The Chemical Composition of Oils and Cakes of Ochna serrulata (Ochnaceae) and Other Underutilized Traditional Oil Trees from Western Zambia
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
ZM-2018-005-DO-31120
Ministry of Foreign Affairs of the Czech Republic
DP-2018-023-DO-11420
Czech Development Agency
LM2018100
METROFOOD-CZ research infrastructure project
CZ.02.1.01/0.0/0.0/16_019/0000845
NutRisk research program
PubMed
34500642
PubMed Central
PMC8434064
DOI
10.3390/molecules26175210
PII: molecules26175210
Knihovny.cz E-zdroje
- Klíčová slova
- Ochna serrulata, Parinari curatellifolia, Schinziophyton rautanenii, oil-bearing plants, sustainability, underused crops,
- MeSH
- gama-tokoferol chemie MeSH
- kyselina linolová chemie MeSH
- kyselina olejová chemie MeSH
- mastné kyseliny chemie MeSH
- Ochnaceae chemie MeSH
- oleje rostlin chemie MeSH
- semena rostlinná chemie MeSH
- stromy chemie MeSH
- tokoferoly chemie MeSH
- vaření metody MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Zambie MeSH
- Názvy látek
- gama-tokoferol MeSH
- kyselina linolová MeSH
- kyselina olejová MeSH
- mastné kyseliny MeSH
- oleje rostlin MeSH
- tokoferoly MeSH
Currently, the negative effects of unified and intensive agriculture are of growing concern. To mitigate them, the possibilities of using local but nowadays underused crop for food production should be more thoroughly investigated and promoted. The soybean is the major crop cultivated for vegetable oil production in Zambia, while the oil production from local oil-bearing plants is neglected. The chemical composition of oils and cakes of a three traditional oil plant used by descendants of the Lozi people for cooking were investigated. Parinari curatellifolia and Schinziophyton rautanenii oils were chiefly composed of α-eleostearic (28.58-55.96%), linoleic (9.78-40.18%), and oleic acid (15.26-24.07%), whereas Ochna serrulata contained mainly palmitic (35.62-37.31%), oleic (37.31-46.80%), and linoleic acid (10.61-18.66%); the oil yield was high (39-71%). S. rautanenii and O. serrulata oils were rich in γ-tocopherol (3236.18 μg/g, 361.11 μg/g, respectively). The O. serrulata oil also had a very distinctive aroma predominantly composed of p-cymene (52.26%), m-xylene (9.63%), γ-terpinene (9.07%), o-xylene (7.97), and limonene (7.23%). The cakes remaining after oil extraction are a good source of essential minerals, being rich in N, P, S, K, Ca, and Mg. These plants have the potential to be introduced for use in the food, technical, or pharmaceutical industries.
ProjectEDUCATE P O Box 910316 Mongu Zambia
School of Natural Resources University of Barotseland P O Box 910316 Mongu Zambia
Zobrazit více v PubMed
Verpoorte R. Pharmacognosy in the New Millennium: Leadfinding and Biotechnology. J. Pharm. Pharmacol. 2000;52:253–262. doi: 10.1211/0022357001773931. PubMed DOI
Bélanger J., Pilling D. The State of the World’s Biodiversity for Food and Agriculture. FAO Commission on Genetic Resources for Food and Agriculture Assessment; Rome, Italy: 2019.
Lenné J.M., Wood D. Agrobiodiversity Management for Food Security: A Critical Review. CAB International; Wallingford, UK: 2011.
Kerr R.B. Lost and Found Crops: Agrobiodiversity, Indigenous Knowledge, and a Feminist Political Ecology of Sorghum and Finger Millet in Northern Malawi. Ann. Assoc. Am. Geogr. 2014;104:577–593. doi: 10.1080/00045608.2014.892346. DOI
Thrupp L.A. Linking Agricultural Biodiversity and Food Security: The Valuable Role of Agrobiodiversity for Sustainable Agriculture. Int. Aff. 2000;76:265–281. doi: 10.1111/1468-2346.00133. PubMed DOI
Muthayya S., Rah J.H., Sugimoto J.D., Roos F.F., Kraemer K., Black R.E. The Global Hidden Hunger Indices and Maps: An Advocacy Tool for Action. PLoS ONE. 2013;8:e67860. doi: 10.1371/journal.pone.0067860. PubMed DOI PMC
Global Hunger Index Zambia. [(accessed on 4 April 2019)]; Available online: https://www.globalhungerindex.org/zambia.html.
Convention on Biological Diversity Fifth National Report—Zambia. [(accessed on 4 August 2019)]; Available online: https://www.cbd.int/doc/world/zm/zm-nr-05-en.pdf.
Ngadze R.T., Linnemann A.R., Nyanga L.K., Fogliano V., Verkerk R. Local Processing and Nutritional Composition of Indigenous Fruits: The Case of Monkey Orange (Strychnos Spp.) from Southern Africa. Food Rev. Int. 2017;33:123–142. doi: 10.1080/87559129.2016.1149862. DOI
Neri-Numa I.A., Carvalho-Silva L.B., Morales J.P., Malta L.G., Muramoto M.T., Ferreira J.E.M., de Carvalho J.E., Ruiz A.L.T.G., Maróstica Junior M.R., Pastore G.M. Evaluation of the Antioxidant, Antiproliferative and Antimutagenic Potential of Araçá-Boi Fruit (Eugenia Stipitata Mc Vaugh—Myrtaceae) of the Brazilian Amazon Forest. Food Res. Int. 2013;50:70–76. doi: 10.1016/j.foodres.2012.09.032. DOI
Muwowo P., Coillard H. Food Processing Sector Investment Profile Zambia. International Trade Centre; Geneva, Switzerland: 2020.
Cheikhyoussef N., Kandawa-Schulz M., Böck R., de Koning C., Cheikhyoussef A., Hussein A.A. Characterization of Schinziophyton Rautanenii (Manketti) Nut Oil from Namibia Rich in Conjugated Fatty Acids and Tocopherol. J. Food Compos. Anal. 2018;66:152–159. doi: 10.1016/j.jfca.2017.12.015. DOI
Gwatidzo L., Botha B.M., McCrindle R.I. Determination of Amino Acid Contents of Manketti Seeds (Schinziophyton Rautanenii) by Pre-Column Derivatisation with 6-Aminoquinolyl- Nhydroxysuccinimidyl Carbamate and RP-HPLC. Food Chem. 2013;141:2163–2169. doi: 10.1016/j.foodchem.2013.04.101. PubMed DOI
Peters C.R. Ricinodendron Rautanenii (Euphorbiaceae): Zambezian Wild Food Plant for All Seasons. Econ. Bot. 1987;41:494–502. doi: 10.1007/BF02908143. DOI
Olaleye M.T., Adegboye O.O., Akindahunsi A.A. Medicinal Plants. Volume 1. Daya Publishing House; Delhi, India: 2010. Antioxidant and Antihypertensive Investigation of Seed Extract of Parinari Curatellifolia; pp. 363–377. Phytochemistry, Pharmacology and Therapeutics.
Colla G., da Silva M.A., Pizzolatti M.G., Brighente I.M.C. Phytochemical Study and Antioxidant Activity of Ochna serrulata. Sociedade Brasileira de Quimica; Sao Paulo, Brazil: 2010.
Ndoile M.M., Van Heerden F.R. Antimalarial Biflavonoids from the Roots of Ochna serrulata (Hochst.) Walp. Int. Res. J. Pure Appl. Chem. 2018;16:1–9. doi: 10.9734/IRJPAC/2018/42440. DOI
Dyer J.M., Chapital D.C., Kuan J.-C.W., Mullen R.T., Turner C., McKeon T.A., Pepperman A.B. Molecular Analysis of a Bifunctional Fatty Acid Conjugase/Desaturase from Tung. Implications for the Evolution of Plant Fatty Acid Diversity. Plant Physiol. 2002;130:2027–2038. doi: 10.1104/pp.102.010835. PubMed DOI PMC
Mitei Y.C., Ngila J.C., Yeboah S.O., Wessjohann L., Schmidt J. Profiling of Phytosterols, Tocopherols and Tocotrienols in Selected Seed Oils from Botswana by GC-MS and HPLC. JAOCS J. Am. Oil Chem. Soc. 2009;86:617–625. doi: 10.1007/s11746-009-1384-5. DOI
Byrdwell W.C. Comprehensive Dual Liquid Chromatography with Quadruple Mass Spectrometry (LC1MS2 × LC1MS2 = LC2MS4) for Analysis of Parinari Curatellifolia and Other Seed Oil Triacylglycerols. Anal. Chem. 2017;89:10537–10546. doi: 10.1021/acs.analchem.7b02753. PubMed DOI
Niyukuri J., Raiti J., Ntakarutimana V., Hafidi A. Lipid Composition and Antioxidant Activities of Some Underused Wild Plants Seeds from Burundi. Food Sci. Nutr. 2021;9:111–122. doi: 10.1002/fsn3.1969. PubMed DOI PMC
Gwatidzo L., Botha B.M., McCrindle R.I. Influence of Extraction Method on Yield, Physicochemical Properties and Tocopherol Content of Manketti (Schinziophyton rautanenii) Nut Oil. JAOCS J. Am. Oil Chem. Soc. 2017;94:973–980. doi: 10.1007/s11746-017-3004-0. DOI
Dewick P.M. Medicinal Natural Products: A Biosynthetic Approach. 3rd ed. Wiley & Sons; Chichester, UK: 2009.
Sabliov C.M., Fronczek C., Astete C.E., Khachaturyan M., Khachatryan L., Leonardi C. Effects of Temperature and UV Light on Degradation of α-Tocopherol in Free and Dissolved Form. JAOCS J. Am. Oil Chem. Soc. 2009;86:895–902. doi: 10.1007/s11746-009-1411-6. DOI
Valerio P.P., Frias J.M., Cren E.C. Thermal Degradation Kinetics of Carotenoids: Acrocomia Aculeata Oil in the Context of Nutraceutical Food and Bioprocess Technology. J. Therm. Anal. Calorim. 2021;143:2983–2994. doi: 10.1007/s10973-020-09303-9. DOI
Mock H.-P. Tocopherol Composition of Plants and Their Regulation. In: Preedy V., Watson R., editors. Encyclopedia of Vitamin E. CAB International; Oxon, UK: 2007. pp. 112–121.
Harborne J.B. Introduction to Ecological Biochemistry. 4th ed. Academic Press; London, UK: 2014.
Statheropoulos M., Spiliopoulou C., Agapiou A. A Study of Volatile Organic Compounds Evolved from the Decaying Human Body. Forensic Sci. Int. 2005;153:147–155. doi: 10.1016/j.forsciint.2004.08.015. PubMed DOI
Statheropoulos M., Agapiou A., Spiliopoulou C., Pallis G.C., Sianos E. Environmental Aspects of VOCs Evolved in the Early Stages of Human Decomposition. Sci. Total Environ. 2007;385:221–227. doi: 10.1016/j.scitotenv.2007.07.003. PubMed DOI
Van Eys J.E., Offner A., Bach A. Manual of Quality Analyses for Soybean Products in the Feed Industry. 2nd ed. American Soybean Association; St. Louis, MO, USA: 2004.
European Food Safety Authority Scientific Opinion on the Risks to Animal and Public Health and the Environment Related to the Presence of Nickel in Feed. EFSA J. 2015;13:4074–4149.
Sparling D.W., Lowe T.P. Environmental Hazards of Aluminum to Plants, Invertebrates, Fish, and Wildlife. Rev. Environ. Contam. Toxicol. 1996;145:1–127. PubMed
Kobori M., Ohnishi-Kameyama M., Akimoto Y., Yukizaki C., Yoshida M. α-Eleostearic Acid and Its Dihydroxy Derivative Are Major Apoptosis-Inducing Components of Bitter Gourd. J. Agric. Food Chem. 2008;56:10515–10520. doi: 10.1021/jf8020877. PubMed DOI
Marsili R. Sensory-Directed Flavor Analysis. 1st ed. CRC Press, Taylor & Francis Group; Boca Raton, FL, USA: 2007.
Hlisnikovský L., Kunzová E., Hejcman M., Škarpa P., Zukalová H., Menšík L. The Effect of Climate, Nitrogen and Micronutrients Application on Oiliness and Fatty Acid Composition of Sunflower Achenes. Helia. 2015;38:221–239. doi: 10.1515/helia-2015-0002. DOI
Kováts E. Gas-Chromatographische Charakterisierung Organischer Verbindungen. Teil 1: Retentionsindices Aliphatischer Halogenide, Alkohole, Aldehyde Und Ketone. Helv. Chim. Acta. 1958;41:1915–1932. doi: 10.1002/hlca.19580410703. DOI
Lachman J., Hejtmánková A., Hejtmánková K., Horníčková T., Pivec V., Skala O., Dědina M., Přibyl J. Towards Complex Utilisation of Winemaking Residues: Characterisation of Grape Seeds by Total Phenols, Tocols and Essential Elements Content as a by-Product of Winemaking. Ind. Crop. Prod. 2013;49:445–453. doi: 10.1016/j.indcrop.2013.05.022. DOI
Lichtenthaler H., Buschmann C. Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. In: Wrolstad R.E., Acree T.E., Decker E.A., Penner M.H., Reid D.S., Schwartz S.J., Shoemaker C.F., Smith D.M., Sporns P., editors. Handbook of Food Analytical Chemistry. Wiley-Interscience; Hoboken, NJ, USA: 2005. pp. 171–178. Pigments, Colorants, Flavors, Texture, and Bioactive Food Components.
Kjeldahl J. Neue Methode Zur Bestimmung Des Stickstoffs in Organischen Körpern. Z. Anal. Chem. 1883;22:366–382. doi: 10.1007/BF01338151. DOI
Vaněk A., Komárek M., Chrastný V., Bečka D., Mihaljevič M., Šebek O., Panušková G., Schusterová Z. Thallium Uptake by White Mustard (Sinapis Alba L.) Grown on Moderately Contaminated Soils-Agro-Environmental Implications. J. Hazard. Mater. 2010;182:303–308. doi: 10.1016/j.jhazmat.2010.06.030. PubMed DOI