Interhelical interactions within the STIM1 CC1 domain modulate CRAC channel activation

. 2021 Feb ; 17 (2) : 196-204. [epub] 20201026

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33106661

Grantová podpora
P 32947 Austrian Science Fund FWF - Austria
W 1250 Austrian Science Fund FWF - Austria

Odkazy

PubMed 33106661
PubMed Central PMC7610458
DOI 10.1038/s41589-020-00672-8
PII: 10.1038/s41589-020-00672-8
Knihovny.cz E-zdroje

The calcium release activated calcium channel is activated by the endoplasmic reticulum-resident calcium sensor protein STIM1. On activation, STIM1 C terminus changes from an inactive, tight to an active, extended conformation. A coiled-coil clamp involving the CC1 and CC3 domains is essential in controlling STIM1 activation, with CC1 as the key entity. The nuclear magnetic resonance-derived solution structure of the CC1 domain represents a three-helix bundle stabilized by interhelical contacts, which are absent in the Stormorken disease-related STIM1 R304W mutant. Two interhelical sites between the CC1α1 and CC1α2 helices are key in controlling STIM1 activation, affecting the balance between tight and extended conformations. Nuclear magnetic resonance-directed mutations within these interhelical interactions restore the physiological, store-dependent activation behavior of the gain-of-function STIM1 R304W mutant. This study reveals the functional impact of interhelical interactions within the CC1 domain for modifying the CC1-CC3 clamp strength to control the activation of STIM1.

Zobrazit více v PubMed

Bootman MD, Lipp P, Berridge MJ. The organisation and functions of local Ca(2+) signals. Journal of cell science. 2001;114:2213–2222. PubMed

Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol. 2003;4:517–529. PubMed

Berridge MJ. Inositol trisphosphate and calcium signalling mechanisms. Biochimica et biophysica acta. 2009;1793:933–940. PubMed

Lacruz RS, Feske S. Diseases caused by mutations in ORAI1 and STIM1. Annals of the New York Academy of Sciences. 2015;1356:45–79. PubMed PMC

Putney JW., Jr A model for receptor-regulated calcium entry. Cell Calcium. 1986;7:1–12. PubMed

Zhang SL, et al. STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature. 2005;437:902–905. PubMed PMC

Feske S, et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature. 2006;441:179–185. PubMed

Yeromin AV, Zhang SL, Jiang W, Yu Y, Safrina O, Cahalan MD. Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature. 2006;443:226–229. PubMed PMC

Liou J, et al. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol. 2005;15:1235–1241. PubMed PMC

Baba Y, et al. Coupling of STIM1 to store-operated Ca2+ entry through its constitutive and inducible movement in the endoplasmic reticulum. Proc Natl Acad Sci U S A. 2006;103:16704–16709. PubMed PMC

Luik RM, Wang B, Prakriya M, Wu MM, Lewis RS. Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation. Nature. 2008;454:538. PubMed PMC

Navarro-Borelly L, Somasundaram A, Yamashita M, Ren D, Miller RJ, Prakriya M. STIM1-Orai1 interactions and Orai1 conformational changes revealed by live-cell FRET microscopy. J Physiol. 2008;586:5383–5401. PubMed PMC

Stathopulos PB, Ikura M. Partial unfolding and oligomerization of stromal interaction molecules as an initiation mechanism of store operated calcium entry. Biochem Cell Biol. 2010;88:175–183. PubMed

Muik M, et al. STIM1 couples to ORAI1 via an intramolecular transition into an extended conformation. The EMBO journal. 2011;30:1678–1689. PubMed PMC

Fahrner M, et al. A coiled-coil clamp controls both conformation and clustering of stromal interaction molecule 1 (STIM1) J Biol Chem. 2014;289:33231–33244. PubMed PMC

Yuan JP, Zeng W, Dorwart MR, Choi YJ, Worley PF, Muallem S. SOAR and the polybasic STIM1 domains gate and regulate Orai channels. Nat Cell Biol. 2009;11:337–343. PubMed PMC

Park CY, et al. STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell. 2009;136:876–890. PubMed PMC

Muik M, et al. A Cytosolic Homomerization and a Modulatory Domain within STIM1 C Terminus Determine Coupling to ORAI1 Channels. J Biol Chem. 2009;284:8421–8426. PubMed PMC

Morin G, et al. Gain-of-Function Mutation in STIM1 (P.R304W) Is Associated with Stormorken Syndrome. Human mutation. 2014;35:1221–1232. PubMed

Nesin V, et al. Activating mutations in STIM1 and ORAI1 cause overlapping syndromes of tubular myopathy and congenital miosis. Proc Natl Acad Sci U S A. 2014;111:4197–4202. PubMed PMC

Fahrner M, et al. A dual mechanism promotes switching of the Stormorken STIM1 R304W mutant into the activated state. Nat Commun. 2018;9:825–825. PubMed PMC

Misceo D, et al. A dominant STIM1 mutation causes Stormorken syndrome. Human mutation. 2014;35:556–564. PubMed

Rathner P, Stadlbauer M, Romanin C, Fahrner M, Derler I, Müller N. Rapid NMR-scale purification of (15)N,(13)C isotope-labeled recombinant human STIM1 coiled coil fragments. Protein Expr Purif. 2018;146:45–50. PubMed

Lupas A, Van Dyke M, Stock J. Predicting coiled coils from protein sequences. Science. 1991;252:1162–1164. PubMed

Crick FHC. Is α-Keratin a Coiled Coil? Nature. 1952;170:882–883. PubMed

Crick FHC. The packing of α-helices: simple coiled-coils. Acta Crystallographica. 1953;6:689–697.

Lupas AN, Gruber M. The structure of alpha-helical coiled coils. Adv Protein Chem. 2005;70:37–78. PubMed

Ulrich EL, et al. BioMagResBank. Nucleic Acids Research. 2007;36:D402–D408. PubMed PMC

Güntert P, Mumenthaler C, Wüthrich K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. Journal of molecular biology. 1997;273:283–298. PubMed

Güntert P. Automated NMR structure calculation with CYANA. Methods in molecular biology (Clifton, NJ) 2004;278:353–378. PubMed

Lange OF, et al. Determination of solution structures of proteins up to 40 kDa using CS-Rosetta with sparse NMR data from deuterated samples. Proc Natl Acad Sci U S A. 2012;109:10873–10878. PubMed PMC

Cui B, et al. The inhibitory helix controls the intramolecular conformational switching of the C-terminus of STIM1. PloS one. 2013;8 e74735. PubMed PMC

Limbach H-H, Ratajczak H, Orville-Thomas WJ. Molecular interactions. Vol. 1 John Wiley & Sons Ltd; Chichester, New York, Brisbane, Toronto: 1980.

Palmer AG., 3rd Nmr probes of molecular dynamics: overview and comparison with other techniques. Annual review of biophysics and biomolecular structure. 2001;30:129–155. PubMed

Ma G, et al. Inside-out Ca signalling prompted by STIM1 conformational switch. Nat Commun. 2015;6 7826. PubMed PMC

Shen Y, Bax A. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. Journal of Biomolecular NMR. 2013;56:227–241. PubMed PMC

Stathopulos PB, et al. STIM1/Orai1 coiled-coil interplay in the regulation of store-operated calcium entry. Nat Commun. 2013;4 2963. PubMed PMC

Kay LE, Torchia DA, Bax A. Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry. 1989;28:8972–8979. PubMed

Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography. 1993;26:283–291.

Hirve N, Rajanikanth V, Hogan PG, Gudlur A. Coiled-Coil Formation Conveys a STIM1 Signal from ER Lumen to Cytoplasm. Cell Rep. 2018;22:72–83. PubMed PMC

Luo J, Liu Z, Guo Y, Li M. A structural dissection of large protein-protein crystal packing contacts. Scientific Reports. 2015;5 14214. PubMed PMC

Ma G, et al. Optogenetic engineering to probe the molecular choreography of STIM1-mediated cell signaling. Nat Commun. 2020;11:1039–1039. PubMed PMC

Krishnarjuna B, Jaipuria G, Thakur A, D’Silva P, Atreya HS. Amino acid selective unlabeling for sequence specific resonance assignments in proteins. J Biomol NMR. 2011;49:39–51. PubMed PMC

Kanelis V, Forman-Kay JD, Kay LE. Multidimensional NMR methods for protein structure determination. IUBMB life. 2001;52:291–302. PubMed

Bermel W, Felli I, Kümmerle R, Pierattelli R. 13C Direct-detection biomolecular NMR. Concepts in Magnetic Resonance Part A. 2008;32A:183–200.

Krieger E, Vriend G. YASARA View - molecular graphics for all devices - from smartphones to workstations. Bioinformatics (Oxford, England) 2014;30:2981–2982. PubMed PMC

Krieger E, Koraimann G, Vriend G. Increasing the precision of comparative models with YASARA NOVA--a self-parameterizing force field. Proteins. 2002;47:393–402. PubMed

Derler I, et al. Dynamic but not constitutive association of calmodulin with rat TRPV6 channels enables fine tuning of Ca2+-dependent inactivation. J Physiol. 2006;577:31–44. PubMed PMC

Zal T, Gascoigne NR. Photobleaching-corrected FRET efficiency imaging of live cells. Biophys J. 2004;86:3923–3939. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Resonance assignment of coiled-coil 3 (CC3) domain of human STIM1

. 2021 Oct ; 15 (2) : 433-439. [epub] 20210821

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...