Neuropharmacology of Cevimeline and Muscarinic Drugs-Focus on Cognition and Neurodegeneration
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
VT2019-2021
UHK
CEP - Centrální evidence projektů
PubMed
34445613
PubMed Central
PMC8396258
DOI
10.3390/ijms22168908
PII: ijms22168908
Knihovny.cz E-zdroje
- Klíčová slova
- AF102B, Alzheimer disease, SNI2011, cevimeline, cholinergic agonist, cognition, evoxac, memory, muscarinic receptors, neurodegeneration,
- MeSH
- agonisté muskarinových receptorů farmakologie MeSH
- chinuklidiny farmakologie MeSH
- kognitivní poruchy farmakoterapie MeSH
- léčivé přípravky aplikace a dávkování MeSH
- lidé MeSH
- neurodegenerativní nemoci farmakoterapie MeSH
- neurofarmakologie * MeSH
- thiofeny farmakologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- agonisté muskarinových receptorů MeSH
- cevimeline MeSH Prohlížeč
- chinuklidiny MeSH
- léčivé přípravky MeSH
- thiofeny MeSH
At present, Alzheimer's disease (AD) and related dementias cannot be cured. Therefore, scientists all over the world are trying to find a new approach to prolong an active life of patients with initial dementia. Both pharmacological and non-pharmacological pathways are investigated to improve the key symptom of the disease, memory loss. In this respect, influencing the neuromodulator acetylcholine via muscarinic receptors, such as cevimeline, might be one of the therapeutic alternatives. The purpose of this study is to explore the potential of cevimeline on the cognitive functions of AD patients. The methodology is based on a systematic literature review of available studies found in Web of Science, PubMed, Springer, and Scopus on the research topic. The findings indicate that cevimeline has shown an improvement in experimentally induced cognitive deficits in animal models. Furthermore, it has demonstrated to positively influence tau pathology and reduce the levels of amyloid-β (Aβ) peptide in the cerebral spinal fluid of Alzheimer's patients. Although this drug has not been approved by the FDA for its use among AD patients and there is a lack of clinical studies confirming and extending this finding, cevimeline might represent a breakthrough in the treatment of AD.
Agora Pharmaceuticals s r o 50009 Hradec Kralove Czech Republic
Biomedical Research Centre University Hospital 50003 Hradec Kralove Czech Republic
Zobrazit více v PubMed
NIH Alzheimer’s Disease Fact Sheet. [(accessed on 15 March 2021)];2019 Available online: https://www.Nia.Nih.Gov/Health/Alzheimers-Disease-Fact-Sheet.
Klimova B., Maresova P., Valis M., Hort J., Kuca K. Alzheimer’s Disease and Language Impairments: Social Intervention and Medical Treatment. Clin. Interv. Aging. 2015;10:1401–1407. doi: 10.2147/CIA.S89714. PubMed DOI PMC
EFPIA. [(accessed on 10 March 2021)];2021 Available online: https://Efpia.Eu/about-Medicines/Use-of-Medicines/Disease-Specific-Groups/Wewontrest-until-Alzheimer-s-Patients-Have-a-Brighter-Future.
Klimova B., Kuca K. Alzheimer’s Disease: Potential Preventive, Non-Invasive, Intervention Strategies in Lowering the Risk of Cognitive Decline—A Review Study. J. Appl. Biomed. 2015;13:257–261. doi: 10.1016/j.jab.2015.07.004. DOI
Heerema E. Short-Term Memory and How It’s Affected by Alzheimer’s. [(accessed on 10 March 2021)];2020 Available online: https://www.Verywellhealth.Com/Short-Term-Memory-Affected-by-Alzheimers-98569.
Alzheimer’s Disease Epidemic in Europe. [(accessed on 15 March 2021)];2020 Available online: https://www.Politico.Eu/Sponsored-Content/Alzheimers-Disease-Epidemic-in-Europe/
Klimova B., Maresova P., Kuca K. Non-Pharmacological Approaches to the Prevention and Treatment of Alzheimer’s Disease with Respect to the Rising Treatment Costs. Curr. Alzheimer Res. 2016;13:1249–1258. doi: 10.2174/1567205013666151116142302. PubMed DOI
Pakala R.S., Brown K.N., Preuss C.V. StatPearls. StatPearls Publishing; Treasure Island, FL, USA: 2021. Cholinergic Medications. PubMed
EVOXAC® Capsules. [(accessed on 15 March 2021)]; Available online: www.Accessdata.Fda.Gov/Drugsatfda_docs/Label/2006/020989s008lbl.Pdf.
Al-Hashimi I., Taylor S.E. A New Medication for Treatment of Dry Mouth in Sjögren’s Syndrome. Tex. Dent. J. 2001;118:262–266. PubMed
Yasuda H., Niki H. Review of the Pharmacological Properties and Clinical Usefulness of Muscarinic Agonists for Xerostomia in Patients with Sjögren’s Syndrome. Clin. Drug Investig. 2002;22:67–73. doi: 10.2165/00044011-200222020-00001. PubMed DOI
Iwabuchi Y., Katagiri M., Masuhara T. Salivary Secretion and Histopathological Effects after Single Administration of the Muscarinic Agonist SNI-2011 in MRL/Lpr Mice. Arch. Int. Pharmacodyn. Ther. 1994;328:315–325. PubMed
Washio T., Kohsaka K., Arisawa H., Masunaga H., Nagatsuka S., Satoh Y. Pharmacokinetics and Metabolism of Radiolabelled SNI-2011, a Novel Muscarinic Receptor Agonist, in Healthy Volunteers. Comprehensive Understanding of Absorption, Metabolism and Excretion Using Radiolabelled SNI-2011. Arzneimittelforschung. 2003;53:80–86. doi: 10.1055/s-0031-1297076. PubMed DOI
Washio T., Arisawa H., Kohsaka K., Yasuda H. Identification of Human Drug-Metabolizing Enzymes Involved in the Metabolism of SNI-2011. Biol. Pharm. Bull. 2001;24:1263–1266. doi: 10.1248/bpb.24.1263. PubMed DOI
Washio T., Kohsaka K., Arisawa H., Masunaga H. Pharmacokinetics and Metabolism of the Novel Muscarinic Receptor Agonist SNI-2011 in Rats and Dogs. Arzneimittelforschung. 2003;53:26–33. doi: 10.1055/s-0031-1297066. PubMed DOI
Heinrich J.N., Butera J.A., Carrick T., Kramer A., Kowal D., Lock T., Marquis K.L., Pausch M.H., Popiolek M., Sun S.-C., et al. Pharmacological Comparison of Muscarinic Ligands: Historical versus More Recent Muscarinic M1-Preferring Receptor Agonists. Eur. J. Pharmacol. 2009;605:53–56. doi: 10.1016/j.ejphar.2008.12.044. PubMed DOI
Vuckovic Z., Gentry P.R., Berizzi A.E., Hirata K., Varghese S., Thompson G., van der Westhuizen E.T., Burger W.A.C., Rahmani R., Valant C., et al. Crystal Structure of the M5 Muscarinic Acetylcholine Receptor. Proc. Natl. Acad. Sci. USA. 2019;116:26001–26007. doi: 10.1073/pnas.1914446116. PubMed DOI PMC
Mitoh Y., Ueda H., Ichikawa H., Fujita M., Kobashi M., Matsuo R. Effects of Cevimeline on Excitability of Parasympathetic Preganglionic Neurons in the Superior Salivatory Nucleus of Rats. Auton. Neurosci. 2017;206:1–7. doi: 10.1016/j.autneu.2017.05.010. PubMed DOI
Voskoboynik B., Babu K., Hack J.B. Cevimeline (Evoxac®) Overdose. J. Med. Toxicol. 2011;7:57–59. doi: 10.1007/s13181-010-0112-8. PubMed DOI PMC
Haga T. Molecular Properties of Muscarinic Acetylcholine Receptors. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2013;89:226–256. doi: 10.2183/pjab.89.226. PubMed DOI PMC
Papke R.L., Lindstrom J.M. Nicotinic Acetylcholine Receptors: Conventional and Unconventional Ligands and Signaling. Neuropharmacology. 2020;168:108021. doi: 10.1016/j.neuropharm.2020.108021. PubMed DOI PMC
Zhang B., Madden P., Gu J., Xing X., Sankar S., Flynn J., Kroll K., Wang T. Uncovering the Transcriptomic and Epigenomic Landscape of Nicotinic Receptor Genes in Non-Neuronal Tissues. BMC Genom. 2017;18:439. doi: 10.1186/s12864-017-3813-4. PubMed DOI PMC
Unwin N. Refined Structure of the Nicotinic Acetylcholine Receptor at 4 Å Resolution. J. Mol. Biol. 2005;346:967–989. doi: 10.1016/j.jmb.2004.12.031. PubMed DOI
Pedersen J.E., Bergqvist C.A., Larhammar D. Evolution of Vertebrate Nicotinic Acetylcholine Receptors. BMC Evol. Biol. 2019;19:38. doi: 10.1186/s12862-018-1341-8. PubMed DOI PMC
Young G.T., Zwart R., Walker A.S., Sher E., Millar N.S. Potentiation of A7 Nicotinic Acetylcholine Receptors via an Allosteric Transmembrane Site. Proc. Natl. Acad. Sci. USA. 2008;105:14686–14691. doi: 10.1073/pnas.0804372105. PubMed DOI PMC
Millar N.S., Gotti C. Diversity of Vertebrate Nicotinic Acetylcholine Receptors. Neuropharmacology. 2009;56:237–246. doi: 10.1016/j.neuropharm.2008.07.041. PubMed DOI
Levey A.I., Kitt C.A., Simonds W.F., Price D.L., Brann M.R. Identification and Localization of Muscarinic Acetylcholine Receptor Proteins in Brain with Subtype-Specific Antibodies. J. Neurosci. 1991;11:3218–3226. doi: 10.1523/JNEUROSCI.11-10-03218.1991. PubMed DOI PMC
Hersch S.M., Gutekunst C.A., Rees H.D., Heilman C.J., Levey A.I. Distribution of M1–M4 Muscarinic Receptor Proteins in the Rat Striatum: Light and Electron Microscopic Immunocytochemistry Using Subtype-Specific Antibodies. J. Neurosci. 1994;14:3351–3363. doi: 10.1523/JNEUROSCI.14-05-03351.1994. PubMed DOI PMC
Fisher A. M1 Muscarinic Agonists Target Major Hallmarks of Alzheimer’s Disease—The Pivotal Role of Brain M1 Receptors. Neurodegener. Dis. 2008;5:237–240. doi: 10.1159/000113712. PubMed DOI
Jones C.K., Brady A.E., Davis A.A., Xiang Z., Bubser M., Tantawy M.N., Kane A.S., Bridges T.M., Kennedy J.P., Bradley S.R., et al. Novel Selective Allosteric Activator of the M1 Muscarinic Acetylcholine Receptor Regulates Amyloid Processing and Produces Antipsychotic-like Activity in Rats. J. Neurosci. 2008;28:10422–10433. doi: 10.1523/JNEUROSCI.1850-08.2008. PubMed DOI PMC
McArthur R.A., Gray J., Schreiber R. Cognitive Effects of Muscarinic M1 Functional Agonists in Non-Human Primates and Clinical Trials. Curr. Opin. Investig. Drugs. 2010;11:740–760. PubMed
Hasselmo M.E., Sarter M. Modes and Models of Forebrain Cholinergic Neuromodulation of Cognition. Neuropsychopharmacology. 2011;36:52–73. doi: 10.1038/npp.2010.104. PubMed DOI PMC
Rodríguez-Puertas R., Pascual J., Vilaró T., Pazos A. Autoradiographic Distribution of M1, M2, M3, and M4 Muscarinic Receptor Subtypes in Alzheimer’s Disease. Synapse. 1997;26:341–350. doi: 10.1002/(SICI)1098-2396(199708)26:4<341::AID-SYN2>3.0.CO;2-6. PubMed DOI
Pakrasi S., Colloby S.J., Firbank M.J., Perry E.K., Wyper D.J., Owens J., McKeith I.G., Williams E.D., O’Brien J.T. Muscarinic Acetylcholine Receptor Status in Alzheimer’s Disease Assessed Using (R, R) 123I-QNB SPECT. J. Neurol. 2007;254:907–913. doi: 10.1007/s00415-006-0473-8. PubMed DOI
Fisher A., Brandeis R., Bar-Ner R.H.N., Kliger-Spatz M., Natan N., Sonego H., Marcovitch I., Pittel Z. AF150(S) and AF267B: M1 Muscarinic Agonists as Innovative Therapies for Alzheimer’s Disease. J. Mol. Neurosci. 2002;19:145–153. doi: 10.1007/s12031-002-0025-3. PubMed DOI
Watt M.L., Schober D.A., Hitchcock S., Liu B., Chesterfield A.K., McKinzie D., Felder C.C. Pharmacological Characterization of LY593093, an M1 Muscarinic Acetylcholine Receptor-Selective Partial Orthosteric Agonist. J. Pharmacol. Exp. Ther. 2011;338:622–632. doi: 10.1124/jpet.111.182063. PubMed DOI
Shirey J.K., Brady A.E., Jones P.J., Davis A.A., Bridges T.M., Kennedy J.P., Jadhav S.B., Menon U.N., Xiang Z., Watson M.L., et al. A Selective Allosteric Potentiator of the M1 Muscarinic Acetylcholine Receptor Increases Activity of Medial Prefrontal Cortical Neurons and Restores Impairments in Reversal Learning. J. Neurosci. 2009;29:14271–14286. doi: 10.1523/JNEUROSCI.3930-09.2009. PubMed DOI PMC
Chambon C., Jatzke C., Wegener N., Gravius A., Danysz W. Using Cholinergic M1 Receptor Positive Allosteric Modulators to Improve Memory via Enhancement of Brain Cholinergic Communication. Eur. J. Pharmacol. 2012;697:73–80. doi: 10.1016/j.ejphar.2012.10.011. PubMed DOI
Tsang S.W.Y., Francis P.T., Esiri M.M., Wong P.T.H., Chen C.P.L.H., Lai M.K.P. Loss of [3H]4-DAMP Binding to Muscarinic Receptors in the Orbitofrontal Cortex of Alzheimer’s Disease Patients with Psychosis. Psychopharmacology. 2008;198:251–259. doi: 10.1007/s00213-008-1124-9. PubMed DOI
Züchner T., Perez-Polo J.R., Schliebs R. Beta-Secretase BACE1 Is Differentially Controlled through Muscarinic Acetylcholine Receptor Signaling. J. Neurosci. Res. 2004;77:250–257. doi: 10.1002/jnr.20152. PubMed DOI
Zuchner T., Schliebs R., Perez-Polo J.R. Down-Regulation of Muscarinic Acetylcholine Receptor M2 Adversely Affects the Expression of Alzheimer’s Disease-Relevant Genes and Proteins. J. Neurochem. 2005;95:20–32. doi: 10.1111/j.1471-4159.2005.03335.x. PubMed DOI
Liu J., Rasul I., Sun Y., Wu G., Li L., Premont R.T., Suo W.Z. GRK5 Deficiency Leads to Reduced Hippocampal Acetylcholine Level via Impaired Presynaptic M2/M4 Autoreceptor Desensitization. J. Biol. Chem. 2009;284:19564–19571. doi: 10.1074/jbc.M109.005959. PubMed DOI PMC
Nitsch R.M., Slack B.E., Wurtman R.J., Growdon J.H. Release of Alzheimer Amyloid Precursor Derivatives Stimulated by Activation of Muscarinic Acetylcholine Receptors. Science. 1992;258:304–307. doi: 10.1126/science.1411529. PubMed DOI
Scarpa M., Hesse S., Bradley S.J. M1 Muscarinic Acetylcholine Receptors: A Therapeutic Strategy for Symptomatic and Disease-Modifying Effects in Alzheimer’s Disease? Adv. Pharmacol. 2020;88:277–310. doi: 10.1016/bs.apha.2019.12.003. PubMed DOI
Harries M.H., Samson N.A., Cilia J., Hunter A.J. The Profile of Sabcomeline (SB-202026), a Functionally Selective M1 Receptor Partial Agonist, in the Marmoset. Br. J. Pharmacol. 1998;124:409–415. doi: 10.1038/sj.bjp.0701844. PubMed DOI PMC
Clader J.W., Wang Y. Muscarinic Receptor Agonists and Antagonists in the Treatment of Alzheimer’s Disease. Curr. Pharm. Des. 2005;11:3353–3361. doi: 10.2174/138161205774370762. PubMed DOI
Beach T.G., Walker D.G., Sue L.I., Scott S., Layne K.J., Newell A.J., Potter P.E., Durham R.A., Emmerling M.R., Webster S.D. Immunotoxin Lesion of the Cholinergic Nucleus Basalis Causes Aβ Deposition: Towards a Physiologic Animal Model of Alzheimers Disease. Curr. Med. Chem. Immunol. Endocr. Metab. Agents. 2003;3:57–75. doi: 10.2174/1568013033358635. DOI
Bartolomeo A.C., Morris H., Buccafusco J.J., Kille N., Rosenzweig-Lipson S., Husbands M.G., Sabb A.L., Abou-Gharbia M., Moyer J.A., Boast C.A. The Preclinical Pharmacological Profile of WAY-132983, a Potent M1 Preferring Agonist. J. Pharmacol. Exp. Ther. 2000;292:584–596. PubMed
Bodick N.C., Offen W.W., Levey A.I., Cutler N.R., Gauthier S.G., Satlin A., Shannon H.E., Tollefson G.D., Rasmussen K., Bymaster F.P., et al. Effects of Xanomeline, a Selective Muscarinic Receptor Agonist, on Cognitive Function and Behavioral Symptoms in Alzheimer Disease. Arch. Neurol. 1997;54:465–473. doi: 10.1001/archneur.1997.00550160091022. PubMed DOI
Knapp M.J., Knopman D.S., Solomon P.R., Pendlebury W.W., Davis C.S., Gracon S.I. A 30-Week Randomized Controlled Trial of High-Dose Tacrine in Patients with Alzheimer’s Disease. The Tacrine Study Group. JAMA. 1994;271:985–991. doi: 10.1001/jama.1994.03510370037029. PubMed DOI
Foster D.J., Choi D.L., Conn P.J., Rook J.M. Activation of M1 and M4 Muscarinic Receptors as Potential Treatments for Alzheimer’s Disease and Schizophrenia. Neuropsychiatr. Dis. Treat. 2014;10:183–191. doi: 10.2147/NDT.S55104. PubMed DOI PMC
Shekhar A., Potter W.Z., Lightfoot J., Lienemann J., Dubé S., Mallinckrodt C., Bymaster F.P., McKinzie D.L., Felder C.C. Selective Muscarinic Receptor Agonist Xanomeline as a Novel Treatment Approach for Schizophrenia. Am. J. Psychiatry. 2008;165:1033–1039. doi: 10.1176/appi.ajp.2008.06091591. PubMed DOI
Brannan S.K., Sawchak S., Miller A.C., Lieberman J.A., Paul S.M., Breier A. Muscarinic Cholinergic Receptor Agonist and Peripheral Antagonist for Schizophrenia. N. Engl. J. Med. 2021;384:717–726. doi: 10.1056/NEJMoa2017015. PubMed DOI PMC
Gould R.W., Dencker D., Grannan M., Bubser M., Zhan X., Wess J., Xiang Z., Locuson C., Lindsley C.W., Conn P.J., et al. Role for the M1 Muscarinic Acetylcholine Receptor in Top-Down Cognitive Processing Using a Touchscreen Visual Discrimination Task in Mice. ACS Chem. Neurosci. 2015;6:1683–1695. doi: 10.1021/acschemneuro.5b00123. PubMed DOI PMC
Uslaner J.M., Eddins D., Puri V., Cannon C.E., Sutcliffe J., Chew C.S., Pearson M., Vivian J.A., Chang R.K., Ray W.J., et al. The Muscarinic M1 Receptor Positive Allosteric Modulator PQCA Improves Cognitive Measures in Rat, Cynomolgus Macaque, and Rhesus Macaque. Psychopharmacology. 2013;225:21–30. doi: 10.1007/s00213-012-2788-8. PubMed DOI
Beshore D.C., Di Marco C.N., Chang R.K., Greshock T.J., Ma L., Wittmann M., Seager M.A., Koeplinger K.A., Thompson C.D., Fuerst J., et al. MK-7622: A First-in-Class M1 Positive Allosteric Modulator Development Candidate. ACS Med. Chem. Lett. 2018;9:652–656. doi: 10.1021/acsmedchemlett.8b00095. PubMed DOI PMC
Voss T., Li J., Cummings J., Farlow M., Assaid C., Froman S., Leibensperger H., Snow-Adami L., McMahon K.B., Egan M., et al. Randomized, Controlled, Proof-of-Concept Trial of MK-7622 in Alzheimer’s Disease. Alzheimers Dement (N. Y.) 2018;4:173–181. doi: 10.1016/j.trci.2018.03.004. PubMed DOI PMC
Nakahara N., Iga Y., Mizobe F., Kawanishi G. Amelioration of Experimental Amnesia (Passive Avoidance Failure) in Rodents by the Selective M1 Agonist AF102B. Jpn. J. Pharmacol. 1988;48:502–506. doi: 10.1254/jjp.48.502. PubMed DOI
Nakahara N., Iga Y., Saito Y., Mizobe F., Kawanishi G. Beneficial Effects of FKS-508 (AF102B), a Selective M1 Agonist, on the Impaired Working Memory in AF64A-Treated Rats. Jpn. J. Pharmacol. 1989;51:539–547. doi: 10.1016/S0021-5198(19)40080-2. PubMed DOI
Fisher A., Brandeis R., Karton I., Pittel Z., Gurwitz D., Haring R., Sapir M., Levy A., Heldman E. (+−)-Cis-2-Methyl-Spiro(1,3-Oxathiolane-5,3′)Quinuclidine, an M1 Selective Cholinergic Agonist, Attenuates Cognitive Dysfunctions in an Animal Model of Alzheimer’s Disease. J. Pharmacol. Exp. Ther. 1991;257:392–403. PubMed
Brandeis R., Dachir S., Sapir M., Levy A., Fisher A. Reversal of Age-Related Cognitive Impairments by an M1 Cholinergic Agonist, AF102B. Pharmacol. Biochem. Behav. 1990;36:89–95. doi: 10.1016/0091-3057(90)90131-Z. PubMed DOI
Vincent G.P., Sepinwall J. AF102B, a Novel M1 Agonist, Enhanced Spatial Learning in C57BL/10 Mice with a Long Duration of Action. Brain Res. 1992;597:264–268. doi: 10.1016/0006-8993(92)91483-U. PubMed DOI
Dawson G.R., Bayley P., Channell S., Iversen S.D. A Comparison of the Effects of the Novel Muscarinic Receptor Agonists L-689,660 and AF102B in Tests of Reference and Working Memory. Psychopharmacology. 1994;113:361–368. doi: 10.1007/BF02245210. PubMed DOI
Ohno M., Yamamoto T., Watanabe S. Blockade of Hippocampal M1 Muscarinic Receptors Impairs Working Memory Performance of Rats. Brain Res. 1994;650:260–266. doi: 10.1016/0006-8993(94)91790-6. PubMed DOI
Suzuki M., Yamaguchi T., Ozawa Y., Iwai A., Yamamoto M. Effect of YM796, a Novel Muscarinic Agonist, on the Impairment of Passive Avoidance Response in Senescence-Accelerated Mice. Pharmacol. Biochem. Behav. 1995;51:623–626. doi: 10.1016/0091-3057(94)00425-I. PubMed DOI
Iga Y., Arisawa H., Ise M., Yasuda H., Takeshita Y. Modulation of Rhythmical Slow Activity, Long-Term Potentiation and Memory by Muscarinic Receptor Agonists. Eur. J. Pharmacol. 1996;308:13–19. doi: 10.1016/0014-2999(96)00268-3. PubMed DOI
Young M.B., Thomas S.A. M1-Muscarinic Receptors Promote Fear Memory Consolidation via Phospholipase C and the M-Current. J. Neurosci. 2014;34:1570–1578. doi: 10.1523/JNEUROSCI.1040-13.2014. PubMed DOI PMC
Dawson G.R., Iversen S.D. The Effects of Novel Cholinesterase Inhibitors and Selective Muscarinic Receptor Agonists in Tests of Reference and Working Memory. Behav. Brain Res. 1993;57:143–153. doi: 10.1016/0166-4328(93)90130-I. PubMed DOI
Suzuki M., Yamaguchi T., Ozawa Y., Ohyama M., Yamamoto M. Effects of (-)-S-2,8-Dimethyl-3-Methylene-1-Oxa-8-Azaspiro[4,5]Decane L-Tartrate Monohydrate (YM796), a Novel Muscarinic Agonist, on Disturbance of Passive Avoidance Learning Behavior in Drug-Treated and Senescence-Accelerated Mice. J. Pharmacol. Exp. Ther. 1995;275:728–736. PubMed
O’Neill J., Fitten L.J., Siembieda D., Halgren E., Kim E., Fisher A., Perryman K. Effects of AF102B and Tacrine on Delayed Match-to-Sample in Monkeys. Prog. Neuropsychopharmacol. Biol. Psychiatry. 1998;22:665–678. doi: 10.1016/S0278-5846(98)00029-3. PubMed DOI
Fisher A., Bezprozvanny I., Wu L., Ryskamp D.A., Bar-Ner N., Natan N., Brandeis R., Elkon H., Nahum V., Gershonov E., et al. AF710B, a Novel M1/Σ1 Agonist with Therapeutic Efficacy in Animal Models of Alzheimer’s Disease. NDD. 2016;16:95–110. doi: 10.1159/000440864. PubMed DOI PMC
Nitsch R.M., Deng M., Tennis M., Schoenfeld D., Growdon J.H. The Selective Muscarinic M1 Agonist AF102B Decreases Levels of Total Abeta in Cerebrospinal Fluid of Patients with Alzheimer’s Disease. Ann. Neurol. 2000;48:913–918. doi: 10.1002/1531-8249(200012)48:6<913::AID-ANA12>3.0.CO;2-S. PubMed DOI
Fisher A., Heldman E., Gurwitz D., Haring R., Karton Y., Meshulam H., Pittel Z., Marciano D., Brandeis R., Sadot E., et al. M1 Agonists for the Treatment of Alzheimer’s Disease. Novel Properties and Clinical Update. Ann. N. Y. Acad. Sci. 1996;777:189–196. doi: 10.1111/j.1749-6632.1996.tb34418.x. PubMed DOI
Haring R., Gurwitz D., Barg J., Pinkas-Kramarski R., Heldman E., Pittel Z., Wengier A., Meshulam H., Marciano D., Karton Y. Amyloid Precursor Protein Secretion via Muscarinic Receptors: Reduced Desensitization Using the M1-Selective Agonist AF102B. Biochem. Biophys. Res. Commun. 1994;203:652–658. doi: 10.1006/bbrc.1994.2232. PubMed DOI
Haring R., Gurwitz D., Barg J., Pinkas-Kramarski R., Heldman E., Pittel Z., Danenberg H.D., Wengier A., Meshulam H., Marciano D. NGF Promotes Amyloid Precursor Protein Secretion via Muscarinic Receptor Activation. Biochem. Biophys. Res. Commun. 1995;213:15–23. doi: 10.1006/bbrc.1995.2092. PubMed DOI
Gurwitz D., Haring R., Pinkas-Kramarski R., Stein R., Heldman E., Karton Y., Fisher A. NGF-Dependent Neurotrophic-like Effects of AF102B, an M1 Muscarinic Agonist, in PC12M1 Cells. Neuroreport. 1995;6:485–488. doi: 10.1097/00001756-199502000-00020. PubMed DOI
Sadot E., Gurwitz D., Barg J., Behar L., Ginzburg I., Fisher A. Activation of M1 Muscarinic Acetylcholine Receptor Regulates Tau Phosphorylation in Transfected PC12 Cells. J. Neurochem. 1996;66:877–880. doi: 10.1046/j.1471-4159.1996.66020877.x. PubMed DOI
Beach T.G., Walker D.G., Potter P.E., Sue L.I., Fisher A. Reduction of Cerebrospinal Fluid Amyloid Beta after Systemic Administration of M1 Muscarinic Agonists. Brain Res. 2001;905:220–223. doi: 10.1016/S0006-8993(01)02484-2. PubMed DOI
Welt T., Kulic L., Hoey S.E., McAfoose J., Späni C., Chadha A.S., Fisher A., Nitsch R.M. Acute Effects of Muscarinic M1 Receptor Modulation on AβPP Metabolism and Amyloid-β Levels in Vivo: A Microdialysis Study. J. Alzheimers Dis. 2015;46:971–982. doi: 10.3233/JAD-150152. PubMed DOI
van der Westhuizen E.T., Choy K.H.C., Valant C., McKenzie-Nickson S., Bradley S.J., Tobin A.B., Sexton P.M., Christopoulos A. Fine Tuning Muscarinic Acetylcholine Receptor Signaling through Allostery and Bias. Front. Pharmacol. 2021;11:2217. doi: 10.3389/fphar.2020.606656. PubMed DOI PMC
Petrone D., Condemi J.J., Fife R., Gluck O., Cohen S., Dalgin P. A Double-Blind, Randomized, Placebo-Controlled Study of Cevimeline in Sjögren’s Syndrome Patients with Xerostomia and Keratoconjunctivitis Sicca. Arthritis Rheum. 2002;46:748–754. doi: 10.1002/art.510. PubMed DOI
Fife R.S., Chase W.F., Dore R.K., Wiesenhutter C.W., Lockhart P.B., Tindall E., Suen J.Y. Cevimeline for the Treatment of Xerostomia in Patients With Sjögren Syndrome: A Randomized Trial. Arch. Intern. Med. 2002;162:1293–1300. doi: 10.1001/archinte.162.11.1293. PubMed DOI
Evoxac—FDA Prescribing Information, Side Effects and Uses. [(accessed on 2 August 2021)]; Available online: https://www.drugs.com/pro/evoxac.html.
Fox R.I., Fox C.M., Gottenberg J.E., Dörner T. Treatment of Sjögren’s Syndrome: Current Therapy and Future Directions. Rheumatology. 2021;60:2066–2074. doi: 10.1093/rheumatology/kez142. PubMed DOI
Ramos-Casals M., Brito-Zeron P., Siso-Almirall A., Bosch X., Tzioufas A.G. Topical and Systemic Medications for the Treatment of Primary Sjögren’s Syndrome. Nat. Rev. Rheumatol. 2012;8:399–411. doi: 10.1038/nrrheum.2012.53. PubMed DOI
Farag A.M., Holliday C., Cimmino J., Roomian T., Papas A. Comparing the Effectiveness and Adverse Effects of Pilocarpine and Cevimeline in Patients with Hyposalivation. Oral Dis. 2019;25:1937–1944. doi: 10.1111/odi.13192. PubMed DOI