• This record comes from PubMed

The Genome Analysis of the Human Lung-Associated Streptomyces sp. TR1341 Revealed the Presence of Beneficial Genes for Opportunistic Colonization of Human Tissues

. 2021 Jul 21 ; 9 (8) : . [epub] 20210721

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
17-30091A Ministerstvo Zdravotnictví Ceské Republiky
LM2018129 Ministerstvo Školství, Mládeže a Tělovýchovy
No. CZ.02.1.01/0.0/0.0/16_013/0001775 European Regional Development Fund

Links

PubMed 34442631
PubMed Central PMC8401907
DOI 10.3390/microorganisms9081547
PII: microorganisms9081547
Knihovny.cz E-resources

Streptomyces sp. TR1341 was isolated from the sputum of a man with a history of lung and kidney tuberculosis, recurrent respiratory infections, and COPD. It produces secondary metabolites associated with cytotoxicity and immune response modulation. In this study, we complement our previous results by identifying the genetic features associated with the production of these secondary metabolites and other characteristics that could benefit the strain during its colonization of human tissues (virulence factors, modification of the host immune response, or the production of siderophores). We performed a comparative phylogenetic analysis to identify the genetic features that are shared by environmental isolates and human respiratory pathogens. The results showed a high genomic similarity of Streptomyces sp. TR1341 to the plant-associated Streptomyces sp. endophyte_N2, inferring a soil origin of the strain. Putative virulence genes, such as mammalian cell entry (mce) genes were not detected in the TR1341's genome. The presence of a type VII secretion system, distinct from the ones found in Mycobacterium species, suggests a different colonization strategy than the one used by other actinomycete lung pathogens. We identified a higher diversity of genes related to iron acquisition and demonstrated that the strain produces ferrioxamine B in vitro. These results indicate that TR1341 may have an advantage in colonizing environments that are low in iron, such as human tissue.

See more in PubMed

Hopwood D.A. Streptomyces in Nature and Medicine: The Antibiotic Makers. OXford University Press, Inc.; Oxford, UK: 2007. ISBN-13 978-0-19-515066-7.

Müller R., Wink J. Future potential for anti-infectives from bacteria—How to exploit biodiversity and genomic potential. Int. J. Med. Microbiol. 2014;304:3–13. doi: 10.1016/j.ijmm.2013.09.004. PubMed DOI

Dharmaraj S. Marine Streptomyces as a novel source of bioactive substances. World J. Microbiol. Biotechnol. 2010;26:2123–2139. doi: 10.1007/s11274-010-0415-6. DOI

Chen M., Chai W., Song T., Ma M., Lian X.Y., Zhang Z. Anti-glioma Natural Products Downregulating Tumor Glycolytic Enzymes from Marine Actinomycete Streptomyces sp. ZZ406. Sci. Rep. 2018;8:72. doi: 10.1038/s41598-017-18484-7. PubMed DOI PMC

Kämpfer P. The Prokaryotes. Springer; New York, NY, USA: 2006. The Family Streptomycetaceae, Part I: Taxonomy; pp. 538–604.

Amin A., Ahmed I., Khalid N., Osman G., Khan I.U., Xiao M., Li W.J. Streptomyces caldifontis sp. nov., isolated from a hot water spring of Tatta Pani, Kotli, Pakistan. Antonie Leeuwenhoek. 2017;110:77–86. doi: 10.1007/s10482-016-0778-2. PubMed DOI

Řeháková K., Chroňáková A., Krištůfek V., Kuchtová B., Čapková K., Scharfen J., Čapek P., Doležal J. Bacterial community of cushion plant Thylacospermum ceaspitosum on elevational gradient in the Himalayan cold desert. Front. Microbiol. 2015;6:304. doi: 10.3389/fmicb.2015.00304. PubMed DOI PMC

Chroňáková A., Krištůfek V., Tichý M., Elhottová D. Biodiversity of Streptomycetes isolated from a succession sequence at a post-mining site and their evidence in Miocene lacustrine sediment. Microbiol. Res. 2010;165:594–608. doi: 10.1016/j.micres.2009.10.002. PubMed DOI

Kaltenpoth M., Göttler W., Herzner G., Strohm E. Symbiotic bacteria protect wasp larvae from fungal infestation. Curr. Biol. 2005;15:475–479. doi: 10.1016/j.cub.2004.12.084. PubMed DOI

Haeder S., Wirth R., Herz H., Spiteller D. Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis. Proc. Natl. Acad. Sci. USA. 2009;106:4742–4746. doi: 10.1073/pnas.0812082106. PubMed DOI PMC

Seipke R.F., Barke J., Brearley C., Hill L., Yu D.W., Goss R.J.M., Hutchings M.I. A single Streptomyces symbiont makes multiple antifungals to support the fungus farming ant Acromyrmex octospinosus. PLoS ONE. 2011;6:e22028. doi: 10.1371/journal.pone.0022028. PubMed DOI PMC

Kim D.R., Cho G., Jeon C.W., Weller D.M., Thomashow L.S., Paulitz T.C., Kwak Y.S. A mutualistic interaction between Streptomyces bacteria, strawberry plants and pollinating bees. Nat. Commun. 2019;10:4802. doi: 10.1038/s41467-019-12785-3. PubMed DOI PMC

Grubbs K.J., Surup F., Biedermann P.H.W., McDonald B.R., Klassen J.L., Carlson C.M., Clardy J., Currie C.R. Cycloheximide-Producing Streptomyces Associated with Xyleborinus saxesenii and Xyleborus affinis Fungus-Farming Ambrosia Beetles. Front. Microbiol. 2020;11:2207. doi: 10.3389/fmicb.2020.562140. PubMed DOI PMC

Sarmiento-Ramírez J.M., Van Der Voort M., Raaijmakers J.M., Diéguez-Uribeondo J. Unravelling the microbiome of eggs of the endangered sea turtle Eretmochelys imbricata identifies bacteria with activity against the emerging pathogen Fusarium falciforme. PLoS ONE. 2014;9:e95206. doi: 10.1371/journal.pone.0095206. PubMed DOI PMC

Seipke R.F., Kaltenpoth M., Hutchings M.I. Streptomyces as symbionts: An emerging and widespread theme? FEMS Microbiol. Rev. 2012;36:862–876. doi: 10.1111/j.1574-6976.2011.00313.x. PubMed DOI

Takeuchi T., Sawada H., Tanaka F., Matsuda I. Phylogenetic analysis of Streptomyces spp. causing potato scab based on 16S rRNA sequences. Int. J. Syst. Bacteriol. 1996;46:476–479. doi: 10.1099/00207713-46-2-476. PubMed DOI

Li Y., Liu J., Díaz-Cruz G., Cheng Z., Bignell D.R.D. Virulence mechanisms of plant-pathogenic Streptomyces species: An updated review. Microbiology. 2019;165:1025–1040. doi: 10.1099/mic.0.000818. PubMed DOI

Khalil M., Lerat S., Beaudoin N., Beaulieu C. The Plant Pathogenic Bacterium Streptomyces scabies Degrades the Aromatic Components of Potato Periderm via the β-Ketoadipate Pathway. Front. Microbiol. 2019;10:2795. doi: 10.3389/fmicb.2019.02795. PubMed DOI PMC

Quintana E.T., Wierzbicka K., Mackiewicz P., Osman A., Fahal A.H., Hamid M.E., Zakrzewska-Czerwinska J., Maldonado L.A., Goodfellow M. Streptomyces sudanensis sp. nov., a new pathogen isolated from patients with actinomycetoma. Antonie Leeuwenhoek. 2008;93:305–313. doi: 10.1007/s10482-007-9205-z. PubMed DOI

Kirby R., Sangal V., Tucker N.P., Zakrzewska-Czerwińska J., Wierzbicka K., Herron P.R., Chu C.J., Chandra G., Fahal A.H., Goodfellow M., et al. Draft genome sequence of the human pathogen Streptomyces somaliensis, a significant cause of actinomycetoma. J. Bacteriol. 2012;194:3544–3545. doi: 10.1128/JB.00534-12. PubMed DOI PMC

Sing D., Sing C.F. Impact of direct soil exposures from airborne dust and geophagy on human health. Int. J. Environ. Res. Public Health. 2010;7:1205–1223. doi: 10.3390/ijerph7031205. PubMed DOI PMC

Bolourian A., Mojtahedi Z. Streptomyces, shared microbiome member of soil and gut, as “old friends” against colon cancer. FEMS Microbiol. Ecol. 2018;94:fiy120. doi: 10.1093/femsec/fiy120. PubMed DOI

Bolourian A., Mojtahedi Z. Immunosuppressants produced by Streptomyces: Evolution, hygiene hypothesis, tumour rapalog resistance and probiotics. Environ. Microbiol. Rep. 2018;10:123–126. doi: 10.1111/1758-2229.12617. PubMed DOI

Gallo R.L., Hooper L.V. Epithelial antimicrobial defence of the skin and intestine. Nat. Rev. Immunol. 2012;12:503–516. doi: 10.1038/nri3228. PubMed DOI PMC

Collado M.C., Rautava S., Aakko J., Isolauri E., Salminen S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci. Rep. 2016;6:23129. doi: 10.1038/srep23129. PubMed DOI PMC

Huang Y.J., Nariya S., Harris J.M., Lynch S.V., Choy D.F., Arron J.R., Boushey H. The airway microbiome in patients with severe asthma: Associations with disease features and severity. J. Allergy Clin. Immunol. 2015;136:874–884. doi: 10.1016/j.jaci.2015.05.044. PubMed DOI PMC

Herbrík A., Corretto E., Chroňáková A., Langhansová H., Petrásková P., Hrdý J., Čihák M., Krištůfek V., Bobek J., Petříček M., et al. A Human Lung-Associated Streptomyces sp. TR1341 Produces Various Secondary Metabolites Responsible for Virulence, Cytotoxicity and Modulation of Immune Response. Front. Microbiol. 2020;10:3028. doi: 10.3389/fmicb.2019.03028. PubMed DOI PMC

Engevik M.A., Versalovic J. Bugs as Drugs. American Society of Microbiology; Washington, DC, USA: 2017. Biochemical Features of Beneficial Microbes: Foundations for Therapeutic Microbiology; pp. 3–47. PubMed PMC

Siddiqui S., Anderson V.L., Hilligoss D.M., Abinun M., Kuijpers T.W., Masur H., Witebsky F.G., Shea Y.R., Gallin J.I., Malech H.L., et al. Fulminant mulch pneumonitis: An emergency presentation of chronic granulomatous disease. Clin. Infect. Dis. 2007;45:673–681. doi: 10.1086/520985. PubMed DOI

Lertcanawanichakul M., Chawawisit K. Identification of Streptomyces spp. isolated from air samples and its cytotoxicity of anti-MRSA bioactive compounds. Biocatal. Agric. Biotechnol. 2019;20:101236. doi: 10.1016/j.bcab.2019.101236. DOI

Kettleson E., Kumar S., Reponen T., Vesper S., Méheust D., Grinshpun S.A., Adhikari A. Stenotrophomonas, Mycobacterium, and Streptomyces in home dust and air: Associations with moldiness and other home/family characteristics. Indoor Air. 2013;23:387–396. doi: 10.1111/ina.12035. PubMed DOI PMC

Čihák M., Kameník Z., Šmídová K., Bergman N., Benada O., Kofronová O., Petrícková K., Bobek J. Secondary metabolites produced during the germination of Streptomyces coelicolor. Front. Microbiol. 2017;8:2495. doi: 10.3389/fmicb.2017.02495. PubMed DOI PMC

Huttunen K., Hyvärinen A., Nevalainen A., Komulainen H., Hirvonen M.R. Production of proinflammatory mediators by indoor air bacteria and fungal spores in mouse and human cell lines. Environ. Health Perspect. 2003;111:85–92. doi: 10.1289/ehp.5478. PubMed DOI PMC

Jussila J., Komulainen H., Huttunen K., Roponen M., Hälinen A., Hyvärinen A., Kosma V.-M., Pelkonen J., Hirvonen M.-R. Inflammatory Responses in Mice after Intratracheal Instillation of Spores of Streptomyces californicus Isolated from Indoor Air of a Moldy Building. Toxicol. Appl. Pharmacol. 2001;171:61–69. doi: 10.1006/taap.2000.9116. PubMed DOI

Penttinen P., Huttunen K., Pelkonen J., Hirvonen M.R. The proportions of Streptomyces californicus and Stachybotrys chartarum in simultaneous exposure affect inflammatory responses in mouse RAW264.7 macrophages. Inhal. Toxicol. 2005;17:79–85. doi: 10.1080/08958370590903004. PubMed DOI

Penttinen P., Pelkonen J., Huttunen K., Hirvonen M.-R.R. Co-cultivation of Streptomyces californicus and Stachybotrys chartarum stimulates the production of cytostatic compound(s) with immunotoxic properties. Toxicol. Appl. Pharmacol. 2006;217:342–351. doi: 10.1016/j.taap.2006.09.010. PubMed DOI

Yacoub A.T., Velez A.P., Khwaja S.I., Sandin R.L., Greene J. Streptomyces pneumonia in an immunocompromised patient: A case report and a review of literature. Infect. Dis. Clin. Pract. 2014;22:e113–e115. doi: 10.1097/IPC.0000000000000172. DOI

Cambier C.J., Falkow S., Ramakrishnan L. Host evasion and exploitation schemes of Mycobacterium tuberculosis. Cell. 2014;159:1497–1509. doi: 10.1016/j.cell.2014.11.024. PubMed DOI

Bitter W., Houben E.N.G., Bottai D., Brodin P., Brown E.J., Cox J.S., Derbyshire K., Fortune S.M., Gao L.-Y., Liu J., et al. Systematic Genetic Nomenclature for Type VII Secretion Systems. PLoS Pathog. 2009;5:e1000507. doi: 10.1371/journal.ppat.1000507. PubMed DOI PMC

Unnikrishnan M., Constantinidou C., Palmer T., Pallen M.J. The Enigmatic Esx Proteins: Looking Beyond Mycobacteria. Trends Microbiol. 2017;25:192–204. doi: 10.1016/j.tim.2016.11.004. PubMed DOI

Gröschel M.I., Sayes F., Simeone R., Majlessi L., Brosch R. ESX secretion systems: Mycobacterial evolution to counter host immunity. Nat. Rev. Microbiol. 2016;14:677–691. doi: 10.1038/nrmicro.2016.131. PubMed DOI

Forrellad M.A., Klepp L.I., Gioffré A., García J.S., Morbidoni H.R., de la Paz Santangelo M., Cataldi A.A., Bigi F. Virulence factors of the Mycobacterium tuberculosis complex. Virulence. 2013;4:3–66. doi: 10.4161/viru.22329. PubMed DOI PMC

Fyans J.K., Bignell D., Loria R., Toth I., Palmer T. The ESX/type VII secretion system modulates development, but not virulence, of the plant pathogen Streptomyces scabies. Mol. Plant Pathol. 2013;14:119–130. doi: 10.1111/j.1364-3703.2012.00835.x. PubMed DOI PMC

Roman S.A.S., Facey P.D., Fernandez-Martinez L., Rodriguez C., Vallin C., Del Sol R., Dyson P. A heterodimer of EsxA and EsxB is involved in sporulation and is secreted by a type VII secretion system in Streptomyces coelicolor. Microbiology. 2010;156:1719–1729. doi: 10.1099/mic.0.037069-0. PubMed DOI

Haile Y., Caugant D.A., Bjune G., Wiker H.G. Mycobacterium tuberculosis mammalian cell entry operon (mce) homologs in Mycobacterium other than tuberculosis (MOTT) FEMS Immunol. Med. Microbiol. 2002;33:125–132. doi: 10.1111/j.1574-695X.2002.tb00581.x. PubMed DOI

Clark L.C., Seipke R.F., Prieto P., Willemse J., Van Wezel G.P., Hutchings M.I., Hoskisson P.A. Mammalian cell entry genes in Streptomyces may provide clues to the evolution of bacterial virulence. Sci. Rep. 2013;3:1109. doi: 10.1038/srep01109. PubMed DOI PMC

Casali N., Riley L.W. A phylogenomic analysis of the Actinomycetales mce operons. BMC Genomics. 2007;8:60. doi: 10.1186/1471-2164-8-60. PubMed DOI PMC

Shimono N., Morici L., Casali N., Cantrell S., Sidders B., Ehrt S., Riley L.W. Hypervirulent mutant of Mycobacterium tuberculosis resulting from disruption of the mce1 operon. Proc. Natl. Acad. Sci. USA. 2003;100:15918–15923. doi: 10.1073/pnas.2433882100. PubMed DOI PMC

Zhang V., Nemeth E., Kim A. Iron in lung pathology. Pharmaceuticals. 2019;12:30. doi: 10.3390/ph12010030. PubMed DOI PMC

Terra L., Dyson P., Ratcliffe N., Castro H.C., Vicente A.C.P. Biotechnological Potential of Streptomyces Siderophores as New Antibiotics. Curr. Med. Chem. 2021;28:1407–1421. doi: 10.2174/0929867327666200510235512. PubMed DOI

Miethke M., Marahiel M.A. Siderophore-Based Iron Acquisition and Pathogen Control. Microbiol. Mol. Biol. Rev. 2007;71:413–451. doi: 10.1128/MMBR.00012-07. PubMed DOI PMC

Kronstad J.W., Caza M. Shared and distinct mechanisms of iron acquisition by bacterial and fungal pathogens of humans. Front. Cell. Infect. Microbiol. 2013;4:80. PubMed PMC

Parrow N.L., Fleming R.E., Minnick M.F. Sequestration and scavenging of iron in infection. Infect. Immun. 2013;81:3503–3514. doi: 10.1128/IAI.00602-13. PubMed DOI PMC

Braun V., Pramanik A., Gwinner T., Köberle M., Bohn E. Sideromycins: Tools and antibiotics. Biometals. 2009;22:3–13. doi: 10.1007/s10534-008-9199-7. PubMed DOI PMC

Wang W., Qiu Z., Tan H., Cao L. Siderophore production by actinobacteria. Biometals. 2014;27:623–631. doi: 10.1007/s10534-014-9739-2. PubMed DOI

Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Magoč T., Salzberg S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27:2957–2963. doi: 10.1093/bioinformatics/btr507. PubMed DOI PMC

Bankevich A., Nurk S., Antipov D., Gurevich A.A., Dvorkin M., Kulikov A.S., Lesin V.M., Nikolenko S.I., Pham S., Prjibel-ski A.D., et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012;19:455–477. doi: 10.1089/cmb.2012.0021. PubMed DOI PMC

Gurevich A., Saveliev V., Vyahhi N., Tesler G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics. 2013;29:1072–1075. doi: 10.1093/bioinformatics/btt086. PubMed DOI PMC

Okonechnikov K., Conesa A., García-Alcalde F. Qualimap 2: Advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics. 2016;32:292–294. doi: 10.1093/bioinformatics/btv566. PubMed DOI PMC

Seemann T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–2069. doi: 10.1093/bioinformatics/btu153. PubMed DOI

Shirling E.B., Gottlieb D. Methods for characterization of Streptomyces species. Int. J. Syst. Bacteriol. 1966;16:313–340. doi: 10.1099/00207713-16-3-313. DOI

Kieser T. Practical Streptomyces Genetics. The John Innes Foundation; Norwich, UK: 2000.

Schwyn B., Neilands J.B. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 1987;160:47–56. doi: 10.1016/0003-2697(87)90612-9. PubMed DOI

Milagres A.M.F., Machuca A., Napoleão D. Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S (CAS) agar plate assay. J. Microbiol. Methods. 1999;37:1–6. doi: 10.1016/S0167-7012(99)00028-7. PubMed DOI

Sidebottom A.M., Karty J.A., Carlson E.E. Accurate Mass MS/MS/MS Analysis of Siderophores Ferrioxamine B and E1 by Collision-Induced Dissociation Electrospray Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2015;26:1899–1902. doi: 10.1007/s13361-015-1242-7. PubMed DOI

Senges C.H.R., Al-Dilaimi A., Marchbank D.H., Wibberg D., Winkler A., Haltli B., Nowrousian M., Kalinowski J., Kerr R.G., Bandow J.E. The secreted metabolome of Streptomyces chartreusis and implications for bacterial chemistry. Proc. Natl. Acad. Sci. USA. 2018;115:2490–2495. doi: 10.1073/pnas.1715713115. PubMed DOI PMC

Waterhouse R.M., Seppey M., Simao F.A., Manni M., Ioannidis P., Klioutchnikov G., Kriventseva E.V., Zdobnov E.M. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 2018;35:543–548. doi: 10.1093/molbev/msx319. PubMed DOI PMC

Emms D.M., Kelly S. OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20:238. doi: 10.1186/s13059-019-1832-y. PubMed DOI PMC

Emms D.M., Kelly S. STAG: Species Tree Inference from All Genes. bioRxiv. 2018:267914. doi: 10.1101/267914. DOI

Blin K., Shaw S., Steinke K., Villebro R., Ziemert N., Lee S.Y., Medema M.H., Weber T. AntiSMASH 5.0: Updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 2019;47:W81–W87. doi: 10.1093/nar/gkz310. PubMed DOI PMC

Skinnider M.A., Johnston C.W., Gunabalasingam M., Merwin N.J., Kieliszek A.M., MacLellan R.J., Li H., Ranieri M.R.M., Webster A.L.H., Cao M.P.T., et al. Comprehensive prediction of secondary metabolite structure and biological activity from microbial genome sequences. Nat. Commun. 2020;11:6058. doi: 10.1038/s41467-020-19986-1. PubMed DOI PMC

Mungan M.D., Alanjary M., Blin K., Weber T., Medema M.H., Ziemert N. ARTS 2.0: Feature updates and expansion of the Antibiotic Resistant Target Seeker for comparative genome mining. Nucleic Acids Res. 2020;48:W546–W552. doi: 10.1093/nar/gkaa374. PubMed DOI PMC

Lu S., Wang J., Chitsaz F., Derbyshire M.K., Geer R.C., Gonzales N.R., Gwadz M., Hurwitz D.I., Marchler G.H., Song J.S., et al. CDD/SPARCLE: The conserved domain database in 2020. Nucleic Acids Res. 2020;48:D265–D268. doi: 10.1093/nar/gkz991. PubMed DOI PMC

El-Gebali S., Mistry J., Bateman A., Eddy S.R., Luciani A., Potter S.C., Qureshi M., Richardson L.J., Salazar G.A., Smart A., et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47:D427–D432. doi: 10.1093/nar/gky995. PubMed DOI PMC

Wheeler T.J., Eddy S.R. Nhmmer: DNA homology search with profile HMMs. Bioinformatics. 2013;29:2487–2489. doi: 10.1093/bioinformatics/btt403. PubMed DOI PMC

Overbeek R., Olson R., Pusch G.D., Olsen G.J., Davis J.J., Disz T., Edwards R.A., Gerdes S., Parrello B., Shukla M., et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST) Nucleic Acids Res. 2014;42:D206–D214. doi: 10.1093/nar/gkt1226. PubMed DOI PMC

Oliveros J.C. VENNY. An Interactive Tool for Comparing Lists with Venn Diagrams. [(accessed on 9 September 2020)]; Available online: http://bioinfogp.cnnb.csic.es/tools/venny/index.html.

Chiesi USA, Inc. Bronchitol ® Inhaled Dry Powder Mannitol (DPM) for Adult Patients with Cystic Fibrosis. Chiesi USA, Inc.; Cary, NC, USA: 2019.

Mitri C., Xu Z., Bardin P., Corvol H., Touqui L., Tabary O. Novel Anti-Inflammatory Approaches for Cystic Fibrosis Lung Disease: Identification of Molecular Targets and Design of Innovative Therapies. Front. Pharmacol. 2020;11:1096. doi: 10.3389/fphar.2020.01096. PubMed DOI PMC

Nevitt S.J., Thornton J., Murray C.S., Dwyer T. Inhaled mannitol for cystic fibrosis. Cochrane Database Syst. Rev. 2020;2020:CD008649. doi: 10.1002/14651858.CD008649.pub3. PubMed DOI PMC

Xu M.J., Wang J.H., Bu X.L., Yu H.L., Li P., Ou H.Y., He Y., Di Xu F., Hu X.Y., Zhu X.M., et al. Deciphering the streamlined genome of Streptomyces xiamenensis 318 as the producer of the anti-fibrotic drug candidate xiamenmycin. Sci. Rep. 2016;6:18977. doi: 10.1038/srep18977. PubMed DOI PMC

Ian E., Malko D.B., Sekurova O.N., Bredholt H., Rückert C., Borisova M.E., Albersmeier A., Kalinowski J., Gelfand M.S., Zotchev S.B. Genomics of Sponge-Associated Streptomyces spp. Closely Related to Streptomyces albus J1074: Insights into Marine Adaptation and Secondary Metabolite Biosynthesis Potential. PLoS ONE. 2014;9:e96719. doi: 10.1371/journal.pone.0096719. PubMed DOI PMC

Tomihama T., Nishi Y., Sakai M., Ikenaga M., Okubo T., Ikeda S. Draft genome sequences of Streptomyces scabiei S58, Streptomyces turgidiscabies T45, and Streptomyces acidiscabies a10, the pathogens of potato common scab, isolated in Japan. Genome Announc. 2016;4:e00062-16. doi: 10.1128/genomeA.00062-16. PubMed DOI PMC

Worsley S.F., Newitt J., Rassbach J., Batey S.F.D., Holmes N.A., Murrell J.C., Wilkinson B., Hutchings M.I. Streptomyces endophytes promote host health and enhance growth across plant species. Appl. Environ. Microbiol. 2020;86:e01053-20. doi: 10.1128/AEM.01053-20. PubMed DOI PMC

Vicente C.M., Santos-Aberturas J., Payero T.D., Barreales E.G., de Pedro A., Aparicio J.F. PAS-LuxR transcriptional control of filipin biosynthesis in S. avermitilis. Appl. Microbiol. Biotechnol. 2014;98:9311–9324. doi: 10.1007/s00253-014-5998-7. PubMed DOI

Payero T.D., Vicente C.M., Rumbero Á., Barreales E.G., Santos-Aberturas J., de Pedro A., Aparicio J.F. Functional analysis of filipin tailoring genes from Streptomyces filipinensis reveals alternative routes in filipin III biosynthesis and yields bioactive derivatives. Microb. Cell Factories. 2015;14:114. doi: 10.1186/s12934-015-0307-4. PubMed DOI PMC

Whitfield G.B., Brock T.D., Ammann A., Gottlieb D., Carter H.E. Filipin, an Antifungal Antibiotic: Isolation and Properties. J. Am. Chem. Soc. 1955;77:4799–4801. doi: 10.1021/ja01623a032. DOI

Keller U., Lang M., Crnovcic I., Pfennig F., Schauwecker F. The actinomycin biosynthetic gene cluster of Streptomyces chrysomallus: A genetic hall of mirrors for synthesis of a molecule with mirror symmetry. J. Bacteriol. 2010;192:2583–2595. doi: 10.1128/JB.01526-09. PubMed DOI PMC

Crnovčić I., Rückert C., Semsary S., Lang M., Kalinowski J., Keller U. Genetic interrelations in the actinomycin biosynthetic gene clusters of Streptomyces antibioticus IMRU 3720 and Streptomyces chrysomallus ATCC11523, producers of actinomycin X and actinomycin C. Adv. Appl. Bioinform. Chem. 2017;10:29–46. doi: 10.2147/AABC.S117707. PubMed DOI PMC

Bradley A.S., Pearson A., Sáenz J.P., Marx C.J. Adenosylhopane: The first intermediate in hopanoid side chain biosynthesis. Org. Geochem. 2010;41:1075–1081. doi: 10.1016/j.orggeochem.2010.07.003. DOI

Doughty D.M., Dieterle M., Sessions A.L., Fischer W.W., Newman D.K. Probing the Subcellular Localization of Hopanoid Lipids in Bacteria Using NanoSIMS. PLoS ONE. 2014;9:e84455. doi: 10.1371/journal.pone.0084455. PubMed DOI PMC

Chen Z., WASHIO T., SATO M., SUZUKI Y. Cytotoxic Effects of Several Hopanoids on Mouse Leukemia L1210 and P388 Cells. Biol. Pharm. Bull. 1995;18:421–423. doi: 10.1248/bpb.18.421. PubMed DOI

Moreau R.A., Hicks K.B. Bacteriohopanetetrol and Related Compounds Useful for Modulation of Lipoxygenase Activity and Anti-Inflammatory Applications. No US6177415B1. U.S. Patent. 2001 Jan 23;

Wang X., Zhou H., Chen H., Jing X., Zheng W., Li R., Sun T., Liu J., Fu J., Huo L., et al. Discovery of recombinases enables genome mining of cryptic biosynthetic gene clusters in Burkholderiales species. Proc. Natl. Acad. Sci. USA. 2018;115:E4255–E4263. doi: 10.1073/pnas.1720941115. PubMed DOI PMC

Giessen T.W., Franke K.B., Knappe T.A., Kraas F.I., Bosello M., Xie X., Linne U., Marahiel M.A. Isolation, structure elucidation, and biosynthesis of an unusual hydroxamic acid ester-containing siderophore from Actinosynnema mirum. J. Nat. Prod. 2012;75:905–914. doi: 10.1021/np300046k. PubMed DOI

Barona-Gómez F., Wong U., Giannakopulos A.E., Derrick P.J., Challis G.L. Identification of a cluster of genes that directs desferrioxamine biosynthesis in Streptomyces coelicolor M145. J. Am. Chem. Soc. 2004;126:16282–16283. doi: 10.1021/ja045774k. PubMed DOI

Wang L., Zhu M., Zhang Q., Zhang X., Yang P., Liu Z., Deng Y., Zhu Y., Huang X., Han L., et al. Diisonitrile Natural Product SF2768 Functions as a Chalkophore That Mediates Copper Acquisition in Streptomyces thioluteus. ACS Chem. Biol. 2017;12:3067–3075. doi: 10.1021/acschembio.7b00897. PubMed DOI

Ahmed E., Holmström S.J.M. Siderophores in environmental research: Roles and applications. Microb. Biotechnol. 2014;7:196–208. doi: 10.1111/1751-7915.12117. PubMed DOI PMC

van Zyl W.F., Deane S.M., Dicks L.M.T. Molecular insights into probiotic mechanisms of action employed against intestinal pathogenic bacteria. Gut Microbes. 2020;12:1831339. doi: 10.1080/19490976.2020.1831339. PubMed DOI PMC

Liu M., Jia Y., Xie Y., Zhang C., Ma J., Sun C., Ju J. Identification of the actinomycin D biosynthetic pathway from marine-derived Streptomyces costaricanus SCSIO ZS0073. Mar. Drugs. 2019;17:240. doi: 10.3390/md17040240. PubMed DOI PMC

Sadeghi A., Soltani B.M., Nekouei M.K., Jouzani G.S., Mirzaei H.H., Sadeghizadeh M. Diversity of the ectoines biosynthesis genes in the salt tolerant Streptomyces and evidence for inductive effect of ectoines on their accumulation. Microbiol. Res. 2014;169:699–708. doi: 10.1016/j.micres.2014.02.005. PubMed DOI

Hassan A.M.E., Fahal A.H., Ahmed A.O., Ismail A., Veress B. The immunopathology of actinomycetoma lesions caused by Streptomyces somaliensis. Trans. R. Soc. Trop. Med. Hyg. 2001;95:89–92. doi: 10.1016/S0035-9203(01)90346-3. PubMed DOI

Shah S., Briken V. Modular Organization of the ESX-5 Secretion System in Mycobacterium tuberculosis. Front. Cell. Infect. Microbiol. 2016;6:49. doi: 10.3389/fcimb.2016.00049. PubMed DOI PMC

Dumas E., Boritsch E.C., Vandenbogaert M., De La Vega R.C.R., Thiberge J.M., Caro V., Gaillard J.L., Heym B., Girard-Misguich F., Brosch R., et al. Mycobacterial pan-genome analysis suggests important role of plasmids in the radiation of type VII secretion systems. Genome Biol. Evol. 2016;8:387–402. doi: 10.1093/gbe/evw001. PubMed DOI PMC

Ju K.S., Gao J., Doroghazi J.R., Wang K.K.A., Thibodeaux C.J., Li S., Metzger E., Fudala J., Su J., Zhang J.K., et al. Discovery of phosphonic acid natural products by mining the genomes of 10,000 actinomycetes. Proc. Natl. Acad. Sci. USA. 2015;112:12175–12180. doi: 10.1073/pnas.1500873112. PubMed DOI PMC

Koonin E.V., Galperin M.Y. Sequence-Evolution-Function: Computational Approaches in Comparative Genomics. Springer; Boston, MA, USA: 2003. Sequence-Evolution-Function: Computational Approaches in Comparative Genomics. PubMed

Karoonuthaisiri N., Weaver D., Huang J., Cohen S.N., Kao C.M. Regional organization of gene expression in Streptomyces coelicolor. Gene. 2005;353:53–66. doi: 10.1016/j.gene.2005.03.042. PubMed DOI

Gaillard J.-L., Berche P., Frehei C., Gouin E., Cossartt P. Entry of L. monocytogenes into Cells Is Mediated by Internalin, a Repeat Protein Reminiscent of Surface Antigens from Gram-Positive Cocci. Cell. 1991;65:1127–1141. doi: 10.1016/0092-8674(91)90009-N. PubMed DOI

Kobayashi T., Uozomi T., Beppu T. Cloning and characterization of the streptothricin-resistance gene which encodes streptothricin acetyltransferase from Streptomyces lavendulae. J. Antibiot. 1986;39:688–693. doi: 10.7164/antibiotics.39.688. PubMed DOI

Rajasekaran M.B., Nilapwar S., Andrews S.C., Watson K.A. EfeO-cupredoxins: Major new members of the cupredoxin superfamily with roles in bacterial iron transport. Biometals. 2010;23:1. doi: 10.1007/s10534-009-9262-z. PubMed DOI

Chew S.Y., Chee W.J.Y., Than L.T.L. The glyoxylate cycle and alternative carbon metabolism as metabolic adaptation strategies of Candida glabrata: Perspectives from Candida albicans and Saccharomyces cerevisiae. J. Biomed. Sci. 2019;26:52. doi: 10.1186/s12929-019-0546-5. PubMed DOI PMC

Lorenz M.C., Fink G.R. Life and death in a macrophage: Role of the glyoxylate cycle in virulence. Eukaryot. Cell. 2002;1:657–662. doi: 10.1128/EC.1.5.657-662.2002. PubMed DOI PMC

Puckett S., Trujillo C., Wang Z., Eoh H., Ioerger T.R., Krieger I., Sacchettini J., Schnappinger D., Rhee K.Y., Ehrt S. Glyoxylate detoxification is an essential function of malate synthase required for carbon assimilation in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA. 2017;114:E2225–E2232. doi: 10.1073/pnas.1617655114. PubMed DOI PMC

Koedooder C., Guéneuguès A., Van Geersdaële R., Vergé V., Bouget F.-Y., Labreuche Y., Obernosterer I., Blain S. The Role of the Glyoxylate Shunt in the Acclimation to Iron Limitation in Marine Heterotrophic Bacteria. Front. Mar. Sci. 2018;5:435. doi: 10.3389/fmars.2018.00435. DOI

Flores-Díaz M., Monturiol-Gross L., Naylor C., Alape-Girón A., Flieger A. Bacterial Sphingomyelinases and Phospholipases as Virulence Factors. Microbiol. Mol. Biol. Rev. 2016;80:597–628. doi: 10.1128/MMBR.00082-15. PubMed DOI PMC

van der Meer-Janssen Y.P.M., van Galen J., Batenburg J.J., Helms J.B. Lipids in host-pathogen interactions: Pathogens exploit the complexity of the host cell lipidome. Prog. Lipid Res. 2010;49:1–26. doi: 10.1016/j.plipres.2009.07.003. PubMed DOI PMC

Songer J.G. Bacterial phospholipases and their role in virulence. Trends Microbiol. 1997;5:156–161. doi: 10.1016/S0966-842X(97)01005-6. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...