As a single atom Pd outperforms Pt as the most active co-catalyst for photocatalytic H2 evolution
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
34430818
PubMed Central
PMC8367834
DOI
10.1016/j.isci.2021.102938
PII: S2589-0042(21)00906-8
Knihovny.cz E-resources
- Keywords
- Catalysis, Materials characterization, Nanomaterials,
- Publication type
- Journal Article MeSH
Here, we evaluate three different noble metal co-catalysts (Pd, Pt, and Au) that are present as single atoms (SAs) on the classic benchmark photocatalyst, TiO2. To trap the single atoms on the surface, we introduced controlled surface vacancies (Ti3+-Ov) on anatase TiO2 nanosheets by a thermal reduction treatment. After anchoring identical loadings of single atoms of Pd, Pt, and Au, we measure the photocatalytic H2 generation rate and compare it to the classic nanoparticle co-catalysts on the nanosheets. While nanoparticles yield the well-established the hydrogen evolution reaction activity sequence (Pt > Pd > Au), for the single atom form, Pd radically outperforms Pt and Au. Based on density functional theory (DFT), we ascribe this unusual photocatalytic co-catalyst sequence to the nature of the charge localization on the noble metal SAs embedded in the TiO2 surface.
Department of Physics and Astronomy Uppsala University Box 516 751 20 Uppsala Sweden
Faculty of Physical Chemistry University of Belgrade Studentski trg 12 16 Belgrade 11000 Serbia
Regional Centre of Advanced Technologies and Materials Šlechtitelů 27 Olomouc 78371 Czech Republic
See more in PubMed
Daelman N., Capdevila-Cortada M., López N. Dynamic charge and oxidation state of Pt/CeO2 single-atom catalysts. Nat. Mater. 2019;18:1215–1221. doi: 10.1038/s41563-019-0444-y. PubMed DOI
Flytzani-Stephanopoulos M. Gold atoms stabilized on various supports catalyze the water-gas shift reaction. Acc. Chem. Res. 2014;47:783–792. doi: 10.1021/ar4001845. PubMed DOI
Fu Q., Saltsburg H., Flytzani-Stephanopoulos M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science. 2003;301:935–938. doi: 10.1126/science.1085721. PubMed DOI
Gao C., Low J., Long R., Kong T., Zhu J., Xiong Y. Heterogeneous single-atom photocatalysts: fundamentals and applications. Chem. Rev. 2020;120:12175–12216. doi: 10.1021/acs.chemrev.9b00840. PubMed DOI
Gates B.C., Flytzani-Stephanopoulos M., DIxon D.A., Katz A. Atomically dispersed supported metal catalysts: perspectives and suggestions for future research. Catal. Sci. Technol. 2017;7:4259–4275. doi: 10.1039/c7cy00881c. DOI
Giannozzi P., Andreussi O., Brumme T., Bunau O., Buongiorno Nardelli M., Calandra M., Car R., Cavazzoni C., Ceresoli D., Cococcioni M. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter. 2017;29:465901. doi: 10.1088/1361-648X/aa8f79. PubMed DOI
Giannozzi P., Baroni S., Bonini N., Calandra M., Car R., Cavazzoni C., Ceresoli D., Chiarotti G.L., Cococcioni M., Dabo I. Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter. 2009;21:395502. doi: 10.1088/0953-8984/21/39/395502. PubMed DOI
Giordano L., Pacchioni G., Bredow T., Sanz J.F. Cu, Ag, and Au atoms adsorbed on TiO2(110): cluster and periodic calculations. Surf. Sci. 2001;471:21–31. doi: 10.1016/S0039-6028(00)00879-7. DOI
Heiz U., Sanchez A., Abbet S., Schneider W.-D. Catalytic oxidation of carbon monoxide on monodispersed platinum clusters: each atom counts. J. Am. Chem. Soc. 1999;121:3214–3217. doi: 10.1021/ja983616l. DOI
Hejazi S., Mohajernia S., Osuagwu B., Zoppellaro G., Andryskova P., Tomanec O., Kment S., Zbořil R., Schmuki P. On the controlled loading of single platinum atoms as a Co-catalyst on TiO2 anatase for optimized photocatalytic H2 generation. Adv. Mater. 2020;32 doi: 10.1002/adma.201908505. 1908505 (1–9) PubMed DOI
Hu Y., Qu Y., Zhou Y., Wang Z., Wang H., Yang B., Yu Z., Wu Y. Single Pt atom-anchored C3N4: a bridging Pt–N bond boosted electron transfer for highly efficient photocatalytic H2 generation. Chem. Eng. J. 2021;412:128749. doi: 10.1016/j.cej.2021.128749. DOI
Kudo A., Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009;38:253–278. doi: 10.1039/B800489G. PubMed DOI
Lačnjevac U., Vasilić R., Dobrota A., Đurđić S., Tomanec O., Zbořil R., Mohajernia S., Nguyen N.T., Skorodumova N., Manojlović D. High-performance hydrogen evolution electrocatalysis using proton-intercalated TiO2 nanotube arrays as interactive supports for Ir nanoparticles. J. Mater. Chem. A. 2020;8:22773–22790. doi: 10.1039/D0TA07492F. DOI
Liu J. Catalysis by supported single metal atoms. ACS Catal. 2017;7:34–59. doi: 10.1021/acscatal.6b01534. DOI
Mohajernia S., Andryskova P., Zoppellaro G., Hejazi S., Kment S., Zboril R., Schmidt J., Schmuki P. Influence of Ti3+ defect-type on heterogeneous photocatalytic H2 evolution activity of TiO2. J. Mater. Chem. A. 2020;8:1432–1442. doi: 10.1039/C9TA10855F. DOI
Monkhorst H.J., Pack J.D. Special points for Brillouin-zone integrations. Phys. Rev. B. 1976;13:5188–5192. doi: 10.1103/PhysRevB.13.5188. DOI
Naldoni A., Altomare M., Zoppellaro G., Liu N., Kment Š., Zbořil R., Schmuki P. Photocatalysis with reduced TiO2 : from black TiO2 to cocatalyst-free hydrogen production. ACS Catal. 2019;9:345–364. doi: 10.1021/acscatal.8b04068. PubMed DOI PMC
Nørskov J.K., Bligaard T., Logadottir A., Kitchin J.R., Chen J.G., Pandelov S., Stimming U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005;152:J23. doi: 10.1149/1.1856988. DOI
Osterloh F.E. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 2013;42:2294–2320. doi: 10.1039/C2CS35266D. PubMed DOI
Parsons R. The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Trans. Faraday Soc. 1958;54:1053. doi: 10.1039/tf9585401053. DOI
Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Qiao B., Wang A., Yang X., Allard L.F., Jiang Z., Cui Y., Liu J., Li J., Zhang T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011;3:634–641. doi: 10.1038/nchem.1095. PubMed DOI
Seh Z.W., Kibsgaard J., Dickens C.F., Chorkendorff I., Nørskov J.K., Jaramillo T.F. Combining theory and experiment in electrocatalysis: insights into materials design. Science. 2017;355:eaad4998. doi: 10.1126/science.aad4998. PubMed DOI
Serpone N., Salinaro A., Emeline A., Ryabchuk V. Turnovers and photocatalysis: a mathematical description. J. Photochem. Photobiol. A. Chem. 2000;130:83–94. doi: 10.1016/S1010-6030(99)00217-8. DOI
Sheng W., Myint M., Chen J.G., Yan Y. Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy Environ. Sci. 2013;6:1509. doi: 10.1039/c3ee00045a. DOI
Trasatti S. Work function, electronegativity, and electrochemical behaviour of metals. J. Electroanal. Chem. Interfacial Electrochem. 1972;39:163–184. doi: 10.1016/S0022-0728(72)80485-6. DOI
Wang A., Li J., Zhang T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018;2:65–81. doi: 10.1038/s41570-018-0010-1. DOI
Wang Q., Domen K. Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chem. Rev. 2020;120:919–985. doi: 10.1021/acs.chemrev.9b00201. PubMed DOI
Wang Z., Yang J., Gan J., Chen W., Zhou F., Zhou X., Yu Z., Zhu J., Duan X., Wu Y. Electrochemical conversion of bulk platinum into platinum single-atom sites for the hydrogen evolution reaction. J. Mater. Chem. A. 2020;8:10755–10760. doi: 10.1039/D0TA02351E. DOI
Wenderich K., Mul G. Methods, mechanism, and applications of photodeposition in photocatalysis: a review. Chem. Rev. 2016;116:14587–14619. doi: 10.1021/acs.chemrev.6b00327. PubMed DOI
Yang X.-F., Wang A., Qiao B., Li J., Liu J., Zhang T. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013;46:1740–1748. doi: 10.1021/ar300361m. PubMed DOI
Yao Y., Gu X.-K., He D., Li Z., Liu W., Xu Q., Yao T., Lin Y., Wang H.-J., Zhao C. Engineering the electronic structure of submonolayer Pt on intermetallic Pd 3 Pb via charge transfer boosts the hydrogen evolution reaction. J. Am. Chem. Soc. 2019;141:19964–19968. doi: 10.1021/jacs.9b09391. PubMed DOI
Zhou Z., Wang S., Zhou W., Wang G., Jiang L., Li W., Song S., Liu J., Sun G., Xin Q. Novel synthesis of highly active Pt/C cathode electrocatalyst for direct methanol fuel cell. Chem. Commun. 2003;7:394–395. doi: 10.1039/b211075j. PubMed DOI
Zhu C., Fu S., Shi Q., Du D., Lin Y. Single-atom electrocatalysts. Angew. Chem. - Int. Ed. 2017;56:13944–13960. doi: 10.1002/anie.201703864. PubMed DOI
Zubieta C.E., Aquino-Linarez L.G., Fuente S.A., Belelli P.G., Ferullo R.M. Growth and structure of Cu, Ag and Au clusters on α-Fe2O3(0001): a comparative density functional study. Comput. Mater. Sci. 2020;173:109392. doi: 10.1016/j.commatsci.2019.109392. DOI
Single Atom Cocatalysts in Photocatalysis