domains first is in order. The cytosolic part is predicted to have a large content of coiled-coil (CC) structure. We report the 1H, 13C, 15N chemical shift assignments of the CC3 domain. This domain is crucial for the stabilisation of the tight quiescent form of STIM1 as well as for activating the ORAI calcium channel by direct contact, in the extended active form.

See more in PubMed

Berridge MJ. Capacitative calcium entry. Biochem J. 1995;312(1):1–11. doi: 10.1042/bj3120001. PubMed DOI PMC

Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol. 2003;4:517–529. doi: 10.1038/nrm1155. PubMed DOI

Fahrner M, Muik M, Schindl R, et al. A coiled-coil clamp controls both conformation and clustering of stromal interaction molecule 1 (STIM1) J Biol Chem. 2014;289:33231–33244. doi: 10.1074/jbc.M114.610022. PubMed DOI PMC

Fahrner M, Schindl R, Muik M, et al. The STIM-Orai pathway: the interactions between STIM and Orai. Adv Exp Med Biol. 2017;993:59–81. doi: 10.1007/978-3-319-57732-6_4. PubMed DOI

Fahrner M, Stadlbauer M, Muik M, et al. A dual mechanism promotes switching of the Stormorken STIM1 R304W mutant into the activated state. Nat Commun. 2018;9:825. doi: 10.1038/s41467-018-03062-w. PubMed DOI PMC

Fahrner M, Grabmayr H, Romanin C. Mechanism of STIM activation. Curr Opin Physiol. 2020;17:74–79. doi: 10.1016/j.cophys.2020.07.006. PubMed DOI PMC

Feske S, Gwack Y, Prakriya M, et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature. 2006;441:179–185. doi: 10.1038/nature04702. PubMed DOI

Frischauf I, Muik M, Derler I, et al. Molecular determinants of the coupling between STIM1 and Orai channels: differential activation of Orai1-3 channels by a STIM1 coiled-coil mutant. J Biol Chem. 2009;284(32):21696–21706. doi: 10.1074/jbc.M109.018408. PubMed DOI PMC

Gast K, Modler AJ. Dynamic and static light scattering of Proteins. In: Uversky VN, Permyakov EA, editors. Methods in protein structure and stability analysis. NewYork: Nova Science Publishers, Inc; 2007. pp. 281–316.

Grabmayr H, Romanin C, Fahrner M. STIM proteins: an ever-expanding family. Int J Mol Sci. 2020;22(1):E378. doi: 10.3390/ijms22010378. PubMed DOI PMC

Greenfield NJ. Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc. 2006;1:2876–2890. doi: 10.1038/nprot.2006.202. PubMed DOI PMC

Grzesiek S, Bax A. Methodological advances in protein NMR. Acc Chem Res. 1993;26(4):131–138. doi: 10.1021/ar00028a001. DOI

Lacruz RS, Feske S. Diseases caused by mutations in ORAI1 and STIM1. Ann N Y Acad Sci. 2015;1356:45–79. doi: 10.1111/nyas.12938. PubMed DOI PMC

Misceo D, Holmgren A, Louch WE, et al. A dominant STIM1 mutation causes Stormorken syndrome. Hum Mutat. 2014;35:556–564. doi: 10.1002/humu.22544. PubMed DOI

Morin G, Bruechle NO, Singh AR, et al. Gain-of-function mutation in STIM1 (p.R304W) is associated with Stormorken syndrome. Hum Mutat. 2014;35:1221–1232. doi: 10.1002/humu.22621. PubMed DOI

Morin G, Biancalana V, Echaniz-Laguna A, et al. Tubular aggregate myopathy and Stormorken syndrome: mutation spectrum and genotype/phenotype correlation. Hum Mutat. 2020;41:17–37. doi: 10.1002/humu.23899. PubMed DOI

Muik M, Fahrner M, Derler I, et al. A cytosolic homomerization and a modulatory domain within STIM1 C terminus determine coupling to ORAI1 channels. J Biol Chem. 2009;284:8421–8426. doi: 10.1074/jbc.C800229200. PubMed DOI PMC

Muik M, Fahrner M, Scindl R, et al. STIM1 couples to ORAI1 via an intramolecular transition into an extended conformation. EMBO J. 2011;30:1678–1689. doi: 10.1038/emboj.2011.79. PubMed DOI PMC

Nesin V, Wiley G, Kousi M, et al. Activating mutations in STIM1 and ORAI1 cause overlapping syndromes of tubular myopathy and congenital miosis. Proc Natl Acad Sci USA. 2014;111:4197–4202. doi: 10.1073/pnas.1312520111. PubMed DOI PMC

Park CY, Hoover PJ, Mullins FM, et al. STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell. 2009;136:876–890. doi: 10.1016/j.cell.2009.02.014. PubMed DOI PMC

Prakriya M, Lewis RS. Store-operated calcium channels. Physiol Rev. 2015;95:1383–1436. doi: 10.1152/physrev.00020.2014. PubMed DOI PMC

Putney JW., Jr A model for receptor-regulated calcium entry. Cell Calcium. 1986;7:1–12. doi: 10.1016/0143-4160(86)90026-6. PubMed DOI

Putney JW., Jr Capacitative calcium entry: sensing the calcium stores. J Cell Biol. 2005;169:381–382. doi: 10.1083/jcb.200503161. PubMed DOI PMC

Rathner P, Stadlbauer M, Romanin C, et al. Rapid NMR-scale purification of 15N,13C isotope-labeled recombinant human STIM1 coiled-coil fragments. Protein Expr Purif. 2018;146:45–50. doi: 10.1016/j.pep.2018.01.013. PubMed DOI

Rathner P, Fahrner M, Cerofolini L, et al. Interhelical interactions within the STIM1 CC1 domain modulate CRAC channel activation. Nat Chem Biol. 2021;17:196–204. doi: 10.1038/s41589-020-00672-8. PubMed DOI PMC

Roos J, DiGregorio PJ, Yeromin AV, et al. STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol. 2005;169(3):435–445. doi: 10.1083/jcb.200502019. PubMed DOI PMC

Sattler M, Schleucher J, Griesinger C. Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog Nucl Magn Reson Spectrosc. 1999;34:93–158. doi: 10.1016/S0079-6565(98)00025-9. DOI

Shen Y, Bax A. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J Biomol NMR. 2013;56:227–241. doi: 10.1007/s10858-013-9741-y. PubMed DOI PMC

Shen Y, Lange O, Delaglio F, et al. Consistent blind protein structure generation from NMR chemical shift data. Proc Natl Acad Sci. 2008;105(12):4685–4690. doi: 10.1073/pnas.0800256105. PubMed DOI PMC

Stathopulos PB, Schnidl R, Fahrner M, et al. STIM1/Orai1 coiled-coil interplay in the regulation of store-operated calcium entry. Nat Commun. 2013;4:2963. doi: 10.1038/ncomms3963. PubMed DOI PMC

Yuan JP, Zeng W, Dorwart MR, et al. SOAR and the polybasic STIM1 domains gate and regulate Orai channels. Nat Cell Biol. 2009;11:337–343. doi: 10.1038/ncb1842. PubMed DOI PMC

Zhou Y, Srinivasan P, Razavi S, et al. Initial activation of STIM1, the regulator of store-operated calcium entry. Nat Struct Mol Biol. 2013;20:973–981. doi: 10.1038/nsmb.2625. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...