• This record comes from PubMed

In Situ Hydroxyapatite Synthesis Enhances Biocompatibility of PVA/HA Hydrogels

. 2021 Aug 28 ; 22 (17) : . [epub] 20210828

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
SVV 2020-260 540 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_019/0000787 Ministerstvo Školství, Mládeže a Tělovýchovy

Bone tissue engineering tries to simulate natural behavior of hard tissues. This study aimed to produce scaffolds based on polyvinyl alcohol (PVA) and hyaluronic acid (HA) with hydroxyapatite (HAp) incorporated in two different ways, by in situ synthesis and physical mixing of pre-prepared HAp. In situ synthesis resulted in calcium deficient form of HAp with lower crystallinity. The proliferation of human osteoblast-like cells MG-63 proved to be better in the scaffolds with in situ synthesized HAp compared to those with physically mixed pre-prepared HAp. For scaffolds with PVA/HA/HAp ratio 3:1:2, there was significantly higher initial adhesion (p = 0.0440), as well as the proliferation in the following days (p < 0.001). It seemed to be advantageous improve the properties of the scaffold by in situ synthesizing of HAp directly in the organic matrix.

See more in PubMed

Amini A.R., Laurencin C.T., Nukavarapu S.P. Bone Tissue Engineering: Recent Advances and Challenges. Crit. Rev. Biomed. Eng. 2012;40:363–408. doi: 10.1615/CritRevBiomedEng.v40.i5.10. PubMed DOI PMC

Koons G.L., Diba M., Mikos A.G. Materials design for bone-tissue engineering. Nat. Rev. Mater. 2020;5:584–603. doi: 10.1038/s41578-020-0204-2. DOI

Chocholata P., Kulda V., Dvorakova J., Kolaja Dobra J., Babuska V. Biological Evaluation of Polyvinyl Alcohol Hydrogels Enriched by Hyaluronic Acid and Hydroxyapatite. Int. J. Mol. Sci. 2020;21:5719. doi: 10.3390/ijms21165719. PubMed DOI PMC

Chocholata P., Kulda V., Babuska V. Fabrication of Scaffolds for Bone-Tissue Regeneration. Materials. 2019;12:568. doi: 10.3390/ma12040568. PubMed DOI PMC

Buwalda S.J., Boere K.W.M., Dijkstra P.J., Feijen J., Vermonden T., Hennink W.E. Hydrogels in a Historical Perspective: From Simple Networks to Smart Materials. J. Control. Release. 2014;190:254–273. doi: 10.1016/j.jconrel.2014.03.052. PubMed DOI

Huynh C.T., Nguyen M.K., Lee D.S. Injectable Block Copolymer Hydrogels: Achievements and Future Challenges for Biomedical Applications. Macromolecules. 2011;44:6629–6636. doi: 10.1021/ma201261m. DOI

Caliari S.R., Burdick J.A. A Practical Guide to Hydrogels for Cell Culture. Nat. Methods. 2016;13:405–414. doi: 10.1038/nmeth.3839. PubMed DOI PMC

Yahia L.H. History and Applications of Hydrogels. J. Biomed. Sci. 2015;4 doi: 10.4172/2254-609X.100013. DOI

Lee S.C., Kwon I.K., Park K. Hydrogels for Delivery of Bioactive Agents: A Historical Perspective. Adv. Drug Deliv. Rev. 2013;65:17–20. doi: 10.1016/j.addr.2012.07.015. PubMed DOI PMC

Buwalda S.J., Vermonden T., Hennink W.E. Hydrogels for Therapeutic Delivery: Current Developments and Future Directions. Biomacromolecules. 2017;18:316–330. doi: 10.1021/acs.biomac.6b01604. PubMed DOI

Calvert P. Hydrogels for Soft Machines. Adv. Mater. 2009;21:743–756. doi: 10.1002/adma.200800534. DOI

Timofejeva A., Loca D. Hydroxyapatite/Polyvinyl Alcohol Composite Hydrogels for Bone and Cartilage Tissue Engineering. Key Eng. Mater. 2018;762:54–58. doi: 10.4028/www.scientific.net/KEM.762.54. DOI

Aparicio-Collado J.L., Novoa J.J., Molina-Mateo J., Torregrosa-Cabanilles C., Serrano-Aroca Á., Sabater i Serra R. Novel Semi-Interpenetrated Polymer Networks of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate)/Poly (Vinyl Alcohol) with Incorporated Conductive Polypyrrole Nanoparticles. Polymers. 2021;13:57. doi: 10.3390/polym13010057. PubMed DOI PMC

Mollazadeh S., Javadpour J., Khavandi A. In Situ Synthesis and Characterization of Nano-Size Hydroxyapatite in Poly(Vinyl Alcohol) Matrix. Ceram. Int. 2007;33:1579–1583. doi: 10.1016/j.ceramint.2006.06.006. DOI

Sinha A., Nayar S., Agrawal A., Bhattacharyya D., Ramachandrarao P. Synthesis of Nanosized and Microporous Precipitated Hydroxyapatite in Synthetic Polymers and Biopolymers. J. Am. Ceram. Soc. 2003;86:357–359. doi: 10.1111/j.1151-2916.2003.tb00024.x. DOI

Poursamar S.A., Azami M., Mozafari M. Controllable Synthesis and Characterization of Porous Polyvinyl Alcohol/Hydroxyapatite Nanocomposite Scaffolds via an in Situ Colloidal Technique. Colloids Surf. B. 2011;84:310–316. doi: 10.1016/j.colsurfb.2011.01.015. PubMed DOI

Chang M.C., Ko C.-C., Douglas W.H. Preparation of Hydroxyapatite-Gelatin Nanocomposite. Biomaterials. 2003;24:2853–2862. doi: 10.1016/S0142-9612(03)00115-7. PubMed DOI

Wang X., Li Y., Wei J., de Groot K. Development of Biomimetic Nano-Hydroxyapatite/Poly(Hexamethylene Adipamide) Composites. Biomaterials. 2002;23:4787–4791. doi: 10.1016/S0142-9612(02)00229-6. PubMed DOI

Kokubo T., Kim H.-M., Kawashita M. Novel Bioactive Materials with Different Mechanical Properties. Biomaterials. 2003;24:2161–2175. doi: 10.1016/S0142-9612(03)00044-9. PubMed DOI

Kikuchi M., Itoh S., Ichinose S., Shinomiya K., Tanaka J. Self-Organization Mechanism in a Bone-like Hydroxyapatite/Collagen Nanocomposite Synthesized in Vitro and Its Biological Reaction in Vivo. Biomaterials. 2001;13:1705–1711. doi: 10.1016/S0142-9612(00)00305-7. PubMed DOI

Dick T.A., dos Santos L.A. In Situ Synthesis and Characterization of Hydroxyapatite/Natural Rubber Composites for Biomedical Applications. Mater. Sci. Eng. C. 2017;77:874–882. doi: 10.1016/j.msec.2017.03.301. PubMed DOI

Xu M., Qin M., Zhang X., Zhang X., Li J., Hu Y., Chen W., Huang D. Porous PVA/SA/HA Hydrogels Fabricated by Dual-Crosslinking Method for Bone Tissue Engineering. J. Biomater. Sci. Polym. Ed. 2020;31:816–831. doi: 10.1080/09205063.2020.1720155. PubMed DOI

Supova M. Substituted hydroxyapatites for biomedical applications: A review. Ceram. Int. 2015;41:9203–9231. doi: 10.1016/j.ceramint.2015.03.316. DOI

Dorozhkin S.V. Calcium Orthophosphates in Nature, Biology and Medicine. Materials. 2009;2:399–498. doi: 10.3390/ma2020399. DOI

Šupová M., Suchý T., Sucharda Z., Filová E., Kinderen J.N.L.M., Steinerová M., Bačáková L., Martynková G.S. The Comprehensive in Vitro Evaluation of Eight Different Calcium Phosphates: Significant Parameters for Cell Behavior. J. Am. Ceram. Soc. 2019;102:2882–2904. doi: 10.1111/jace.16110. DOI

Wopenka B., Pasteris J.D. A Mineralogical Perspective on the Apatite in Bone. Mater. Sci. Eng. C. 2005;25:131–143. doi: 10.1016/j.msec.2005.01.008. DOI

Kaur T., Thirugnanam A., Pramanik K. Tailoring the in Vitro Characteristics of Poly(Vinyl Alcohol)-Nanohydroxyapatite Composite Scaffolds for Bone Tissue Engineering. J. Polym. Eng. 2016;36:771–784. doi: 10.1515/polyeng-2015-0252. DOI

Wang C., Hao H.Y., Wang J., Xue Y.F., Huang J.J., Ren K.F., Ji J. High-throughput hyaluronic acid hydrogel arrays for cell selective adhesion screening. J. Mat. Chem. B. 2021;9:4024–4030. doi: 10.1039/D1TB00429H. PubMed DOI

Ouasti S., Donno R., Cellesi F., Sherratt M.J., Terenghi G., Tirelli N. Network connectivity, mechanical properties and cell adhesion for hyaluronic acid/PEG hydrogels. Biomaterials. 2011;32:6456–6470. doi: 10.1016/j.biomaterials.2011.05.044. PubMed DOI

Fahmy A., Kamoun E.A., El-Eisawy R., El-Fakharany E.M., Taha T.H., El-Damhougy B.K., Abdelhai F. Poly(Vinyl Alcohol)-Hyaluronic Acid Membranes for Wound Dressing Applications: Synthesis and in Vitro Bio-Evaluations. J. Braz. Chem. Soc. 2015;26:1466–1474. doi: 10.5935/0103-5053.20150115. DOI

Kato K., Eika Y., Ikada Y. In Situ Hydroxyapatite Crystallization for the Formation of Hydroxyapatite/Polymer Composites. J. Mater. Sci. 1997;32:5533–5543. doi: 10.1023/A:1018616306104. DOI

Kumar V., Batra U., Kadam A., Mulik P. Development of Hydroxyapatite Bio-Scaffold. IOSR J. Mech. Civ. Eng. 2013;2:33–37.

Vrana N.E., Liu Y., McGuinness G.B., Cahill P.A. Characterization of Poly(Vinyl Alcohol)/Chitosan Hydrogels as Vascular Tissue Engineering Scaffolds. Macromol. Symp. 2008;269:106–110. doi: 10.1002/masy.200850913. DOI

Nikbakht M., Karbasi S., Rezayat S.M. Biological Evaluation of the Effects of Hyaluronic Acid on Poly (3-Hydroxybutyrate) Based Electrospun Nanocomposite Scaffolds for Cartilage Tissue Engineering Application. Mater. Technol. 2020;35:141–151. doi: 10.1080/10667857.2019.1659535. DOI

Pal K., Pal S. Development of Porous Hydroxyapatite Scaffolds. Mater. Manuf. Process. 2006;21:325–328. doi: 10.1080/10426910500464826. DOI

Babuska V., Kolaja Dobra J., Dluhos L., Dvorakova J., Moztarzadeh J., Hrusak D., Kulda V. Repeated Exposure of Nanostructured Titanium to Osteoblasts with Respect to Peri-Implantitis. Materials. 2020;13:697. doi: 10.3390/ma13030697. PubMed DOI PMC

Zhao F., Yin Y., Lu W.W., Leong J.C., Zhang W., Zhang J., Zhang M., Yao K. Preparation and Histological Evaluation of Biomimetic Three-Dimensional Hydroxyapatite/Chitosan-Gelatin Network Composite Scaffolds. Biomaterials. 2002;23:3227–3234. doi: 10.1016/S0142-9612(02)00077-7. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...