A dual mechanism promotes switching of the Stormorken STIM1 R304W mutant into the activated state
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
P 27263
Austrian Science Fund FWF - Austria
P 28123
Austrian Science Fund FWF - Austria
P 28498
Austrian Science Fund FWF - Austria
PubMed
29483506
PubMed Central
PMC5827659
DOI
10.1038/s41467-018-03062-w
PII: 10.1038/s41467-018-03062-w
Knihovny.cz E-zdroje
- MeSH
- abnormální erytrocyty metabolismus patologie MeSH
- bakteriální proteiny genetika metabolismus MeSH
- bodová mutace * MeSH
- dyslexie genetika metabolismus patologie MeSH
- exprese genu MeSH
- HEK293 buňky MeSH
- ichtyóza genetika metabolismus patologie MeSH
- interakční proteinové domény a motivy MeSH
- iontový transport MeSH
- konformace proteinů, alfa-helix MeSH
- lidé MeSH
- luminescentní proteiny genetika metabolismus MeSH
- metoda terčíkového zámku MeSH
- migréna genetika metabolismus patologie MeSH
- mióza genetika metabolismus patologie MeSH
- molekulární modely MeSH
- multimerizace proteinu MeSH
- nádorové proteiny chemie genetika metabolismus MeSH
- protein ORAI1 chemie genetika metabolismus MeSH
- protein STIM1 chemie genetika metabolismus MeSH
- regulace genové exprese MeSH
- rekombinantní proteiny chemie genetika metabolismus MeSH
- reportérové geny MeSH
- sekvence aminokyselin MeSH
- slezina abnormality metabolismus patologie MeSH
- substituce aminokyselin MeSH
- svalová únava genetika MeSH
- trombocytopatie genetika metabolismus patologie MeSH
- vápník chemie metabolismus MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- zelené fluorescenční proteiny genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- Cyan Fluorescent Protein MeSH Prohlížeč
- luminescentní proteiny MeSH
- nádorové proteiny MeSH
- ORAI1 protein, human MeSH Prohlížeč
- protein ORAI1 MeSH
- protein STIM1 MeSH
- rekombinantní proteiny MeSH
- STIM1 protein, human MeSH Prohlížeč
- vápník MeSH
- yellow fluorescent protein, Bacteria MeSH Prohlížeč
- zelené fluorescenční proteiny MeSH
STIM1 and Orai1 are key components of the Ca2+-release activated Ca2+ (CRAC) current. Orai1, which represents the subunit forming the CRAC channel complex, is activated by the ER resident Ca2+ sensor STIM1. The genetically inherited Stormorken syndrome disease has been associated with the STIM1 single point R304W mutant. The resulting constitutive activation of Orai1 mainly involves the CRAC-activating domain CAD/SOAR of STIM1, the exposure of which is regulated by the molecular interplay between three cytosolic STIM1 coiled-coil (CC) domains. Here we present a dual mechanism by which STIM1 R304W attains the pathophysiological, constitutive activity eliciting the Stormorken syndrome. The R304W mutation induces a helical elongation within the CC1 domain, which together with an increased CC1 homomerization, destabilize the resting state of STIM1. This culminates, even in the absence of store depletion, in structural extension and CAD/SOAR exposure of STIM1 R304W leading to constitutive CRAC channel activation and Stormorken disease.
Department of Medical Biophysics University of Toronto Toronto ON M5G 1L7 Canada
Department of Physiology and Pharmacology University of Western Ontario London ON N6A 5C1 Canada
Institute of Biophysics Johannes Kepler University Linz Gruberstrasse 40 4020 Linz Austria
Princess Margaret Cancer Center University Health Network Toronto ON M5G 1L7 Canada
Zobrazit více v PubMed
Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell. Biol. 2003;4:517–529. doi: 10.1038/nrm1155. PubMed DOI
Zheng L, Stathopulos PB, Li GY, Ikura M. Biophysical characterization of the EF-hand and SAM domain containing Ca2+ sensory region of STIM1 and STIM2. Biochem. Biophys. Res. Commun. 2008;369:240–246. doi: 10.1016/j.bbrc.2007.12.129. PubMed DOI
Stathopulos P. B., Li G. Y., Plevin M. J., Ames J. B., Ikura M. Stored Ca PubMed
Stathopulos PB, Zheng L, Li GY, Plevin MJ, Ikura M. Structural and mechanistic insights into STIM1-mediated initiation of store-operated calcium entry. Cell. 2008;135:110–122. doi: 10.1016/j.cell.2008.08.006. PubMed DOI
Luik RM, Wang B, Prakriya M, Wu MM, Lewis RS. Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation. Nature. 2008;454:538–542. doi: 10.1038/nature07065. PubMed DOI PMC
Feske S, et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature. 2006;441:179–185. doi: 10.1038/nature04702. PubMed DOI
Yeromin AV, et al. Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature. 2006;443:226–229. doi: 10.1038/nature05108. PubMed DOI PMC
Zhang SL, et al. STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature. 2005;437:902–905. doi: 10.1038/nature04147. PubMed DOI PMC
Vig M, et al. CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science. 2006;312:1220–1223. doi: 10.1126/science.1127883. PubMed DOI PMC
Roos J, et al. STIM1, an essential and conserved component of store-operated Ca2+ channel function. J. Cell. Biol. 2005;169:435–445. doi: 10.1083/jcb.200502019. PubMed DOI PMC
Liou J, et al. STIM is a Ca2+ sensor essential for Ca2+ -store-depletion-triggered Ca2+ influx. Curr. Biol. 2005;15:1235–1241. doi: 10.1016/j.cub.2005.05.055. PubMed DOI PMC
Baba Y, et al. Essential function for the calcium sensor STIM1 in mast cell activation and anaphylactic responses. Nat. Immunol. 2008;9:81–88. doi: 10.1038/ni1546. PubMed DOI
Picard C, et al. STIM1 mutation associated with a syndrome of immunodeficiency and autoimmunity. N. Engl. J. Med. 2009;360:1971–1980. doi: 10.1056/NEJMoa0900082. PubMed DOI PMC
Gwack Y, et al. Hair loss and defective T- and B-cell function in mice lacking ORAI1. Mol. Cell. Biol. 2008;28:5209–5222. doi: 10.1128/MCB.00360-08. PubMed DOI PMC
Zhang W, et al. Orai1-mediated I (CRAC) is essential for neointima formation after vascular injury. Circ. Res. 2011;109:534–542. doi: 10.1161/CIRCRESAHA.111.246777. PubMed DOI PMC
Zhang W, Trebak M. STIM1 and Orai1: novel targets for vascular diseases? Sci. China Life Sci. 2011;54:780–785. doi: 10.1007/s11427-011-4206-6. PubMed DOI PMC
Maus M, et al. Missense mutation in immunodeficient patients shows the multifunctional roles of coiled-coil domain 3 (CC3) in STIM1 activation. Proc. Natl Acad. Sci. USA. 2015;112:6206–6211. doi: 10.1073/pnas.1418852112. PubMed DOI PMC
Lacruz RS, Feske S. Diseases caused by mutations in ORAI1 and STIM1. Ann. N. Y. Acad. Sci. 2015;1356:45–79. doi: 10.1111/nyas.12938. PubMed DOI PMC
Stormorken H, et al. A new syndrome: thrombocytopathia, muscle fatigue, asplenia, miosis, migraine, dyslexia and ichthyosis. Clin. Genet. 1985;28:367–374. doi: 10.1111/j.1399-0004.1985.tb02209.x. PubMed DOI
Nesin V., et al. Activating mutations in STIM1 and ORAI1 cause overlapping syndromes of tubular myopathy and congenital miosis. PubMed PMC
Morin G, et al. Gain-of-function mutation in STIM1 (P.R304W) is associated with Stormorken syndrome. Hum. Mutat. 2014;35:1221–1232. doi: 10.1002/humu.22621. PubMed DOI
Misceo D, et al. A dominant STIM1 mutation causes Stormorken syndrome. Hum. Mutat. 2014;35:556–564. doi: 10.1002/humu.22544. PubMed DOI
Muik M, et al. Dynamic coupling of the putative coiled-coil domain of ORAI1 with STIM1 mediates ORAI1 channel activation. J. Biol. Chem. 2008;283:8014–8022. doi: 10.1074/jbc.M708898200. PubMed DOI
Lis A, Zierler S, Peinelt C, Fleig A, Penner R. A single lysine in the N-terminal region of store-operated channels is critical for STIM1-mediated gating. J. Gen. Physiol. 2010;136:673–686. doi: 10.1085/jgp.201010484. PubMed DOI PMC
Frischauf I, et al. Molecular determinants of the coupling between STIM1 and Orai channels: differential activation of Orai1-3 channels by a STIM1 coiled-coil mutant. J. Biol. Chem. 2009;284:21696–21706. doi: 10.1074/jbc.M109.018408. PubMed DOI PMC
Zhou Y, et al. STIM1 gates the store-operated calcium channel ORAI1 in vitro. Nat. Struct. Mol. Biol. 2010;17:112–116. doi: 10.1038/nsmb.1724. PubMed DOI PMC
Park CY, et al. STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell. 2009;136:876–890. doi: 10.1016/j.cell.2009.02.014. PubMed DOI PMC
Fahrner M, Schindl R, Muik M, Derler I, Romanin C. The STIM-Orai pathway: the interactions between STIM and Orai. Adv. Exp. Med. Biol. 2017;993:59–81. doi: 10.1007/978-3-319-57732-6_4. PubMed DOI
Prakriya M, Lewis RS. Store-operated calcium channels. Physiol. Rev. 2015;95:1383–1436. doi: 10.1152/physrev.00020.2014. PubMed DOI PMC
Zheng L, et al. Auto-inhibitory role of the EF-SAM domain of STIM proteins in store-operated calcium entry. Proc. Natl Acad. Sci. USA. 2011;108:1337–1342. doi: 10.1073/pnas.1015125108. PubMed DOI PMC
Ma G, et al. Inside-out Ca signalling prompted by STIM1 conformational switch. Nat. Commun. 2015;6:7826. doi: 10.1038/ncomms8826. PubMed DOI PMC
Yuan JP, et al. SOAR and the polybasic STIM1 domains gate and regulate Orai channels. Nat. Cell. Biol. 2009;11:337–343. doi: 10.1038/ncb1842. PubMed DOI PMC
Yang X., Jin H., Cai X., Li S., Shen Y. Structural and mechanistic insights into the activation of Stromal interaction molecule 1 (STIM1). PubMed PMC
Fahrner M, et al. A coiled-coil clamp controls both conformation and clustering of stromal interaction molecule 1 (STIM1) J. Biol. Chem. 2014;289:33231–33244. doi: 10.1074/jbc.M114.610022. PubMed DOI PMC
Korzeniowski MK, Wisniewski E, Baird B, Holowka DA, Balla T. Molecular anatomy of the early events in STIM1 activation - oligomerization or conformational change? J. Cell. Sci. 2017;130:2821–2832. doi: 10.1242/jcs.205583. PubMed DOI PMC
Muik M, et al. STIM1 couples to ORAI1 via an intramolecular transition into an extended conformation. EMBO J. 2011;30:1678–1689. doi: 10.1038/emboj.2011.79. PubMed DOI PMC
Zhou Y, et al. Initial activation of STIM1, the regulator of store-operated calcium entry. Nat. Struct. Mol. Biol. 2013;20:973–981. doi: 10.1038/nsmb.2625. PubMed DOI PMC
Stathopulos PB, et al. STIM1/Orai1 coiled-coil interplay in the regulation of store-operated calcium entry. Nat. Commun. 2013;4:2963. doi: 10.1038/ncomms3963. PubMed DOI PMC
Stathopulos PB, Ikura M. Structural aspects of calcium-release activated calcium channel function. Channels. 2013;7:344–353. doi: 10.4161/chan.26734. PubMed DOI PMC
Cui B, et al. The inhibitory helix controls the intramolecular conformational switching of the C-terminus of STIM1. PLoS ONE. 2013;8:e74735. doi: 10.1371/journal.pone.0074735. PubMed DOI PMC
Pace CN, Scholtz JM. A helix propensity scale based on experimental studies of peptides and proteins. Biophys. J. 1998;75:422–427. doi: 10.1016/S0006-3495(98)77529-0. PubMed DOI PMC
Singh A, et al. C-terminal modulator controls Ca2+ -dependent gating of Ca(v)1.4 L-type Ca2+ channels. Nat. Neurosci. 2006;9:1108–1116. doi: 10.1038/nn1751. PubMed DOI
Derler I, et al. Dynamic but not constitutive association of calmodulin with rat TRPV6 channels enables fine tuning of Ca2+ -dependent inactivation. J. Physiol. 2006;577:31–44. doi: 10.1113/jphysiol.2006.118661. PubMed DOI PMC
Zal T, Gascoigne NR. Photobleaching-corrected FRET efficiency imaging of live cells. Biophys. J. 2004;86:3923–3939. doi: 10.1529/biophysj.103.022087. PubMed DOI PMC
Resonance assignment of coiled-coil 3 (CC3) domain of human STIM1
Interhelical interactions within the STIM1 CC1 domain modulate CRAC channel activation