Diclofenac Alters the Cell Cycle Progression of the Green Alga Chlamydomonas reinhardtii
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
grant PPN/IWA/2019/1/00002
Polish National Agency for Academic Exchange, Iwanowska programme (Poland)
grant UMO-2019/35/B/NZ9/01567
the National Science Centre Poland
grant no. 19-12607S
Czech Science Foundation
PubMed
34440705
PubMed Central
PMC8392695
DOI
10.3390/cells10081936
PII: cells10081936
Knihovny.cz E-zdroje
- Klíčová slova
- Chlamydomonas reinhardtii, cell cycle, diclofenac, non-steroidal anti-inflammatory drug,
- MeSH
- antiflogistika nesteroidní toxicita MeSH
- buněčné dělení účinky léků MeSH
- buněčný cyklus účinky léků MeSH
- Chlamydomonas reinhardtii účinky léků genetika růst a vývoj MeSH
- diklofenak toxicita MeSH
- DNA rostlinná biosyntéza genetika MeSH
- fotosyntéza účinky léků MeSH
- replikace DNA účinky léků MeSH
- velikost buňky účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antiflogistika nesteroidní MeSH
- diklofenak MeSH
- DNA rostlinná MeSH
The aim of the study was to verify the hypothesis that a potential cause of the phytotoxicity of diclofenac (DCF, a non-steroidal anti-inflammatory drug) is an effect of cell cycle progression. This research was conducted using synchronous cultures of a model organism, green alga Chlamydomonas reinhardtii. The project examined DCF effects on selected parameters that characterize cell cycle progression, such as cell size, attainment of commitment points, DNA replication, number of nuclei formed during cells division and morphology of cells in consecutive stages of the cell cycle, together with the physiological and biochemical parameters of algae cells at different stages. We demonstrated that individual cell growth remained unaffected, whereas cell division was delayed in the DCF-treated groups grown in continuous light conditions, and the number of daughter cells from a single cell decreased. Thus, the cell cycle progression is a target affected by DCF, which has a similar anti-proliferative effect on mammalian cells.
Zobrazit více v PubMed
Naidoo V., Swan G.E. Diclofenac toxicity in Gyps vulture is associated with decreased uric acid excretion and not renal portal vasoconstriction. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2009;149:269–274. doi: 10.1016/j.cbpc.2008.07.014. PubMed DOI
Ziylan A., Ince N.H. The occurrence and fate of anti-inflammatory and analgesic pharmaceuticals in sewage and fresh water: Treatability by conventional and non-conventional processes. J. Hazard. Mater. 2011;187:24–36. doi: 10.1016/j.jhazmat.2011.01.057. PubMed DOI
Proia L., Osorio V., Soley S., Köck-Schulmeyer M., Pérez S., Barceló D., Romaní A.M., Sabater S. Effects of pesticides and pharmaceuticals on biofilms in a highly impacted river. Environ. Pollut. 2013;178:220–228. doi: 10.1016/j.envpol.2013.02.022. PubMed DOI
Cleuvers M. Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicol. Lett. 2003;142:185–194. doi: 10.1016/S0378-4274(03)00068-7. PubMed DOI
Cleuvers M. Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen, and acetylsalicylic acid. Ecotoxicol. Environ. Saf. 2004;59:309–315. doi: 10.1016/S0147-6513(03)00141-6. PubMed DOI
DeLorenzo M.E., Fleming J. Individual and mixture effects of selected pharmaceuticals and personal care products on the marine phytoplankton species Dunaliella tertiolecta. Arch. Environ. Contam. Toxicol. 2008;54:203–210. doi: 10.1007/s00244-007-9032-2. PubMed DOI
Schmitt-Jansen M., Bartels P., Adler N., Altenburger R. Phytotoxicity assessment of diclofenac and its phototransformation products. Anal. Bioanal. Chem. 2007;387:1389–1396. doi: 10.1007/s00216-006-0825-3. PubMed DOI
Hernando M.D., Mezcua M., Fernández-Alba A.R., Barceló D. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta. 2006;69:334–342. doi: 10.1016/j.talanta.2005.09.037. PubMed DOI
Majewska M., Harshkova D., Guściora M., Aksmann A. Phytotoxic activity of diclofenac: Evaluation using a model green alga Chlamydomonas reinhardtii with atrazine as a reference substance. Chemosphere. 2018;209:989–997. doi: 10.1016/j.chemosphere.2018.06.156. PubMed DOI
Pokora W., Aksmann A., Baścik-Remisiewicz A., Dettlaff-Pokora A., Rykaczewski M., Gappa M., Tukaj Z. Changes in nitric oxide/hydrogen peroxide content and cell cycle progression: Study with synchronized cultures of green alga Chlamydomonas reinhardtii. J. Plant Physiol. 2017;208:84–93. doi: 10.1016/j.jplph.2016.10.008. PubMed DOI
Pokora W., Aksmann A., Baścik-Remisiewicz A., Dettlaff-Pokora A., Tukaj Z. Exogenously applied hydrogen peroxide modifies the course of the Chlamydomonas reinhardtii cell cycle. J. Plant Physiol. 2018;230:61–72. doi: 10.1016/j.jplph.2018.07.015. PubMed DOI
Čížková M., Slavková M., Vítová M., Zachleder V., Bišová K. Response of the Green Alga Chlamydomonas reinhardtii to the DNA Damaging Agent Zeocin. Cells. 2019;8:735. doi: 10.3390/cells8070735. PubMed DOI PMC
Lien T., Knutsen G. Synchronous growth of Chlamydomonas reinhardtii (Chlorophyceae): A review of optimal conditions. J. Phycol. 1979;15:191–200. doi: 10.1111/j.1529-8817.1979.tb02984.x. DOI
Coleman A.W. The nuclear-cell cycle in Chlamydomonas (Chlorophyceae) J. Phycol. 1982;18:192–195. doi: 10.1111/j.1529-8817.1982.tb03172.x. DOI
Craigie R.A., Cavalier-Smith T. Cell Volume and the Control of the Chlamydomonas Cell Cycle. J. Cell Sci. 1982;54:173–191. doi: 10.1242/jcs.54.1.173. DOI
Lien T., Knutsen G. Synchronized cultures of a cell wall-less mutant of Chlamydomonas reinhardii. Arch. Microbiol. 1976;108:189–194. doi: 10.1007/BF00428950. PubMed DOI
Donnan L., John P.C.L. CeII cycle control by timer and sizer in Chlamydomonas. Nature. 1983;304:630–633. doi: 10.1038/304630a0. PubMed DOI
Donnan L., John P.C.L. Timer and sizer controls in the cell cycles of Chlamydomonas and Chlorella. In: Nurse P., Streiblová E., editors. The Microbial Cell Cycle. CRC Press; Boca Raton, FL, USA: 1984. pp. 231–251.
John P.C.L. Control points in the Chlamydomonas cell cycle. In: Wiesnar W., Robinson D.G., Starr R.C., editors. Algal Development. Springer; Berlin, Germany: 1987. pp. 9–16.
Bišová K., Hendrychová J., Cepák V., Zachleder V. Cell growth and division processes are differentially sensitive to cadmium in Scenedesmus quadricauda. Folia Microbiol. 2003;48:805–816. doi: 10.1007/BF02931518. PubMed DOI
Harris E.H. In: The Chlamydomonas Sourcebook: Introduction to Chlamydomonas and Its Laboratory Use. 2nd ed. Harrisduke E., editor. Academic Press; Cambridge, MA, USA: 2009.
McCready R.M., Guggolz J., Silviera V., Owens H.S. Determination of Starch and Amylose in Vegetables. Anal. Chem. 1950;22:1156–1158. doi: 10.1021/ac60045a016. DOI
Brányiková I., Maršálková B., Doucha J., Brányik T., Bišová K., Zachleder V., Vítová M. Microalgae-novel highly efficient starch producers. Biotechnol. Bioeng. 2011;108:766–776. doi: 10.1002/bit.23016. PubMed DOI
Řezanka T., Kaineder K., Mezricky D., Řezanka M., Bišová K., Zachleder V., Vítová M. The effect of lanthanides on photosynthesis, growth, and chlorophyll profile of the green alga Desmodesmus quadricauda. Photosynth. Res. 2016;130:335–346. doi: 10.1007/s11120-016-0263-9. PubMed DOI
Mackinney G. Absorption of Light By Chlorophyll Solutions. J. Biol. Chem. 1941;140:315–322. doi: 10.1016/S0021-9258(18)51320-X. DOI
Lichtenthaler H.K., Wellburn A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 1983;11:591–592. doi: 10.1042/bst0110591. DOI
Lukavský J., Simmer J., Kubín Š. Buchbesprechungen. In: Marvan P., Přibil S., Lhotský O., Eipieper E., editors. Algal Essays and Monitoring Eutrophication. Schweizerbart’sche Verlagsbuchhandlung (Nagele u. Obermiller); Stuttgart, Germany: 1979. pp. 77–85.
Aksmann A., Pokora W., Baścik-Remisiewicz A., Dettlaff-Pokora A., Tukaj Z. High hydrogen peroxide production and antioxidative enzymes expression in the Chlamydomonas reinhardtii cia3 mutant with an increased tolerance to cadmium and anthracene. Phycol. Res. 2016;64:300–311. doi: 10.1111/pre.12147. DOI
Hlavová M., Vítová M., Bišová K. Methods in Molecular Biology. Volume 1370. Humana Press; New York, NY, USA: 2016. Synchronization of Green Algae by Light and Dark Regimes for Cell Cycle and Cell Division Studies; pp. 3–16. PubMed
Neumann G., Teras R., Monson L., Kivisaar M., Schauer F., Heipieper H.J. Simultaneous Degradation of Atrazine and Phenol by Pseudomonas sp. Strain ADP: Effects of Toxicity and Adaptation. Appl. Environ. Microbiol. 2004;70:1907–1912. doi: 10.1128/AEM.70.4.1907-1912.2004. PubMed DOI PMC
Wanka F. Die Bestimmung der Nucleinsäuren in Chlorella-Kulturen. Planta. 1962;58:594–609. doi: 10.1007/BF01914751. DOI
Decallonne J.R., Weyns J.C. A shortened procedure of the diphenylamine reaction for the measurement of deoxyribonucleic acid by using light activation. Anal. Biochem. 1976;74:448–456. doi: 10.1016/0003-2697(76)90225-6. PubMed DOI
Zachleder V. Optimization of nucleic acids assay in green and blue-green algae: Extraction procedures and the light-activated diphenylamine reaction for DNA. Algol. Stud. Hydrobiol. Suppl. Vol. 1984;67:313–328. doi: 10.1127/algol_stud/67/1984/313. DOI
Lowry O.H., Randall R.J. Protein Measurement byt the Folin Reagent. J. Biol. Chem. 1951;193:265–275. doi: 10.1016/S0021-9258(19)52451-6. PubMed DOI
Majewska M., Harshkova D., Pokora W., Baścik-Remisiewicz A., Tułodziecki S., Aksmann A. Does diclofenac act like a photosynthetic herbicide on green algae? Chlamydomonas reinhardtii synchronous culture-based study with atrazine as reference. Ecotoxicol. Environ. Saf. 2021;208:111630. doi: 10.1016/j.ecoenv.2020.111630. PubMed DOI
Harshkova D., Majewska M., Pokora W., Baścik-Remisiewicz A., Tułodziecki S., Aksmann A. Diclofenac and atrazine restrict the growth of a synchronous Chlamydomonas reinhardtii population via various mechanisms. Aquat. Toxicol. 2021;230:105698. doi: 10.1016/j.aquatox.2020.105698. PubMed DOI
Brain R.A., Hanson M.L., Solomon K.R., Brooks B.W. Reviews of Environmental Contamination and Toxicology. Volume 192. Springer; Amsterdam, The Netherlands: 2008. Aquatic Plants Exposed to Pharmaceuticals: Effects and Risks; pp. 67–115. PubMed
Bonnefille B., Gomez E., Courant F., Escande A., Fenet H. Diclofenac in the marine environment: A review of its occurrence and effects. Mar. Pollut. Bull. 2018;131:496–506. doi: 10.1016/j.marpolbul.2018.04.053. PubMed DOI
Sathishkumar P., Meena R.A.A., Palanisami T., Ashokkumar V., Palvannan T., Gu F.L. Occurrence, interactive effects and ecological risk of diclofenac in environmental compartments and biota—A review. Sci. Total Environ. 2020;698:134057. doi: 10.1016/j.scitotenv.2019.134057. PubMed DOI
Lemoine Y., Schoefs B. Secondary ketocarotenoid astaxanthin biosynthesis in algae: A multifunctional response to stress. Photosynth. Res. 2010;106:155–177. doi: 10.1007/s11120-010-9583-3. PubMed DOI
Liang Y., Kashdan T., Sterner C., Dombrowski L., Petrick I., Kröger M., Höfer R. Industrial Biorefineries & White Biotechnology. Elsevier; Amsterdam, The Netherlands: 2015. Algal Biorefineries; pp. 35–90.
Torres-Romero I., Kong F., Légeret B., Beisson F., Peltier G., Li-Beisson Y. Chlamydomonas cell cycle mutant crcdc5 over-accumulates starch and oil. Biochimie. 2020;169:54–61. doi: 10.1016/j.biochi.2019.09.017. PubMed DOI
Vítová M., Bišová K., Hlavová M., Kawano S., Zachleder V., Čížková M. Chlamydomonas reinhardtii: Duration of its cell cycle and phases at growth rates affected by temperature. Planta. 2011;234:599–608. doi: 10.1007/s00425-011-1427-7. PubMed DOI
Fu Q., Ye Q., Zhang J., Richards J., Borchardt D., Gan J. Diclofenac in Arabidopsis cells: Rapid formation of conjugates. Environ. Pollut. 2017;222:383–392. doi: 10.1016/j.envpol.2016.12.022. PubMed DOI
Nowicka B., Pluciński B., Kuczyńska P., Kruk J. Physiological characterization of Chlamydomonas reinhardtii acclimated to chronic stress induced by Ag, Cd, Cr, Cu and Hg ions. Ecotoxicol. Environ. Saf. 2016;130:133–145. doi: 10.1016/j.ecoenv.2016.04.010. PubMed DOI
Khona D.K., Shirolikar S.M., Gawde K.K., Hom E., Deodhar M.A., D’Souza J.S. Characterization of salt stress-induced palmelloids in the green alga, Chlamydomonas reinhardtii. Algal Res. 2016;16:434–448. doi: 10.1016/j.algal.2016.03.035. DOI
Valle B.L., D’Souza T., Becker K.G., Wood W.H., Zhang Y., Wersto R.P., Morin P.J. Non-Steroidal Anti-inflammatory Drugs Decrease E2F1 Expression and Inhibit Cell Growth in Ovarian Cancer Cells. PLoS ONE. 2013;8:e61836. doi: 10.1371/journal.pone.0061836. PubMed DOI PMC
Zachleder V., Van Den Ende H. Cell cycle events in the green alga Chlamydomonas eugametos and their control by environmental factors. J. Cell Sci. 1992;102:469–474. doi: 10.1242/jcs.102.3.469. DOI