The Genome Analysis of the Human Lung-Associated Streptomyces sp. TR1341 Revealed the Presence of Beneficial Genes for Opportunistic Colonization of Human Tissues
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
17-30091A
Ministerstvo Zdravotnictví Ceské Republiky
LM2018129
Ministerstvo Školství, Mládeže a Tělovýchovy
No. CZ.02.1.01/0.0/0.0/16_013/0001775
European Regional Development Fund
PubMed
34442631
PubMed Central
PMC8401907
DOI
10.3390/microorganisms9081547
PII: microorganisms9081547
Knihovny.cz E-resources
- Keywords
- Streptomyces, adaptations to human tissue colonization, biosynthetic gene clusters, comparative genomics, human lungs, lung pathogenic actinomycetes, respiratory tract, secondary metabolites,
- Publication type
- Journal Article MeSH
Streptomyces sp. TR1341 was isolated from the sputum of a man with a history of lung and kidney tuberculosis, recurrent respiratory infections, and COPD. It produces secondary metabolites associated with cytotoxicity and immune response modulation. In this study, we complement our previous results by identifying the genetic features associated with the production of these secondary metabolites and other characteristics that could benefit the strain during its colonization of human tissues (virulence factors, modification of the host immune response, or the production of siderophores). We performed a comparative phylogenetic analysis to identify the genetic features that are shared by environmental isolates and human respiratory pathogens. The results showed a high genomic similarity of Streptomyces sp. TR1341 to the plant-associated Streptomyces sp. endophyte_N2, inferring a soil origin of the strain. Putative virulence genes, such as mammalian cell entry (mce) genes were not detected in the TR1341's genome. The presence of a type VII secretion system, distinct from the ones found in Mycobacterium species, suggests a different colonization strategy than the one used by other actinomycete lung pathogens. We identified a higher diversity of genes related to iron acquisition and demonstrated that the strain produces ferrioxamine B in vitro. These results indicate that TR1341 may have an advantage in colonizing environments that are low in iron, such as human tissue.
See more in PubMed
Hopwood D.A. Streptomyces in Nature and Medicine: The Antibiotic Makers. OXford University Press, Inc.; Oxford, UK: 2007. ISBN-13 978-0-19-515066-7.
Müller R., Wink J. Future potential for anti-infectives from bacteria—How to exploit biodiversity and genomic potential. Int. J. Med. Microbiol. 2014;304:3–13. doi: 10.1016/j.ijmm.2013.09.004. PubMed DOI
Dharmaraj S. Marine Streptomyces as a novel source of bioactive substances. World J. Microbiol. Biotechnol. 2010;26:2123–2139. doi: 10.1007/s11274-010-0415-6. DOI
Chen M., Chai W., Song T., Ma M., Lian X.Y., Zhang Z. Anti-glioma Natural Products Downregulating Tumor Glycolytic Enzymes from Marine Actinomycete Streptomyces sp. ZZ406. Sci. Rep. 2018;8:72. doi: 10.1038/s41598-017-18484-7. PubMed DOI PMC
Kämpfer P. The Prokaryotes. Springer; New York, NY, USA: 2006. The Family Streptomycetaceae, Part I: Taxonomy; pp. 538–604.
Amin A., Ahmed I., Khalid N., Osman G., Khan I.U., Xiao M., Li W.J. Streptomyces caldifontis sp. nov., isolated from a hot water spring of Tatta Pani, Kotli, Pakistan. Antonie Leeuwenhoek. 2017;110:77–86. doi: 10.1007/s10482-016-0778-2. PubMed DOI
Řeháková K., Chroňáková A., Krištůfek V., Kuchtová B., Čapková K., Scharfen J., Čapek P., Doležal J. Bacterial community of cushion plant Thylacospermum ceaspitosum on elevational gradient in the Himalayan cold desert. Front. Microbiol. 2015;6:304. doi: 10.3389/fmicb.2015.00304. PubMed DOI PMC
Chroňáková A., Krištůfek V., Tichý M., Elhottová D. Biodiversity of Streptomycetes isolated from a succession sequence at a post-mining site and their evidence in Miocene lacustrine sediment. Microbiol. Res. 2010;165:594–608. doi: 10.1016/j.micres.2009.10.002. PubMed DOI
Kaltenpoth M., Göttler W., Herzner G., Strohm E. Symbiotic bacteria protect wasp larvae from fungal infestation. Curr. Biol. 2005;15:475–479. doi: 10.1016/j.cub.2004.12.084. PubMed DOI
Haeder S., Wirth R., Herz H., Spiteller D. Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis. Proc. Natl. Acad. Sci. USA. 2009;106:4742–4746. doi: 10.1073/pnas.0812082106. PubMed DOI PMC
Seipke R.F., Barke J., Brearley C., Hill L., Yu D.W., Goss R.J.M., Hutchings M.I. A single Streptomyces symbiont makes multiple antifungals to support the fungus farming ant Acromyrmex octospinosus. PLoS ONE. 2011;6:e22028. doi: 10.1371/journal.pone.0022028. PubMed DOI PMC
Kim D.R., Cho G., Jeon C.W., Weller D.M., Thomashow L.S., Paulitz T.C., Kwak Y.S. A mutualistic interaction between Streptomyces bacteria, strawberry plants and pollinating bees. Nat. Commun. 2019;10:4802. doi: 10.1038/s41467-019-12785-3. PubMed DOI PMC
Grubbs K.J., Surup F., Biedermann P.H.W., McDonald B.R., Klassen J.L., Carlson C.M., Clardy J., Currie C.R. Cycloheximide-Producing Streptomyces Associated with Xyleborinus saxesenii and Xyleborus affinis Fungus-Farming Ambrosia Beetles. Front. Microbiol. 2020;11:2207. doi: 10.3389/fmicb.2020.562140. PubMed DOI PMC
Sarmiento-Ramírez J.M., Van Der Voort M., Raaijmakers J.M., Diéguez-Uribeondo J. Unravelling the microbiome of eggs of the endangered sea turtle Eretmochelys imbricata identifies bacteria with activity against the emerging pathogen Fusarium falciforme. PLoS ONE. 2014;9:e95206. doi: 10.1371/journal.pone.0095206. PubMed DOI PMC
Seipke R.F., Kaltenpoth M., Hutchings M.I. Streptomyces as symbionts: An emerging and widespread theme? FEMS Microbiol. Rev. 2012;36:862–876. doi: 10.1111/j.1574-6976.2011.00313.x. PubMed DOI
Takeuchi T., Sawada H., Tanaka F., Matsuda I. Phylogenetic analysis of Streptomyces spp. causing potato scab based on 16S rRNA sequences. Int. J. Syst. Bacteriol. 1996;46:476–479. doi: 10.1099/00207713-46-2-476. PubMed DOI
Li Y., Liu J., Díaz-Cruz G., Cheng Z., Bignell D.R.D. Virulence mechanisms of plant-pathogenic Streptomyces species: An updated review. Microbiology. 2019;165:1025–1040. doi: 10.1099/mic.0.000818. PubMed DOI
Khalil M., Lerat S., Beaudoin N., Beaulieu C. The Plant Pathogenic Bacterium Streptomyces scabies Degrades the Aromatic Components of Potato Periderm via the β-Ketoadipate Pathway. Front. Microbiol. 2019;10:2795. doi: 10.3389/fmicb.2019.02795. PubMed DOI PMC
Quintana E.T., Wierzbicka K., Mackiewicz P., Osman A., Fahal A.H., Hamid M.E., Zakrzewska-Czerwinska J., Maldonado L.A., Goodfellow M. Streptomyces sudanensis sp. nov., a new pathogen isolated from patients with actinomycetoma. Antonie Leeuwenhoek. 2008;93:305–313. doi: 10.1007/s10482-007-9205-z. PubMed DOI
Kirby R., Sangal V., Tucker N.P., Zakrzewska-Czerwińska J., Wierzbicka K., Herron P.R., Chu C.J., Chandra G., Fahal A.H., Goodfellow M., et al. Draft genome sequence of the human pathogen Streptomyces somaliensis, a significant cause of actinomycetoma. J. Bacteriol. 2012;194:3544–3545. doi: 10.1128/JB.00534-12. PubMed DOI PMC
Sing D., Sing C.F. Impact of direct soil exposures from airborne dust and geophagy on human health. Int. J. Environ. Res. Public Health. 2010;7:1205–1223. doi: 10.3390/ijerph7031205. PubMed DOI PMC
Bolourian A., Mojtahedi Z. Streptomyces, shared microbiome member of soil and gut, as “old friends” against colon cancer. FEMS Microbiol. Ecol. 2018;94:fiy120. doi: 10.1093/femsec/fiy120. PubMed DOI
Bolourian A., Mojtahedi Z. Immunosuppressants produced by Streptomyces: Evolution, hygiene hypothesis, tumour rapalog resistance and probiotics. Environ. Microbiol. Rep. 2018;10:123–126. doi: 10.1111/1758-2229.12617. PubMed DOI
Gallo R.L., Hooper L.V. Epithelial antimicrobial defence of the skin and intestine. Nat. Rev. Immunol. 2012;12:503–516. doi: 10.1038/nri3228. PubMed DOI PMC
Collado M.C., Rautava S., Aakko J., Isolauri E., Salminen S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci. Rep. 2016;6:23129. doi: 10.1038/srep23129. PubMed DOI PMC
Huang Y.J., Nariya S., Harris J.M., Lynch S.V., Choy D.F., Arron J.R., Boushey H. The airway microbiome in patients with severe asthma: Associations with disease features and severity. J. Allergy Clin. Immunol. 2015;136:874–884. doi: 10.1016/j.jaci.2015.05.044. PubMed DOI PMC
Herbrík A., Corretto E., Chroňáková A., Langhansová H., Petrásková P., Hrdý J., Čihák M., Krištůfek V., Bobek J., Petříček M., et al. A Human Lung-Associated Streptomyces sp. TR1341 Produces Various Secondary Metabolites Responsible for Virulence, Cytotoxicity and Modulation of Immune Response. Front. Microbiol. 2020;10:3028. doi: 10.3389/fmicb.2019.03028. PubMed DOI PMC
Engevik M.A., Versalovic J. Bugs as Drugs. American Society of Microbiology; Washington, DC, USA: 2017. Biochemical Features of Beneficial Microbes: Foundations for Therapeutic Microbiology; pp. 3–47. PubMed PMC
Siddiqui S., Anderson V.L., Hilligoss D.M., Abinun M., Kuijpers T.W., Masur H., Witebsky F.G., Shea Y.R., Gallin J.I., Malech H.L., et al. Fulminant mulch pneumonitis: An emergency presentation of chronic granulomatous disease. Clin. Infect. Dis. 2007;45:673–681. doi: 10.1086/520985. PubMed DOI
Lertcanawanichakul M., Chawawisit K. Identification of Streptomyces spp. isolated from air samples and its cytotoxicity of anti-MRSA bioactive compounds. Biocatal. Agric. Biotechnol. 2019;20:101236. doi: 10.1016/j.bcab.2019.101236. DOI
Kettleson E., Kumar S., Reponen T., Vesper S., Méheust D., Grinshpun S.A., Adhikari A. Stenotrophomonas, Mycobacterium, and Streptomyces in home dust and air: Associations with moldiness and other home/family characteristics. Indoor Air. 2013;23:387–396. doi: 10.1111/ina.12035. PubMed DOI PMC
Čihák M., Kameník Z., Šmídová K., Bergman N., Benada O., Kofronová O., Petrícková K., Bobek J. Secondary metabolites produced during the germination of Streptomyces coelicolor. Front. Microbiol. 2017;8:2495. doi: 10.3389/fmicb.2017.02495. PubMed DOI PMC
Huttunen K., Hyvärinen A., Nevalainen A., Komulainen H., Hirvonen M.R. Production of proinflammatory mediators by indoor air bacteria and fungal spores in mouse and human cell lines. Environ. Health Perspect. 2003;111:85–92. doi: 10.1289/ehp.5478. PubMed DOI PMC
Jussila J., Komulainen H., Huttunen K., Roponen M., Hälinen A., Hyvärinen A., Kosma V.-M., Pelkonen J., Hirvonen M.-R. Inflammatory Responses in Mice after Intratracheal Instillation of Spores of Streptomyces californicus Isolated from Indoor Air of a Moldy Building. Toxicol. Appl. Pharmacol. 2001;171:61–69. doi: 10.1006/taap.2000.9116. PubMed DOI
Penttinen P., Huttunen K., Pelkonen J., Hirvonen M.R. The proportions of Streptomyces californicus and Stachybotrys chartarum in simultaneous exposure affect inflammatory responses in mouse RAW264.7 macrophages. Inhal. Toxicol. 2005;17:79–85. doi: 10.1080/08958370590903004. PubMed DOI
Penttinen P., Pelkonen J., Huttunen K., Hirvonen M.-R.R. Co-cultivation of Streptomyces californicus and Stachybotrys chartarum stimulates the production of cytostatic compound(s) with immunotoxic properties. Toxicol. Appl. Pharmacol. 2006;217:342–351. doi: 10.1016/j.taap.2006.09.010. PubMed DOI
Yacoub A.T., Velez A.P., Khwaja S.I., Sandin R.L., Greene J. Streptomyces pneumonia in an immunocompromised patient: A case report and a review of literature. Infect. Dis. Clin. Pract. 2014;22:e113–e115. doi: 10.1097/IPC.0000000000000172. DOI
Cambier C.J., Falkow S., Ramakrishnan L. Host evasion and exploitation schemes of Mycobacterium tuberculosis. Cell. 2014;159:1497–1509. doi: 10.1016/j.cell.2014.11.024. PubMed DOI
Bitter W., Houben E.N.G., Bottai D., Brodin P., Brown E.J., Cox J.S., Derbyshire K., Fortune S.M., Gao L.-Y., Liu J., et al. Systematic Genetic Nomenclature for Type VII Secretion Systems. PLoS Pathog. 2009;5:e1000507. doi: 10.1371/journal.ppat.1000507. PubMed DOI PMC
Unnikrishnan M., Constantinidou C., Palmer T., Pallen M.J. The Enigmatic Esx Proteins: Looking Beyond Mycobacteria. Trends Microbiol. 2017;25:192–204. doi: 10.1016/j.tim.2016.11.004. PubMed DOI
Gröschel M.I., Sayes F., Simeone R., Majlessi L., Brosch R. ESX secretion systems: Mycobacterial evolution to counter host immunity. Nat. Rev. Microbiol. 2016;14:677–691. doi: 10.1038/nrmicro.2016.131. PubMed DOI
Forrellad M.A., Klepp L.I., Gioffré A., García J.S., Morbidoni H.R., de la Paz Santangelo M., Cataldi A.A., Bigi F. Virulence factors of the Mycobacterium tuberculosis complex. Virulence. 2013;4:3–66. doi: 10.4161/viru.22329. PubMed DOI PMC
Fyans J.K., Bignell D., Loria R., Toth I., Palmer T. The ESX/type VII secretion system modulates development, but not virulence, of the plant pathogen Streptomyces scabies. Mol. Plant Pathol. 2013;14:119–130. doi: 10.1111/j.1364-3703.2012.00835.x. PubMed DOI PMC
Roman S.A.S., Facey P.D., Fernandez-Martinez L., Rodriguez C., Vallin C., Del Sol R., Dyson P. A heterodimer of EsxA and EsxB is involved in sporulation and is secreted by a type VII secretion system in Streptomyces coelicolor. Microbiology. 2010;156:1719–1729. doi: 10.1099/mic.0.037069-0. PubMed DOI
Haile Y., Caugant D.A., Bjune G., Wiker H.G. Mycobacterium tuberculosis mammalian cell entry operon (mce) homologs in Mycobacterium other than tuberculosis (MOTT) FEMS Immunol. Med. Microbiol. 2002;33:125–132. doi: 10.1111/j.1574-695X.2002.tb00581.x. PubMed DOI
Clark L.C., Seipke R.F., Prieto P., Willemse J., Van Wezel G.P., Hutchings M.I., Hoskisson P.A. Mammalian cell entry genes in Streptomyces may provide clues to the evolution of bacterial virulence. Sci. Rep. 2013;3:1109. doi: 10.1038/srep01109. PubMed DOI PMC
Casali N., Riley L.W. A phylogenomic analysis of the Actinomycetales mce operons. BMC Genomics. 2007;8:60. doi: 10.1186/1471-2164-8-60. PubMed DOI PMC
Shimono N., Morici L., Casali N., Cantrell S., Sidders B., Ehrt S., Riley L.W. Hypervirulent mutant of Mycobacterium tuberculosis resulting from disruption of the mce1 operon. Proc. Natl. Acad. Sci. USA. 2003;100:15918–15923. doi: 10.1073/pnas.2433882100. PubMed DOI PMC
Zhang V., Nemeth E., Kim A. Iron in lung pathology. Pharmaceuticals. 2019;12:30. doi: 10.3390/ph12010030. PubMed DOI PMC
Terra L., Dyson P., Ratcliffe N., Castro H.C., Vicente A.C.P. Biotechnological Potential of Streptomyces Siderophores as New Antibiotics. Curr. Med. Chem. 2021;28:1407–1421. doi: 10.2174/0929867327666200510235512. PubMed DOI
Miethke M., Marahiel M.A. Siderophore-Based Iron Acquisition and Pathogen Control. Microbiol. Mol. Biol. Rev. 2007;71:413–451. doi: 10.1128/MMBR.00012-07. PubMed DOI PMC
Kronstad J.W., Caza M. Shared and distinct mechanisms of iron acquisition by bacterial and fungal pathogens of humans. Front. Cell. Infect. Microbiol. 2013;4:80. PubMed PMC
Parrow N.L., Fleming R.E., Minnick M.F. Sequestration and scavenging of iron in infection. Infect. Immun. 2013;81:3503–3514. doi: 10.1128/IAI.00602-13. PubMed DOI PMC
Braun V., Pramanik A., Gwinner T., Köberle M., Bohn E. Sideromycins: Tools and antibiotics. Biometals. 2009;22:3–13. doi: 10.1007/s10534-008-9199-7. PubMed DOI PMC
Wang W., Qiu Z., Tan H., Cao L. Siderophore production by actinobacteria. Biometals. 2014;27:623–631. doi: 10.1007/s10534-014-9739-2. PubMed DOI
Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Magoč T., Salzberg S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27:2957–2963. doi: 10.1093/bioinformatics/btr507. PubMed DOI PMC
Bankevich A., Nurk S., Antipov D., Gurevich A.A., Dvorkin M., Kulikov A.S., Lesin V.M., Nikolenko S.I., Pham S., Prjibel-ski A.D., et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012;19:455–477. doi: 10.1089/cmb.2012.0021. PubMed DOI PMC
Gurevich A., Saveliev V., Vyahhi N., Tesler G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics. 2013;29:1072–1075. doi: 10.1093/bioinformatics/btt086. PubMed DOI PMC
Okonechnikov K., Conesa A., García-Alcalde F. Qualimap 2: Advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics. 2016;32:292–294. doi: 10.1093/bioinformatics/btv566. PubMed DOI PMC
Seemann T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–2069. doi: 10.1093/bioinformatics/btu153. PubMed DOI
Shirling E.B., Gottlieb D. Methods for characterization of Streptomyces species. Int. J. Syst. Bacteriol. 1966;16:313–340. doi: 10.1099/00207713-16-3-313. DOI
Kieser T. Practical Streptomyces Genetics. The John Innes Foundation; Norwich, UK: 2000.
Schwyn B., Neilands J.B. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 1987;160:47–56. doi: 10.1016/0003-2697(87)90612-9. PubMed DOI
Milagres A.M.F., Machuca A., Napoleão D. Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S (CAS) agar plate assay. J. Microbiol. Methods. 1999;37:1–6. doi: 10.1016/S0167-7012(99)00028-7. PubMed DOI
Sidebottom A.M., Karty J.A., Carlson E.E. Accurate Mass MS/MS/MS Analysis of Siderophores Ferrioxamine B and E1 by Collision-Induced Dissociation Electrospray Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2015;26:1899–1902. doi: 10.1007/s13361-015-1242-7. PubMed DOI
Senges C.H.R., Al-Dilaimi A., Marchbank D.H., Wibberg D., Winkler A., Haltli B., Nowrousian M., Kalinowski J., Kerr R.G., Bandow J.E. The secreted metabolome of Streptomyces chartreusis and implications for bacterial chemistry. Proc. Natl. Acad. Sci. USA. 2018;115:2490–2495. doi: 10.1073/pnas.1715713115. PubMed DOI PMC
Waterhouse R.M., Seppey M., Simao F.A., Manni M., Ioannidis P., Klioutchnikov G., Kriventseva E.V., Zdobnov E.M. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 2018;35:543–548. doi: 10.1093/molbev/msx319. PubMed DOI PMC
Emms D.M., Kelly S. OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20:238. doi: 10.1186/s13059-019-1832-y. PubMed DOI PMC
Emms D.M., Kelly S. STAG: Species Tree Inference from All Genes. bioRxiv. 2018:267914. doi: 10.1101/267914. DOI
Blin K., Shaw S., Steinke K., Villebro R., Ziemert N., Lee S.Y., Medema M.H., Weber T. AntiSMASH 5.0: Updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 2019;47:W81–W87. doi: 10.1093/nar/gkz310. PubMed DOI PMC
Skinnider M.A., Johnston C.W., Gunabalasingam M., Merwin N.J., Kieliszek A.M., MacLellan R.J., Li H., Ranieri M.R.M., Webster A.L.H., Cao M.P.T., et al. Comprehensive prediction of secondary metabolite structure and biological activity from microbial genome sequences. Nat. Commun. 2020;11:6058. doi: 10.1038/s41467-020-19986-1. PubMed DOI PMC
Mungan M.D., Alanjary M., Blin K., Weber T., Medema M.H., Ziemert N. ARTS 2.0: Feature updates and expansion of the Antibiotic Resistant Target Seeker for comparative genome mining. Nucleic Acids Res. 2020;48:W546–W552. doi: 10.1093/nar/gkaa374. PubMed DOI PMC
Lu S., Wang J., Chitsaz F., Derbyshire M.K., Geer R.C., Gonzales N.R., Gwadz M., Hurwitz D.I., Marchler G.H., Song J.S., et al. CDD/SPARCLE: The conserved domain database in 2020. Nucleic Acids Res. 2020;48:D265–D268. doi: 10.1093/nar/gkz991. PubMed DOI PMC
El-Gebali S., Mistry J., Bateman A., Eddy S.R., Luciani A., Potter S.C., Qureshi M., Richardson L.J., Salazar G.A., Smart A., et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47:D427–D432. doi: 10.1093/nar/gky995. PubMed DOI PMC
Wheeler T.J., Eddy S.R. Nhmmer: DNA homology search with profile HMMs. Bioinformatics. 2013;29:2487–2489. doi: 10.1093/bioinformatics/btt403. PubMed DOI PMC
Overbeek R., Olson R., Pusch G.D., Olsen G.J., Davis J.J., Disz T., Edwards R.A., Gerdes S., Parrello B., Shukla M., et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST) Nucleic Acids Res. 2014;42:D206–D214. doi: 10.1093/nar/gkt1226. PubMed DOI PMC
Oliveros J.C. VENNY. An Interactive Tool for Comparing Lists with Venn Diagrams. [(accessed on 9 September 2020)]; Available online: http://bioinfogp.cnnb.csic.es/tools/venny/index.html.
Chiesi USA, Inc. Bronchitol ® Inhaled Dry Powder Mannitol (DPM) for Adult Patients with Cystic Fibrosis. Chiesi USA, Inc.; Cary, NC, USA: 2019.
Mitri C., Xu Z., Bardin P., Corvol H., Touqui L., Tabary O. Novel Anti-Inflammatory Approaches for Cystic Fibrosis Lung Disease: Identification of Molecular Targets and Design of Innovative Therapies. Front. Pharmacol. 2020;11:1096. doi: 10.3389/fphar.2020.01096. PubMed DOI PMC
Nevitt S.J., Thornton J., Murray C.S., Dwyer T. Inhaled mannitol for cystic fibrosis. Cochrane Database Syst. Rev. 2020;2020:CD008649. doi: 10.1002/14651858.CD008649.pub3. PubMed DOI PMC
Xu M.J., Wang J.H., Bu X.L., Yu H.L., Li P., Ou H.Y., He Y., Di Xu F., Hu X.Y., Zhu X.M., et al. Deciphering the streamlined genome of Streptomyces xiamenensis 318 as the producer of the anti-fibrotic drug candidate xiamenmycin. Sci. Rep. 2016;6:18977. doi: 10.1038/srep18977. PubMed DOI PMC
Ian E., Malko D.B., Sekurova O.N., Bredholt H., Rückert C., Borisova M.E., Albersmeier A., Kalinowski J., Gelfand M.S., Zotchev S.B. Genomics of Sponge-Associated Streptomyces spp. Closely Related to Streptomyces albus J1074: Insights into Marine Adaptation and Secondary Metabolite Biosynthesis Potential. PLoS ONE. 2014;9:e96719. doi: 10.1371/journal.pone.0096719. PubMed DOI PMC
Tomihama T., Nishi Y., Sakai M., Ikenaga M., Okubo T., Ikeda S. Draft genome sequences of Streptomyces scabiei S58, Streptomyces turgidiscabies T45, and Streptomyces acidiscabies a10, the pathogens of potato common scab, isolated in Japan. Genome Announc. 2016;4:e00062-16. doi: 10.1128/genomeA.00062-16. PubMed DOI PMC
Worsley S.F., Newitt J., Rassbach J., Batey S.F.D., Holmes N.A., Murrell J.C., Wilkinson B., Hutchings M.I. Streptomyces endophytes promote host health and enhance growth across plant species. Appl. Environ. Microbiol. 2020;86:e01053-20. doi: 10.1128/AEM.01053-20. PubMed DOI PMC
Vicente C.M., Santos-Aberturas J., Payero T.D., Barreales E.G., de Pedro A., Aparicio J.F. PAS-LuxR transcriptional control of filipin biosynthesis in S. avermitilis. Appl. Microbiol. Biotechnol. 2014;98:9311–9324. doi: 10.1007/s00253-014-5998-7. PubMed DOI
Payero T.D., Vicente C.M., Rumbero Á., Barreales E.G., Santos-Aberturas J., de Pedro A., Aparicio J.F. Functional analysis of filipin tailoring genes from Streptomyces filipinensis reveals alternative routes in filipin III biosynthesis and yields bioactive derivatives. Microb. Cell Factories. 2015;14:114. doi: 10.1186/s12934-015-0307-4. PubMed DOI PMC
Whitfield G.B., Brock T.D., Ammann A., Gottlieb D., Carter H.E. Filipin, an Antifungal Antibiotic: Isolation and Properties. J. Am. Chem. Soc. 1955;77:4799–4801. doi: 10.1021/ja01623a032. DOI
Keller U., Lang M., Crnovcic I., Pfennig F., Schauwecker F. The actinomycin biosynthetic gene cluster of Streptomyces chrysomallus: A genetic hall of mirrors for synthesis of a molecule with mirror symmetry. J. Bacteriol. 2010;192:2583–2595. doi: 10.1128/JB.01526-09. PubMed DOI PMC
Crnovčić I., Rückert C., Semsary S., Lang M., Kalinowski J., Keller U. Genetic interrelations in the actinomycin biosynthetic gene clusters of Streptomyces antibioticus IMRU 3720 and Streptomyces chrysomallus ATCC11523, producers of actinomycin X and actinomycin C. Adv. Appl. Bioinform. Chem. 2017;10:29–46. doi: 10.2147/AABC.S117707. PubMed DOI PMC
Bradley A.S., Pearson A., Sáenz J.P., Marx C.J. Adenosylhopane: The first intermediate in hopanoid side chain biosynthesis. Org. Geochem. 2010;41:1075–1081. doi: 10.1016/j.orggeochem.2010.07.003. DOI
Doughty D.M., Dieterle M., Sessions A.L., Fischer W.W., Newman D.K. Probing the Subcellular Localization of Hopanoid Lipids in Bacteria Using NanoSIMS. PLoS ONE. 2014;9:e84455. doi: 10.1371/journal.pone.0084455. PubMed DOI PMC
Chen Z., WASHIO T., SATO M., SUZUKI Y. Cytotoxic Effects of Several Hopanoids on Mouse Leukemia L1210 and P388 Cells. Biol. Pharm. Bull. 1995;18:421–423. doi: 10.1248/bpb.18.421. PubMed DOI
Moreau R.A., Hicks K.B. Bacteriohopanetetrol and Related Compounds Useful for Modulation of Lipoxygenase Activity and Anti-Inflammatory Applications. No US6177415B1. U.S. Patent. 2001 Jan 23;
Wang X., Zhou H., Chen H., Jing X., Zheng W., Li R., Sun T., Liu J., Fu J., Huo L., et al. Discovery of recombinases enables genome mining of cryptic biosynthetic gene clusters in Burkholderiales species. Proc. Natl. Acad. Sci. USA. 2018;115:E4255–E4263. doi: 10.1073/pnas.1720941115. PubMed DOI PMC
Giessen T.W., Franke K.B., Knappe T.A., Kraas F.I., Bosello M., Xie X., Linne U., Marahiel M.A. Isolation, structure elucidation, and biosynthesis of an unusual hydroxamic acid ester-containing siderophore from Actinosynnema mirum. J. Nat. Prod. 2012;75:905–914. doi: 10.1021/np300046k. PubMed DOI
Barona-Gómez F., Wong U., Giannakopulos A.E., Derrick P.J., Challis G.L. Identification of a cluster of genes that directs desferrioxamine biosynthesis in Streptomyces coelicolor M145. J. Am. Chem. Soc. 2004;126:16282–16283. doi: 10.1021/ja045774k. PubMed DOI
Wang L., Zhu M., Zhang Q., Zhang X., Yang P., Liu Z., Deng Y., Zhu Y., Huang X., Han L., et al. Diisonitrile Natural Product SF2768 Functions as a Chalkophore That Mediates Copper Acquisition in Streptomyces thioluteus. ACS Chem. Biol. 2017;12:3067–3075. doi: 10.1021/acschembio.7b00897. PubMed DOI
Ahmed E., Holmström S.J.M. Siderophores in environmental research: Roles and applications. Microb. Biotechnol. 2014;7:196–208. doi: 10.1111/1751-7915.12117. PubMed DOI PMC
van Zyl W.F., Deane S.M., Dicks L.M.T. Molecular insights into probiotic mechanisms of action employed against intestinal pathogenic bacteria. Gut Microbes. 2020;12:1831339. doi: 10.1080/19490976.2020.1831339. PubMed DOI PMC
Liu M., Jia Y., Xie Y., Zhang C., Ma J., Sun C., Ju J. Identification of the actinomycin D biosynthetic pathway from marine-derived Streptomyces costaricanus SCSIO ZS0073. Mar. Drugs. 2019;17:240. doi: 10.3390/md17040240. PubMed DOI PMC
Sadeghi A., Soltani B.M., Nekouei M.K., Jouzani G.S., Mirzaei H.H., Sadeghizadeh M. Diversity of the ectoines biosynthesis genes in the salt tolerant Streptomyces and evidence for inductive effect of ectoines on their accumulation. Microbiol. Res. 2014;169:699–708. doi: 10.1016/j.micres.2014.02.005. PubMed DOI
Hassan A.M.E., Fahal A.H., Ahmed A.O., Ismail A., Veress B. The immunopathology of actinomycetoma lesions caused by Streptomyces somaliensis. Trans. R. Soc. Trop. Med. Hyg. 2001;95:89–92. doi: 10.1016/S0035-9203(01)90346-3. PubMed DOI
Shah S., Briken V. Modular Organization of the ESX-5 Secretion System in Mycobacterium tuberculosis. Front. Cell. Infect. Microbiol. 2016;6:49. doi: 10.3389/fcimb.2016.00049. PubMed DOI PMC
Dumas E., Boritsch E.C., Vandenbogaert M., De La Vega R.C.R., Thiberge J.M., Caro V., Gaillard J.L., Heym B., Girard-Misguich F., Brosch R., et al. Mycobacterial pan-genome analysis suggests important role of plasmids in the radiation of type VII secretion systems. Genome Biol. Evol. 2016;8:387–402. doi: 10.1093/gbe/evw001. PubMed DOI PMC
Ju K.S., Gao J., Doroghazi J.R., Wang K.K.A., Thibodeaux C.J., Li S., Metzger E., Fudala J., Su J., Zhang J.K., et al. Discovery of phosphonic acid natural products by mining the genomes of 10,000 actinomycetes. Proc. Natl. Acad. Sci. USA. 2015;112:12175–12180. doi: 10.1073/pnas.1500873112. PubMed DOI PMC
Koonin E.V., Galperin M.Y. Sequence-Evolution-Function: Computational Approaches in Comparative Genomics. Springer; Boston, MA, USA: 2003. Sequence-Evolution-Function: Computational Approaches in Comparative Genomics. PubMed
Karoonuthaisiri N., Weaver D., Huang J., Cohen S.N., Kao C.M. Regional organization of gene expression in Streptomyces coelicolor. Gene. 2005;353:53–66. doi: 10.1016/j.gene.2005.03.042. PubMed DOI
Gaillard J.-L., Berche P., Frehei C., Gouin E., Cossartt P. Entry of L. monocytogenes into Cells Is Mediated by Internalin, a Repeat Protein Reminiscent of Surface Antigens from Gram-Positive Cocci. Cell. 1991;65:1127–1141. doi: 10.1016/0092-8674(91)90009-N. PubMed DOI
Kobayashi T., Uozomi T., Beppu T. Cloning and characterization of the streptothricin-resistance gene which encodes streptothricin acetyltransferase from Streptomyces lavendulae. J. Antibiot. 1986;39:688–693. doi: 10.7164/antibiotics.39.688. PubMed DOI
Rajasekaran M.B., Nilapwar S., Andrews S.C., Watson K.A. EfeO-cupredoxins: Major new members of the cupredoxin superfamily with roles in bacterial iron transport. Biometals. 2010;23:1. doi: 10.1007/s10534-009-9262-z. PubMed DOI
Chew S.Y., Chee W.J.Y., Than L.T.L. The glyoxylate cycle and alternative carbon metabolism as metabolic adaptation strategies of Candida glabrata: Perspectives from Candida albicans and Saccharomyces cerevisiae. J. Biomed. Sci. 2019;26:52. doi: 10.1186/s12929-019-0546-5. PubMed DOI PMC
Lorenz M.C., Fink G.R. Life and death in a macrophage: Role of the glyoxylate cycle in virulence. Eukaryot. Cell. 2002;1:657–662. doi: 10.1128/EC.1.5.657-662.2002. PubMed DOI PMC
Puckett S., Trujillo C., Wang Z., Eoh H., Ioerger T.R., Krieger I., Sacchettini J., Schnappinger D., Rhee K.Y., Ehrt S. Glyoxylate detoxification is an essential function of malate synthase required for carbon assimilation in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA. 2017;114:E2225–E2232. doi: 10.1073/pnas.1617655114. PubMed DOI PMC
Koedooder C., Guéneuguès A., Van Geersdaële R., Vergé V., Bouget F.-Y., Labreuche Y., Obernosterer I., Blain S. The Role of the Glyoxylate Shunt in the Acclimation to Iron Limitation in Marine Heterotrophic Bacteria. Front. Mar. Sci. 2018;5:435. doi: 10.3389/fmars.2018.00435. DOI
Flores-Díaz M., Monturiol-Gross L., Naylor C., Alape-Girón A., Flieger A. Bacterial Sphingomyelinases and Phospholipases as Virulence Factors. Microbiol. Mol. Biol. Rev. 2016;80:597–628. doi: 10.1128/MMBR.00082-15. PubMed DOI PMC
van der Meer-Janssen Y.P.M., van Galen J., Batenburg J.J., Helms J.B. Lipids in host-pathogen interactions: Pathogens exploit the complexity of the host cell lipidome. Prog. Lipid Res. 2010;49:1–26. doi: 10.1016/j.plipres.2009.07.003. PubMed DOI PMC
Songer J.G. Bacterial phospholipases and their role in virulence. Trends Microbiol. 1997;5:156–161. doi: 10.1016/S0966-842X(97)01005-6. PubMed DOI