Interhelical interactions within the STIM1 CC1 domain modulate CRAC channel activation
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
P 32947
Austrian Science Fund FWF - Austria
W 1250
Austrian Science Fund FWF - Austria
PubMed
33106661
PubMed Central
PMC7610458
DOI
10.1038/s41589-020-00672-8
PII: 10.1038/s41589-020-00672-8
Knihovny.cz E-zdroje
- MeSH
- abnormální erytrocyty MeSH
- dyslexie genetika MeSH
- HEK293 buňky MeSH
- ichtyóza genetika MeSH
- kanály aktivované uvolněním vápníku metabolismus MeSH
- klonování DNA MeSH
- konformace nukleové kyseliny MeSH
- lidé MeSH
- magnetická rezonanční spektroskopie MeSH
- metoda terčíkového zámku MeSH
- migréna genetika MeSH
- mióza genetika MeSH
- molekulární modely MeSH
- mutace genetika MeSH
- nádorové proteiny genetika MeSH
- protein ORAI1 genetika MeSH
- protein STIM1 genetika MeSH
- slezina abnormality MeSH
- svalová únava genetika MeSH
- trombocytopatie genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kanály aktivované uvolněním vápníku MeSH
- nádorové proteiny MeSH
- ORAI1 protein, human MeSH Prohlížeč
- protein ORAI1 MeSH
- protein STIM1 MeSH
- STIM1 protein, human MeSH Prohlížeč
The calcium release activated calcium channel is activated by the endoplasmic reticulum-resident calcium sensor protein STIM1. On activation, STIM1 C terminus changes from an inactive, tight to an active, extended conformation. A coiled-coil clamp involving the CC1 and CC3 domains is essential in controlling STIM1 activation, with CC1 as the key entity. The nuclear magnetic resonance-derived solution structure of the CC1 domain represents a three-helix bundle stabilized by interhelical contacts, which are absent in the Stormorken disease-related STIM1 R304W mutant. Two interhelical sites between the CC1α1 and CC1α2 helices are key in controlling STIM1 activation, affecting the balance between tight and extended conformations. Nuclear magnetic resonance-directed mutations within these interhelical interactions restore the physiological, store-dependent activation behavior of the gain-of-function STIM1 R304W mutant. This study reveals the functional impact of interhelical interactions within the CC1 domain for modifying the CC1-CC3 clamp strength to control the activation of STIM1.
Department of Chemistry University of Florence Sesto Fiorentino Italy
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Institute for Theoretical Physics Johannes Kepler University Linz Linz Austria
Institute of Biophysics Johannes Kepler University Linz Linz Austria
Institute of Inorganic Chemistry Johannes Kepler University Linz Linz Austria
Institute of Organic Chemistry Johannes Kepler University Linz Linz Austria
Zobrazit více v PubMed
Bootman MD, Lipp P, Berridge MJ. The organisation and functions of local Ca(2+) signals. Journal of cell science. 2001;114:2213–2222. PubMed
Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol. 2003;4:517–529. PubMed
Berridge MJ. Inositol trisphosphate and calcium signalling mechanisms. Biochimica et biophysica acta. 2009;1793:933–940. PubMed
Lacruz RS, Feske S. Diseases caused by mutations in ORAI1 and STIM1. Annals of the New York Academy of Sciences. 2015;1356:45–79. PubMed PMC
Putney JW., Jr A model for receptor-regulated calcium entry. Cell Calcium. 1986;7:1–12. PubMed
Zhang SL, et al. STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature. 2005;437:902–905. PubMed PMC
Feske S, et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature. 2006;441:179–185. PubMed
Yeromin AV, Zhang SL, Jiang W, Yu Y, Safrina O, Cahalan MD. Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature. 2006;443:226–229. PubMed PMC
Liou J, et al. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol. 2005;15:1235–1241. PubMed PMC
Baba Y, et al. Coupling of STIM1 to store-operated Ca2+ entry through its constitutive and inducible movement in the endoplasmic reticulum. Proc Natl Acad Sci U S A. 2006;103:16704–16709. PubMed PMC
Luik RM, Wang B, Prakriya M, Wu MM, Lewis RS. Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation. Nature. 2008;454:538. PubMed PMC
Navarro-Borelly L, Somasundaram A, Yamashita M, Ren D, Miller RJ, Prakriya M. STIM1-Orai1 interactions and Orai1 conformational changes revealed by live-cell FRET microscopy. J Physiol. 2008;586:5383–5401. PubMed PMC
Stathopulos PB, Ikura M. Partial unfolding and oligomerization of stromal interaction molecules as an initiation mechanism of store operated calcium entry. Biochem Cell Biol. 2010;88:175–183. PubMed
Muik M, et al. STIM1 couples to ORAI1 via an intramolecular transition into an extended conformation. The EMBO journal. 2011;30:1678–1689. PubMed PMC
Fahrner M, et al. A coiled-coil clamp controls both conformation and clustering of stromal interaction molecule 1 (STIM1) J Biol Chem. 2014;289:33231–33244. PubMed PMC
Yuan JP, Zeng W, Dorwart MR, Choi YJ, Worley PF, Muallem S. SOAR and the polybasic STIM1 domains gate and regulate Orai channels. Nat Cell Biol. 2009;11:337–343. PubMed PMC
Park CY, et al. STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell. 2009;136:876–890. PubMed PMC
Muik M, et al. A Cytosolic Homomerization and a Modulatory Domain within STIM1 C Terminus Determine Coupling to ORAI1 Channels. J Biol Chem. 2009;284:8421–8426. PubMed PMC
Morin G, et al. Gain-of-Function Mutation in STIM1 (P.R304W) Is Associated with Stormorken Syndrome. Human mutation. 2014;35:1221–1232. PubMed
Nesin V, et al. Activating mutations in STIM1 and ORAI1 cause overlapping syndromes of tubular myopathy and congenital miosis. Proc Natl Acad Sci U S A. 2014;111:4197–4202. PubMed PMC
Fahrner M, et al. A dual mechanism promotes switching of the Stormorken STIM1 R304W mutant into the activated state. Nat Commun. 2018;9:825–825. PubMed PMC
Misceo D, et al. A dominant STIM1 mutation causes Stormorken syndrome. Human mutation. 2014;35:556–564. PubMed
Rathner P, Stadlbauer M, Romanin C, Fahrner M, Derler I, Müller N. Rapid NMR-scale purification of (15)N,(13)C isotope-labeled recombinant human STIM1 coiled coil fragments. Protein Expr Purif. 2018;146:45–50. PubMed
Lupas A, Van Dyke M, Stock J. Predicting coiled coils from protein sequences. Science. 1991;252:1162–1164. PubMed
Crick FHC. Is α-Keratin a Coiled Coil? Nature. 1952;170:882–883. PubMed
Crick FHC. The packing of α-helices: simple coiled-coils. Acta Crystallographica. 1953;6:689–697.
Lupas AN, Gruber M. The structure of alpha-helical coiled coils. Adv Protein Chem. 2005;70:37–78. PubMed
Ulrich EL, et al. BioMagResBank. Nucleic Acids Research. 2007;36:D402–D408. PubMed PMC
Güntert P, Mumenthaler C, Wüthrich K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. Journal of molecular biology. 1997;273:283–298. PubMed
Güntert P. Automated NMR structure calculation with CYANA. Methods in molecular biology (Clifton, NJ) 2004;278:353–378. PubMed
Lange OF, et al. Determination of solution structures of proteins up to 40 kDa using CS-Rosetta with sparse NMR data from deuterated samples. Proc Natl Acad Sci U S A. 2012;109:10873–10878. PubMed PMC
Cui B, et al. The inhibitory helix controls the intramolecular conformational switching of the C-terminus of STIM1. PloS one. 2013;8 e74735. PubMed PMC
Limbach H-H, Ratajczak H, Orville-Thomas WJ. Molecular interactions. Vol. 1 John Wiley & Sons Ltd; Chichester, New York, Brisbane, Toronto: 1980.
Palmer AG., 3rd Nmr probes of molecular dynamics: overview and comparison with other techniques. Annual review of biophysics and biomolecular structure. 2001;30:129–155. PubMed
Ma G, et al. Inside-out Ca signalling prompted by STIM1 conformational switch. Nat Commun. 2015;6 7826. PubMed PMC
Shen Y, Bax A. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. Journal of Biomolecular NMR. 2013;56:227–241. PubMed PMC
Stathopulos PB, et al. STIM1/Orai1 coiled-coil interplay in the regulation of store-operated calcium entry. Nat Commun. 2013;4 2963. PubMed PMC
Kay LE, Torchia DA, Bax A. Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry. 1989;28:8972–8979. PubMed
Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography. 1993;26:283–291.
Hirve N, Rajanikanth V, Hogan PG, Gudlur A. Coiled-Coil Formation Conveys a STIM1 Signal from ER Lumen to Cytoplasm. Cell Rep. 2018;22:72–83. PubMed PMC
Luo J, Liu Z, Guo Y, Li M. A structural dissection of large protein-protein crystal packing contacts. Scientific Reports. 2015;5 14214. PubMed PMC
Ma G, et al. Optogenetic engineering to probe the molecular choreography of STIM1-mediated cell signaling. Nat Commun. 2020;11:1039–1039. PubMed PMC
Krishnarjuna B, Jaipuria G, Thakur A, D’Silva P, Atreya HS. Amino acid selective unlabeling for sequence specific resonance assignments in proteins. J Biomol NMR. 2011;49:39–51. PubMed PMC
Kanelis V, Forman-Kay JD, Kay LE. Multidimensional NMR methods for protein structure determination. IUBMB life. 2001;52:291–302. PubMed
Bermel W, Felli I, Kümmerle R, Pierattelli R. 13C Direct-detection biomolecular NMR. Concepts in Magnetic Resonance Part A. 2008;32A:183–200.
Krieger E, Vriend G. YASARA View - molecular graphics for all devices - from smartphones to workstations. Bioinformatics (Oxford, England) 2014;30:2981–2982. PubMed PMC
Krieger E, Koraimann G, Vriend G. Increasing the precision of comparative models with YASARA NOVA--a self-parameterizing force field. Proteins. 2002;47:393–402. PubMed
Derler I, et al. Dynamic but not constitutive association of calmodulin with rat TRPV6 channels enables fine tuning of Ca2+-dependent inactivation. J Physiol. 2006;577:31–44. PubMed PMC
Zal T, Gascoigne NR. Photobleaching-corrected FRET efficiency imaging of live cells. Biophys J. 2004;86:3923–3939. PubMed PMC
Resonance assignment of coiled-coil 3 (CC3) domain of human STIM1