Two Bonebridge bone conduction hearing implant generations: audiological benefit and quality of hearing in children
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
MUNI/A/1118/2020
Masarykova Univerzita
FNBr
Ministerstvo Zdravotnictví Ceské Republiky
65269705
Ministerstvo Zdravotnictví Ceské Republiky
CZ.02.1.01/0.0/0.0/16_019/0000753
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
34495351
PubMed Central
PMC9130159
DOI
10.1007/s00405-021-07068-x
PII: 10.1007/s00405-021-07068-x
Knihovny.cz E-zdroje
- Klíčová slova
- Active transcutaneous bone conduction implant, Atresia, Children, Hearing outcomes, Localisation, Quality of life,
- MeSH
- dítě MeSH
- kostní vedení zvuku MeSH
- lidé MeSH
- percepce řeči * MeSH
- převodní nedoslýchavost chirurgie MeSH
- sluch MeSH
- sluchové pomůcky * MeSH
- sluchové testy MeSH
- výsledek terapie MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
PURPOSE: The study aimed to evaluate audiological benefits, quality of hearing and safety of two Bonebridge generation: BCI601 and BCI602 (MED-EL, Innsbruck, Austria) in children. METHODS: Twelve children were implanted: five BCI601 and seven BCI602 comprising of ten conductive hearing loss, and two single sided deaf SSD subjects. Audiological outcomes tested were sound field audiometry, functional gain, speech recognition threshold (SRT50), speech recognition in noise (SPRINT) and localisation abilities. Subjective measures were Speech, Spatial and Qualities of Hearing Scale (SSQ12). RESULTS: The mean FG with the BCI601 was 25.0 dB and with the BCI602 28.0 dB. The benefit in SRT50 was 23.2 dB and 33.8 dB, respectively. The mean benefit in SPRINT was 15% and 6.7% and the localisation ability improved from 33.3° to 16° and from 26.2° to 17.6°, respectively. The two SSD subjects reported a FG of 17 dB, a benefit in SRT50 of 22.5 and a benefit in SPRINT of 20%. Subjective outcomes improved significantly and even exceeded the values of their age-and sex matched normal hearing peers. One revision was reported: a retroauricular emphysema above the implant occurred 12 months post-OP, it was resolved operatively with the implant still being functional. CONCLUSION: The pediatric cohort reports significant audiological benefit, even exceeding that of the age- and sex matched control. The combination of the high safety and audiological benefit makes the Bonebridge a comfortable and effective option in hearing rehabilitation in children.
Centre ENET CEET VSB Technical University of Ostrava 708 00 Ostrava Poruba Czech Republic
Department of Pediatrics University Hospital Brno 61300 Brno Czech Republic
Faculty of Medicine Masaryk University Brno Kamenice 5 62500 Brno Czech Republic
Nanotechnology Centre CEET VSB Technical University of Ostrava 708 00 Ostrava Poruba Czech Republic
Zobrazit více v PubMed
Blamey P, Arndt P, Bergeron F, Bredberg G, Brimacombe J, Facer G, Larky J, Lindstrom B, Nedzelski J, Peterson A, Shipp D, Staller S, Whitford L. Factors affecting auditory performance of postlinguistically deaf adults using cochlear implants. Audiol Neurootol. 1996;1(5):293–306. doi: 10.1159/000259212. PubMed DOI
Hensch TK. Critical period regulation. Annu Rev Neurosci. 2004;27:549–579. doi: 10.1146/annurev.neuro.27.070203.144327. PubMed DOI
Bruijnzeel H, Ziylan F, Stegeman I, Topsakal V, Grolman W. A systematic review to define the speech and language benefit of early (< 12 Months) pediatric cochlear implantation. Audiol Neurootol. 2016;21(2):113–126. doi: 10.1159/000443363. PubMed DOI
Colletti L, Mandala M, Colletti V. Cochlear implants in children younger than 6 months. Otolaryngol Head Neck Surg. 2012;147(1):139–146. doi: 10.1177/0194599812441572. PubMed DOI
Dettman SJ, Dowell RC, Choo D, Arnott W, Abrahams Y, Davis A, Dornan D, Leigh J, Constantinescu G, Cowan R, Briggs RJ. Long-term communication outcomes for children receiving cochlear implants younger than 12 months: a multicenter study. Otol Neurotol. 2016;37(2):e82–95. doi: 10.1097/MAO.0000000000000915. PubMed DOI
Geers AE, Nicholas J, Tobey E, Davidson L. Persistent language delay versus late language emergence in children with early cochlear implantation. J Speech Lang Hear Res. 2016;59(1):155–170. doi: 10.1044/2015_JSLHR-H-14-0173. PubMed DOI PMC
MedEl. https://www.medel.com/hearing-solutions/bonebridge, ed.
Magele A, Schoerg P, Stanek B, Gradl B, Sprinzl GM. Active transcutaneous bone conduction hearing implants: Systematic review and meta-analysis. PLoS ONE. 2019;14(9):e0221484. doi: 10.1371/journal.pone.0221484. PubMed DOI PMC
den Besten CA, Monksfield P, Bosman A, Skarzynski PH, Green K, Runge C, Wigren S, Blechert JI, Flynn MC, Mylanus EAM, Hol MKS. Audiological and clinical outcomes of a transcutaneous bone conduction hearing implant: Six-month results from a multicentre study. Clin Otolaryngol Off J ENT-UK Off J Netherlands Soc Oto Rhino Laryngol Cervico Fac Surg. 2019;44(2):144–157. doi: 10.1111/coa.13248. PubMed DOI
Schwab B, Wimmer W, Severens JL, Caversaccio MD. Adverse events associated with bone-conduction and middle-ear implants: a systematic review. Eur Arch Otorhinolaryngol. 2020;277(2):423–438. doi: 10.1007/s00405-019-05727-8. PubMed DOI
Utrilla C, Gavilan J, Garcia-Raya P, Calvino M, Lassaletta L. MRI after Bonebridge implantation: a comparison of two implant generations. Eur Arch Otorhinolaryngol. 2021;278(9):3203–3209. doi: 10.1007/s00405-020-06380-2. PubMed DOI
Edlinger S, Tenner E, Fruehwald-Pallamar J, Sprinzl G. Magnetic resonance imaging and artefact reduction possibilities with the new active transcutaneous bone conduction implant (Bonebridge BCI602) Ann Otolaryngol Rhinol. 2021;8(4):1274. doi: 10.47739/Otolaryngology.1274. PubMed DOI
Sprinzl G, Lenarz T, Ernst A, Hagen R, Wolf-Magele A, Mojallal H, Todt I, Mlynski R, Wolframm MD. First European multicenter results with a new transcutaneous bone conduction hearing implant system: short-term safety and efficacy, (in eng) Otol Neurotol. 2013;34(6):1076–1083. doi: 10.1097/MAO.0b013e31828bb541. PubMed DOI
Huber AM, Sim JH, Xie YZ, Chatzimichalis M, Ullrich O, Röösli C. The Bonebridge: preclinical evaluation of a new transcutaneously-activated bone anchored hearing device, (in eng) Hear Res. 2013;301:93–99. doi: 10.1016/j.heares.2013.02.003. PubMed DOI
Sprinzl GM, Schoerg P, Ploder M, Edlinger SH, Magele A. Surgical experience and early audiological outcomes with new active transcutaneous bone conduction implant. Otol Neurotol. 2021;42(8):1208–1215. doi: 10.1097/MAO.0000000000003230. PubMed DOI
Gatehouse S, Noble W. The speech, spatial and qualities of hearing scale (SSQ), (in eng) Int J Audiol. 2004;43(2):85–99. doi: 10.1080/14992020400050014. PubMed DOI PMC
CoreTeam R (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.
Šikolová S, Hošnová D, Perceová K, Bartoš M, Kruntorád V, Urík M. Retroauricular emphysema as a late complication after bonebridge implantation: case report. Ear Nose Throat J. 2021 doi: 10.1177/01455613211000299. PubMed DOI
Urik M, Hosnova D, Slapak I, Jancikova J, Odstrcilik J, Jarkovsky J, Baumgartner WD. First experiences with a new adhesive bone conduction hearing device in children. Int J Pediatr Otorhinolaryngol. 2019;126:109614. doi: 10.1016/j.ijporl.2019.109614. PubMed DOI
Der C, Bravo-Torres S, Pons N. Active transcutaneous bone conduction implant: middle fossa placement technique in children with bilateral microtia and external auditory canal atresia. Otol Neurotol. 2018;39(5):e342–e348. doi: 10.1097/MAO.0000000000001809. PubMed DOI
Fan X, Wang Y, Wang P, Fan Y, Chen Y, Zhu Y, Chen X. Aesthetic and hearing rehabilitation in patients with bilateral microtia-atresia. Int J Pediatr Otorhinolaryngol. 2017;101:150–157. doi: 10.1016/j.ijporl.2017.08.008. PubMed DOI
Kulasegarah J, Burgess H, Neeff M, Brown CRS. Comparing audiological outcomes between the Bonebridge and bone conduction hearing aid on a hard test band: Our experience in children with atresia and microtia. Int J Pediatr Otorhinolaryngol. 2018;107:176–182. doi: 10.1016/j.ijporl.2018.01.032. PubMed DOI
Zernotti ME, Chiaraviglio MM, Mauricio SB, Tabernero PA, Zernotti M, Di Gregorio MF. Audiological outcomes in patients with congenital aural atresia implanted with transcutaneous active bone conduction hearing implant. Int J Pediatr Otorhinolaryngol. 2019;119:54–58. doi: 10.1016/j.ijporl.2019.01.016. PubMed DOI
Baumgartner WD, Hamzavi JS, Boheim K, Wolf-Magele A, Schlogel M, Riechelmann H, Zorowka P, Koci V, Keck T, Potzinger P, Sprinzl G. A new transcutaneous bone conduction hearing implant: short-term safety and efficacy in children. Otol Neurotol. 2016;37(6):713–720. doi: 10.1097/MAO.0000000000001038. PubMed DOI
Ihler F, Volbers L, Blum J, Matthias C, Canis M. Preliminary functional results and quality of life after implantation of a new bone conduction hearing device in patients with conductive and mixed hearing loss. Otol Neurotol. 2014;35(2):211–215. doi: 10.1097/MAO.0000000000000208. PubMed DOI
Seiwerth I, Frohlich L, Schilde S, Gotze G, Plontke SK, Rahne T. Clinical and functional results after implantation of the bonebridge, a semi-implantable, active transcutaneous bone conduction device, in children and adults. Eur Arch Otorhinolaryngol. 2021 doi: 10.1007/s00405-021-06626-7. PubMed DOI PMC
Weiss R, Leinung M, Baumann U, Weissgerber T, Rader T, Stover T. Improvement of speech perception in quiet and in noise without decreasing localization abilities with the bone conduction device Bonebridge. Eur Arch Otorhinolaryngol. 2017;274(5):2107–2115. doi: 10.1007/s00405-016-4434-2. PubMed DOI
Vyskocil E, Liepins R, Kaider A, Blineder M, Hamzavi S. Sound localization in patients with congenital unilateral conductive hearing loss with a transcutaneous bone conduction implant. Otol Neurotol. 2017;38(3):318–324. doi: 10.1097/MAO.0000000000001328. PubMed DOI
Vyskocil E, Riss D, Arnoldner C, Hamzavi JS, Liepins R, Kaider A, Honeder C, Fumicz J, Gstoettner W, Baumgartner WD. Dura and sinus compression with a transcutaneous bone conduction device - hearing outcomes and safety in 38 patients. Clin Otolaryngol Off J ENT-UK Off J Netherlands Soc Oto Rhino Laryngol Cervico Fac Surg. 2017;42(5):1033–1038. doi: 10.1111/coa.12793. PubMed DOI
Kraai T, Brown C, Neeff M, Fisher K. Complications of bone-anchored hearing aids in pediatric patients, (in eng) Int J Pediatr Otorhinolaryngol. 2011;75(6):749–753. doi: 10.1016/j.ijporl.2011.01.018. PubMed DOI
Zernotti ME, Sarasty AB. Active bone conduction prosthesis: Bonebridge(TM), (in eng) Int Arch Otorhinolaryngol. 2015;19(4):343–348. doi: 10.1055/s-0035-1564329. PubMed DOI PMC
Lassaletta L, Calvino M, Zernotti M, Gavilan J. Postoperative pain in patients undergoing a transcutaneous active bone conduction implant (Bonebridge) Eur Arch Otorhinolaryngol. 2016;273(12):4103–4110. doi: 10.1007/s00405-016-3972-y. PubMed DOI
Hassepass F, Bulla S, Aschendorff A, Maier W, Traser L, Steinmetz C, Wesarg T, Arndt S. The bonebridge as a transcutaneous bone conduction hearing system: preliminary surgical and audiological results in children and adolescents, (in eng) Eur Arch Otorhinolaryngol. 2015;272(9):2235–2241. doi: 10.1007/s00405-014-3137-9. PubMed DOI
Fan X, Yang T, Niu X, Wang Y, Fan Y, Chen X. Long-term outcomes of bone conduction hearing implants in patients with bilateral microtia-atresia, (in eng) Otol Neurotol. 2019;40(8):998–1005. doi: 10.1097/MAO.0000000000002370. PubMed DOI PMC
Schmerber S, Deguine O, Marx M, Van de Heyning P, Sterkers O, Mosnier I, Garin P, Godey B, Vincent C, Venail F, Mondain M, Deveze A, Lavieille JP, Karkas A. Safety and effectiveness of the Bonebridge transcutaneous active direct-drive bone-conduction hearing implant at 1-year device use. Eur Arch Otorhinolaryngol. 2017;274(4):1835–1851. doi: 10.1007/s00405-016-4228-6. PubMed DOI
Brkic FF, Riss D, Scheuba K, Arnoldner C, Gstöttner W, Baumgartner WD, Vyskocil E. Medical, technical and audiological outcomes of hearing rehabilitation with the bonebridge transcutaneous bone-conduction implant: a single-center experience, (in eng) J Clin Med. 2019 doi: 10.3390/jcm8101614. PubMed DOI PMC
Carnevale C, Til-Pérez G, Arancibia-Tagle DJ, Tomás-Barberán MD, Sarría-Echegaray PL. Hearing outcomes of the active bone conduction system Bonebridge, (in eng|spa) Acta Otorrinolaringol Esp. 2019;70(2):80–88. doi: 10.1016/j.otorri.2018.02.006. PubMed DOI
Ngui LX, Tang IP. Bonebridge transcutaneous bone conduction implant in children with congenital aural atresia: surgical and audiological outcomes, (in eng) J Laryngol Otol. 2018;132(8):693–697. doi: 10.1017/S0022215118001123. PubMed DOI
Oh SJ, Goh EK, Choi SW, Lee S, Lee HM, Lee IW, Kong SK. Audiologic, surgical and subjective outcomes of active transcutaneous bone conduction implant system (Bonebridge) Int J Audiol. 2019;58(12):956–963. doi: 10.1080/14992027.2019.1657242. PubMed DOI
Ratuszniak A, Skarzynski PH, Gos E, Skarzynski H. The Bonebridge implant in older children and adolescents with mixed or conductive hearing loss: Audiological outcomes, (in eng) Int J Pediatr Otorhinolaryngol. 2019;118:97–102. doi: 10.1016/j.ijporl.2018.12.026. PubMed DOI
Wang D, Ren R, Chen P, Yang J, Gao M, Liu Y, Zhao S. Application of retrosigmoid sinus approach in Bonebridge implantation, (in eng) Acta Otolaryngol. 2020 doi: 10.1080/00016489.2020.1832702. PubMed DOI
Rohani SA, Bartling ML, Ladak HM, Agrawal SK. The BONEBRIDGE active transcutaneous bone conduction implant: effects of location, lifts and screws on sound transmission. J Otolaryngol Head Neck Surg. 2020;49(1):58. doi: 10.1186/s40463-020-00454-1. PubMed DOI PMC