The Potential of Pancreatic Organoids for Diabetes Research and Therapy
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
34523383
PubMed Central
PMC8528407
DOI
10.1080/19382014.2021.1941555
Knihovny.cz E-zdroje
- Klíčová slova
- ALDH, CD133, LGR5, Organoids, PROCR, adult stem cells, beta cell, beta cell regeneration, diabetes, pancreas, progenitor cells, stem cell therapy, transplantation,
- MeSH
- buněčná diferenciace MeSH
- diabetes mellitus * terapie MeSH
- lidé MeSH
- organoidy MeSH
- pankreas MeSH
- pluripotentní kmenové buňky * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
The success of clinical transplantation of pancreas or isolated pancreatic islets supports the concept of cell-based cure for diabetes. One limitation is the shortage of cadaver human pancreata. The demand-supply gap could potentially be bridged by harnessing the self-renewal capacity of stem cells. Pluripotent stem cells and adult pancreatic stem cells have been explored as possible cell sources. Recently, a system for long-term culture of proposed adult pancreatic stem cells in a form of organoids was developed. Generated organoids partially mimic the architecture and cell-type composition of pancreatic tissue. Here, we review the attempts over the past decade, to utilize the organoid cell culture principles in order to identify, expand, and differentiate the adult pancreatic stem cells from different compartments of mouse and human pancreata. The development of the culture conditions, effects of specific growth factors and small molecules is discussed. The potential utility of the adult pancreatic stem cells is considered in the context of other cell sources.
1st Faculty of Medicine Charles University Prague Czech Republic
Department of Diabetes Institute for Clinical and Experimental Medicine Prague Czech Republic
Zobrazit více v PubMed
Lancaster MA, Knoblich JA.. Organogenesis in a dish: modeling development and disease using organoid technologies. Science. 2014;345(6194):1247125. doi:10.1126/science.1247125. PubMed DOI
Muthuswamy SK. Bringing together the organoid field: from early beginnings to the road ahead. Development. 2017;144(6):963–967. doi:10.1242/dev.144444. PubMed DOI
Huch M, Koo B-K. Modeling mouse and human development using organoid cultures. Development. 2015;142(18):3113–3125. doi:10.1242/dev.118570. PubMed DOI
Dutta D, Heo I, Clevers H. Disease modeling in stem cell-derived 3D organoid systems. Trends Mol Med. 2017;23(5):393–410. doi:10.1016/j.molmed.2017.02.007. PubMed DOI
Shamir ER, Ewald AJ. Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nat Rev Mol Cell Bio. 2014;15(10):647–664. doi:10.1038/nrm3873. PubMed DOI PMC
McCauley HA, Wells JM. Pluripotent stem cell-derived organoids: using principles of developmental biology to grow human tissues in a dish. Development. 2017;144(6):958–962. doi:10.1242/dev.140731. PubMed DOI PMC
Fatehullah A, Tan SH, Barker N. Organoids as an in vitro model of human development and disease. Nat Cell Biol. 2016;18(3):246–254. doi:10.1038/ncb3312. PubMed DOI
Simian M, Bissell MJ. Organoids: a historical perspective of thinking in three dimensions. J Cell Biol. 2017;216(1):31–40. doi:10.1083/jcb.201610056. PubMed DOI PMC
Yin X, Farin HF, Van Es JH, Clevers H, Langer R, Karp JM. Niche-independent high-purity cultures of Lgr5+ intestinal stem cells and their progeny. Nat Methods. 2014;11(1):106–112. doi:10.1038/nmeth.2737. PubMed DOI PMC
Basak O, Beumer J, Wiebrands K, Seno H, van Oudenaarden A, Clevers H. Induced quiescence of Lgr5+ stem cells in intestinal organoids enables differentiation of hormone-producing enteroendocrine cells. Cell Stem Cell. 2017;20(2):177–190.e4. doi:10.1016/j.stem.2016.11.001. PubMed DOI
Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells. 1978;4:7–25. PubMed
Smith E, Cochrane WJ. Cystic organoid teratoma; report of a case. Can Med Assoc J. 1946;55:151. PubMed
Kim Y, Kim H, Ko UH, Oh Y, Lim A, Sohn J-W, Shin JH, Kim H, Han Y-M. Islet-like organoids derived from human pluripotent stem cells efficiently function in the glucose responsiveness in vitro and in vivo. Sci Rep-uk. 2016;6(1):35145. doi:10.1038/srep35145. PubMed DOI PMC
Lancaster MA, Huch M. Disease modelling in human organoids. Dis Model Mech. 2019;12(7):dmm039347. doi:10.1242/dmm.039347. PubMed DOI PMC
Kim J, Koo B-K, Knoblich JA. Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Bio. 2020;21(10):571–584. doi:10.1038/s41580-020-0259-3. PubMed DOI PMC
Dekkers JF, Berkers G, Kruisselbrink E, Vonk A, de Jonge HR, Janssens HM, Bronsveld I, van de Graaf EA, Nieuwenhuis EES, Houwen RHJ, et al. Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis. Sci Transl Med. 2016;8(344):344ra84–344ra84. doi:10.1126/scitranslmed.aad8278. PubMed DOI
Tiriac H, Plenker D, Baker LA, Tuveson DA. Organoid models for translational pancreatic cancer research. Curr Opin Genet Dev. 2019;54:7–11. doi:10.1016/j.gde.2019.02.003. PubMed DOI PMC
Schlaermann P, Toelle B, Berger H, Schmidt SC, Glanemann M, Ordemann J, Bartfeld S, Mollenkopf HJ, Meyer TF. A novel human gastric primary cell culture system for modelling Helicobacter pylori infection in vitro. Gut. 2016;65(2):202. doi:10.1136/gutjnl-2014-307949. PubMed DOI PMC
McCracken KW, Catá EM, Crawford CM, Sinagoga KL, Schumacher M, Rockich BE, Tsai Y-H, Mayhew CN, Spence JR, Zavros Y, et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature. 2014;516(7531):400–404. doi:10.1038/nature13863. PubMed DOI PMC
Murrow LM, Weber RJ, Gartner ZJ. Dissecting the stem cell niche with organoid models: an engineering-based approach. Development. 2017;144(6):998–1007. doi:10.1242/dev.140905. PubMed DOI PMC
Baker LA, Tiriac H, Clevers H, Tuveson DA. Modeling pancreatic cancer with organoids. trends in cancer. 2016;2(4):176–190. doi:10.1016/j.trecan.2016.03.004. PubMed DOI PMC
Boj SF, Hwang C-I, Baker LA, Chio IIC, Engle DD, Corbo V, Jager M, Ponz-Sarvise M, Tiriac H, Spector MS, et al. Organoid models of human and mouse ductal pancreatic cancer. Cell. 2015;160(1–2):324–338. doi:10.1016/j.cell.2014.12.021. PubMed DOI PMC
Grapin-Botton A. Three-dimensional pancreas organogenesis models. Diabetes Obes Metabolism. 2016;18(S1):33–40. doi:10.1111/dom.12720. PubMed DOI PMC
Greggio C, Franceschi FD, Grapin-Botton A. Concise reviews: in vitro-produced pancreas organogenesis models in three dimensions: self-organization from few stem cells or progenitors. Stem Cells. 2015;33(1):8–14. doi:10.1002/stem.1828. PubMed DOI PMC
Balak JRA, Juksar J, Carlotti F, Nigro AL, de Koning EJP. Organoids from the human fetal and adult pancreas. Curr Diabetes Rep. 2019;19(12):160. doi:10.1007/s11892-019-1261-z. PubMed DOI PMC
Hohwieler M, Illing A, Hermann PC, Mayer T, Stockmann M, Perkhofer L, Eiseler T, Antony JS, Müller M, Renz S, et al. Human pluripotent stem cell-derived acinar/ductal organoids generate human pancreas upon orthotopic transplantation and allow disease modelling. Gut. 2017;66(3):473. doi:10.1136/gutjnl-2016-312423. PubMed DOI PMC
Hou S, Tiriac H, Sridharan BP, Scampavia L, Madoux F, Seldin J, Souza GR, Watson D, Tuveson D, Spicer TP. Advanced development of primary pancreatic organoid tumor models for high-throughput phenotypic drug screening. Slas Discov. 2018;23:574–584. PubMed PMC
Walsh AJ, Castellanos JA, Nagathihalli NS, Merchant NB, Skala MC. Optical imaging of drug-induced metabolism changes in murine and human pancreatic cancer organoids reveals heterogeneous drug response. Pancreas. 2016;45(6):863–869. doi:10.1097/MPA.0000000000000543. PubMed DOI PMC
Tsakmaki A, Pedro PF, Bewick GA. Diabetes through a 3D lens: organoid models. Diabetologia. 2020;63(6):1093–1102. doi:10.1007/s00125-020-05126-3. PubMed DOI PMC
Tauschmann M, Hovorka R. Technology in the management of type 1 diabetes mellitus — current status and future prospects. Nat Rev Endocrinol. 2018;14(8):464–475. doi:10.1038/s41574-018-0044-y. PubMed DOI
Beck RW, Bergenstal RM, Laffel LM, Pickup JC. Advances in technology for management of type 1 diabetes. Lancet. 2019;394(10205):1265–1273. doi:10.1016/S0140-6736(19)31142-0. PubMed DOI
Gruessner AC, Gruessner RWG. Pancreas transplantation of US and non-US cases from 2005 to 2014 as reported to the United Network for Organ Sharing (UNOS) and the International Pancreas Transplant Registry (IPTR). Rev Diabet Stud. 2016;13:e2016002. doi:10.1900/RDS.2016.13.e2016002. PubMed DOI PMC
Collaborative Islet Transplant Registry (CITR) Coordinating Center, CITR 10th Annual Report, Rockville (MD): 2017. Jan 6 [Cited Jun 14, 2021]. Available from:https://citregistry.org/content/citr-10th-annual-report.
Soria B, Roche E, Berna G, Leon-Quinto T, Reig JA, Martin F. Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes. 2000;49(2):157–162. doi:10.2337/diabetes.49.2.157. PubMed DOI
Dayem AA, Lee SB, Kim K, Lim KM, Jeon T, Cho S-G. Recent advances in organoid culture for insulin production and diabetes therapy: methods and challenges. Bmb Rep. 2019;52(5):295–303. doi:10.5483/BMBRep.2019.52.5.089. PubMed DOI PMC
Shahjalal H, Dayem AA, Lim KM, Jeon T, Cho S-G. Generation of pancreatic β cells for treatment of diabetes: advances and challenges. Stem Cell Res Ther. 2018;9(1):355. doi:10.1186/s13287-018-1099-3. PubMed DOI PMC
Rezania A, Bruin JE, Arora P, Rubin A, Batushansky I, Asadi A, O’Dwyer S, Quiskamp N, Mojibian M, Albrecht T, et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol. 2014;32(11):1121–1133. doi:10.1038/nbt.3033. PubMed DOI
Pagliuca FW, Millman JR, Gürtler M, Segel M, Van Dervort A, Ryu JH, Peterson QP, Greiner D, Melton DA. Generation of functional human pancreatic beta cells in vitro. Cell. 2014;159(2):428–439. doi:10.1016/j.cell.2014.09.040. PubMed DOI PMC
Fujikawa T, Oh S-H, Pi L, Hatch HM, Shupe T, Petersen BE. Teratoma formation leads to failure of treatment for type I diabetes using embryonic stem cell-derived insulin-producing cells. Am J Pathology. 2005;166(6):1781–1791. doi:10.1016/S0002-9440(10)62488-1. PubMed DOI PMC
Rebuzzini P, Zuccotti M, Redi CA, Garagna S. Achilles’ heel of pluripotent stem cells: genetic, genomic and epigenetic variations during prolonged culture. Cell Mol Life Sci. 2016;73(13):2453–2466. doi:10.1007/s00018-016-2171-8. PubMed DOI PMC
Nguyen HT, Geens M, Spits C. Genetic and epigenetic instability in human pluripotent stem cells. Hum Reprod Update. 2013;19(2):187–205. doi:10.1093/humupd/dms048. PubMed DOI
Ben-David U, Gan Q-F, Golan-Lev T, Arora P, Yanuka O, Oren YS, Leikin-Frenkel A, Graf M, Garippa R, Boehringer M, et al. Selective elimination of human pluripotent stem cells by an oleate synthesis inhibitor discovered in a high-throughput screen. Cell Stem Cell. 2013;12(2):167–179. doi:10.1016/j.stem.2012.11.015. PubMed DOI
Odorico J, Markmann J, Melton D, Greenstein J, Hwa A, Nostro C, Rezania A, Oberholzer J, Pipeleers D, Yang L, et al. Report of the key opinion leaders meeting on stem cell-derived beta cells. Transplantation. 2018. Apr 30;102(8):1223–1229. doi:10.1097/TP.0000000000002217. PubMed DOI PMC
Cade H Top companies developing cell therapy treatments for diabetes. BioInformant. Standford (VA): 2019. Jun 11 [Cited Feb 15, 2021]; Available from: https://bioinformant.com/stem-cells-for-diabetes
Baharvand H, Totonchi M, Taei A, Seifinejad A, Aghdami N, Salekdeh GH. Human-induced pluripotent stem cells: derivation, propagation, and freezing in serum- and feeder layer-free culture conditions. Methods Mol Biol. 2010;584:425–443. PubMed
Huch M, Bonfanti P, Boj SF, Sato T, Loomans CJM, van de Wetering M, Sojoodi M, Li VSW, Schuijers J, Gracanin A, et al. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. Embo J. 2013;32(20):2708–2721. doi:10.1038/emboj.2013.204. PubMed DOI PMC
Loomans CJM, Giuliani NW, Balak J, Ringnalda F, van Gurp L, Huch M, Boj SF, Sato T, Kester L, De S Lopes SMC, et al. Expansion of adult human pancreatic tissue yields organoids harboring progenitor cells with endocrine differentiation potential. Stem Cell Rep. 2018;10(3):712–724. doi:10.1016/j.stemcr.2018.02.005. PubMed DOI PMC
Georgakopoulos N, Prior N, Angres B, Mastrogiovanni G, Cagan A, Harrison D, Hindley CJ, Arnes-Benito R, Liau -S-S, Curd A, et al. Long-term expansion, genomic stability and in vivo safety of adult human pancreas organoids. Bmc Dev Biol. 2020;20(1):4. doi:10.1186/s12861-020-0209-5. PubMed DOI PMC
Azzarelli R, Rulands S, Nestorowa S, Davies J, Campinoti S, Gillotin S, Bonfanti P, Göttgens B, Huch M, Simons B, et al. Neurogenin3 phosphorylation controls reprogramming efficiency of pancreatic ductal organoids into endocrine cells. Sci Rep-uk. 2018;8(1):15374. doi:10.1038/s41598-018-33838-5. PubMed DOI PMC
Dossena M, Piras R, Cherubini A, Barilani M, Dugnani E, Salanitro F, Moreth T, Pampaloni F, Piemonti L, Lazzari L. Standardized GMP-compliant scalable production of human pancreas organoids. Stem Cell Res Ther. 2020;11(1):94. doi:10.1186/s13287-020-1585-2. PubMed DOI PMC
Dorrell C, Tarlow B, Wang Y, Canaday PS, Haft A, Schug J, Streeter PR, Finegold MJ, Shenje LT, Kaestner KH, et al. The organoid-initiating cells in mouse pancreas and liver are phenotypically and functionally similar. Stem Cell Res. 2014;13(2):275–283. doi:10.1016/j.scr.2014.07.006. PubMed DOI PMC
Koblas T, Leontovyc I, Loukotová S, Saudek F. Reprogramming of human pancreatic organoid cells into insulin-producing β-like cells by small molecules and in vitro transcribed modified mRNA encoding neurogenin 3 transcription factor. Folia Biol-Prague. 2019;65:109–123. PubMed
Lee J, Sugiyama T, Liu Y, Wang J, Gu X, Lei J, Markmann JF, Miyazaki S, Miyazaki J, Szot GL, et al. Expansion and conversion of human pancreatic ductal cells into insulin-secreting endocrine cells. Elife. 2013;2:e00940. doi:10.7554/eLife.00940. PubMed DOI PMC
Greggio C, Franceschi FD, Figueiredo-Larsen M, Gobaa S, Ranga A, Semb H, Lutolf M, Grapin-Botton A. Artificial three-dimensional niches deconstruct pancreas development in vitro. Development. 2013;140(21):4452–4462. doi:10.1242/dev.096628. PubMed DOI PMC
Bonfanti P, Nobecourt E, Oshima M, Albagli-Curiel O, Laurysens V, Stangé G, Sojoodi M, Heremans Y, Heimberg H, Scharfmann R. Ex vivo expansion and differentiation of human and mouse fetal pancreatic progenitors are modulated by epidermal growth factor. Stem Cells Dev. 2015;24(15):1766–1778. doi:10.1089/scd.2014.0550. PubMed DOI
Gray RS, Roszko I, Solnica-Krezel L. Planar cell polarity: coordinating morphogenetic cell behaviors with embryonic polarity. Dev Cell. 2011;21(1):120–133. doi:10.1016/j.devcel.2011.06.011. PubMed DOI PMC
Cortijo C, Gouzi M, Tissir F, Grapin-Botton A. Planar cell polarity controls pancreatic beta cell differentiation and glucose homeostasis. Cell Rep. 2012;2(6):1593–1606. doi:10.1016/j.celrep.2012.10.016. PubMed DOI PMC
Bellas E, Chen CS. Forms, forces, and stem cell fate. Curr Opin Cell Biol. 2014;31:92–97. doi:10.1016/j.ceb.2014.09.006. PubMed DOI PMC
Mamidi A, Prawiro C, Seymour PA, de Lichtenberg KH, Jackson A, Serup P, Semb H. Mechanosignalling via integrins directs fate decisions of pancreatic progenitors. Nature. 2018;564(7734):114–118. doi:10.1038/s41586-018-0762-2. PubMed DOI
Armstrong PB. Cell sorting out: the self-assembly of tissues in vitro. Crit Rev Biochem Mol. 1989;24(2):119–149. doi:10.3109/10409238909086396. PubMed DOI
Baker BM, Chen CS. Deconstructing the third dimension – how 3D culture microenvironments alter cellular cues. J Cell Sci. 2012;125:3015–3024. PubMed PMC
Duval K, Grover H, Han L-H, Mou Y, Pegoraro AF, Fredberg J, Chen Z. Modeling physiological events in 2D vs. 3D cell culture. Physiology. 2017;32(4):266–277. doi:10.1152/physiol.00036.2016. PubMed DOI PMC
Holloway EM, Capeling MM, Spence JR. Biologically inspired approaches to enhance human organoid complexity. Development. 2019;146(8):dev166173. doi:10.1242/dev.166173. PubMed DOI PMC
Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD, Carpenter MK. Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol. 2001;19(10):971–974. doi:10.1038/nbt1001-971. PubMed DOI
Kleinman HK, McGarvey ML, Hassell JR, Star VL, Cannon FB, Laurie GW, Martin GR. Basement membrane complexes with biological activity. Biochemistry-US. 1986;25(2):312–318. doi:10.1021/bi00350a005. PubMed DOI
Li ML, Aggeler J, Farson DA, Hatier C, Hassell J, Bissell MJ. Influence of a reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells. Proc National Acad Sci. 1987;84(1):136–140. doi:10.1073/pnas.84.1.136. PubMed DOI PMC
Hughes CS, Postovit LM, Lajoie GA. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics. 2010;10(9):1886–1890. doi:10.1002/pmic.200900758. PubMed DOI
Benton G, Arnaoutova I, George J, Kleinman HK, Koblinski J. Matrigel: from discovery and ECM mimicry to assays and models for cancer research. Adv Drug Deliver Rev. 2014;79:3–18. doi:10.1016/j.addr.2014.06.005. PubMed DOI
Cruz-Acuña R, Quirós M, Farkas AE, Dedhia PH, Huang S, Siuda D, García-Hernández V, Miller AJ, Spence JR, Nusrat A, et al. Synthetic hydrogels for human intestinal organoid generation and colonic wound repair. Nat Cell Biol. 2017;19(11):1326–1335. doi:10.1038/ncb3632. PubMed DOI PMC
Broguiere N, Isenmann L, Hirt C, Ringel T, Placzek S, Cavalli E, Ringnalda F, Villiger L, Züllig R, Lehmann R, et al. Growth of epithelial organoids in a defined hydrogel. Adv Mater. 2018;30(43):1801621. doi:10.1002/adma.201801621. PubMed DOI
Ye S, Boeter JWB, Mihajlovic M, Steenbeek FG, Wolferen ME, Oosterhoff LA, Marsee A, Caiazzo M, Laan LJW, Penning LC, et al. A chemically defined hydrogel for human liver organoid culture. Adv Funct Mater. 2020;30(48):2000893. doi:10.1002/adfm.202000893. PubMed DOI PMC
Aisenbrey EA, Murphy WL. Synthetic alternatives to Matrigel. Nat Rev Mater. 2020;5(7):539–551. doi:10.1038/s41578-020-0199-8. PubMed DOI PMC
Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, Van Es JH, Abo A, Kujala P, Peters PJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459(7244):262–265. doi:10.1038/nature07935. PubMed DOI
Sato T, Stange DE, Ferrante M, Vries RGJ, Van Es JH, Van Den Brink S, van Houdt WJ, Pronk A, Van Gorp J, Siersema PD, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and barrett’s epithelium. Gastroenterology. 2011;141(5):1762–1772. doi:10.1053/j.gastro.2011.07.050. PubMed DOI
Barker N, Huch M, Kujala P, van de Wetering M, Snippert HJ, Van Es JH, Sato T, Stange DE, Begthel H, van den Born M, et al. Lgr5+ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell. 2010;6(1):25–36. doi:10.1016/j.stem.2009.11.013. PubMed DOI
Huch M, Dorrell C, Boj SF, Van Es JH, Li VSW, van de Wetering M, Sato T, Hamer K, Sasaki N, Finegold MJ, et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature. 2013;494(7436):247–250. doi:10.1038/nature11826. PubMed DOI PMC
Cras-Meneur C, Elghazi L, Czernichow P, Scharfmann R. Epidermal growth factor increases undifferentiated pancreatic embryonic cells in vitro: a balance between proliferation and differentiation. Diabetes. 2001;50(7):1571–1579. doi:10.2337/diabetes.50.7.1571. PubMed DOI
Wang RN, Green J, Wang Z, Deng Y, Qiao M, Peabody M, Zhang Q, Ye J, Yan Z, Denduluri S, et al. Bone Morphogenetic Protein (BMP) signaling in development and human diseases. Genes Dis. 2014;1:87–105. PubMed PMC
Ahnfelt-Rønne J, Ravassard P, Pardanaud-Glavieux C, Scharfmann R, Serup P. Mesenchymal bone morphogenetic protein signaling is required for normal pancreas development. Diabetes. 2010;59(8):1948–1956. doi:10.2337/db09-1010. PubMed DOI PMC
Barker N, Clevers H. Leucine-Rich repeat-containing g-protein-coupled receptors as markers of adult stem cells. Gastroenterology. 2010;138(5):1681–1696. doi:10.1053/j.gastro.2010.03.002. PubMed DOI
Carmon KS, Gong X, Lin Q, Thomas A, Liu Q. R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/β-catenin signaling. Proc National Acad Sci. 2011;108(28):11452–11457. doi:10.1073/pnas.1106083108. PubMed DOI PMC
Pinto A, Filippi RD, Frigeri F, Corazzelli G, Normanno N. Aging and the hemopoietic system. Crit Rev Oncol Hemat. 2003;48(Suppl):S3–12. doi:10.1016/j.critrevonc.2003.06.006. PubMed DOI
Barker N, Van Es JH, Kuipers J, Kujala P, Van Den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449(7165):1003–1007. doi:10.1038/nature06196. PubMed DOI
Bhushan A, Itoh N, Kato S, Thiery JP, Czernichow P, Bellusci S, Scharfmann R. Fgf10 is essential for maintaining the proliferative capacity of epithelial progenitor cells during early pancreatic organogenesis. Dev Camb Engl. 2001;128:5109–5117. PubMed
Norgaard GA, Jensen JN, Jensen J. FGF10 signaling maintains the pancreatic progenitor cell state revealing a novel role of Notch in organ development. Dev Biol. 2003;264(2):323–338. doi:10.1016/j.ydbio.2003.08.013. PubMed DOI
Avalos JL, Bever KM, Wolberger C. Mechanism of sirtuin inhibition by nicotinamide: altering the NAD+ cosubstrate specificity of a Sir2 enzyme. Mol Cell. 2005;17(6):855–868. doi:10.1016/j.molcel.2005.02.022. PubMed DOI
Meng Y, Ren Z, Xu F, Zhou X, Song C, Wang VY-F, Liu W, Lu L, Thomson JA, Chen G. Nicotinamide Promotes Cell Survival and Differentiation as Kinase Inhibitor in Human Pluripotent Stem Cells . Stem Cell Rep. 2018;11(6):1347–56. PubMed PMC
Furukawa M, Magami Y, Azuma T, Inokuchi H, Nakayama D, Moriyasu F, Kawai K, Hattori T. Proliferation and functional changes of pancreatic gastrin cells in neonatal rat. Pancreas. 2001;23(4):421–426. doi:10.1097/00006676-200111000-00014. PubMed DOI
Suissa Y, Magenheim J, Stolovich-Rain M, Hija A, Collombat P, Mansouri A, Sussel L, Sosa-Pineda B, McCracken K, Wells JM, et al. Gastrin: a distinct fate of neurogenin3 positive progenitor cells in the embryonic pancreas. Plos One. 2013;8(8):e70397. doi:10.1371/journal.pone.0070397. PubMed DOI PMC
Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T, Takahashi JB, Nishikawa S, Nishikawa S, Muguruma K, et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol. 2007;25(6):681–686. doi:10.1038/nbt1310. PubMed DOI
VanDussen KL, Sonnek NM, Stappenbeck TS. L-WRN conditioned medium for gastrointestinal epithelial stem cell culture shows replicable batch-to-batch activity levels across multiple research teams. Stem Cell Res. 2019;37:101430. doi:10.1016/j.scr.2019.101430. PubMed DOI PMC
Otonkoski T, Beattie GM, Mally MI, Ricordi C, Hayek A. Nicotinamide is a potent inducer of endocrine differentiation in cultured human fetal pancreatic cells. J Clin Invest. 1993;92(3):1459–1466. doi:10.1172/JCI116723. PubMed DOI PMC
Sugiyama T, Benitez CM, Ghodasara A, Liu L, McLean GW, Lee J, Blauwkamp TA, Nusse R, Wright CVE, Gu G, et al. Reconstituting pancreas development from purified progenitor cells reveals genes essential for islet differentiation. Proc National Acad Sci. 2013;110(31):12691–12696. doi:10.1073/pnas.1304507110. PubMed DOI PMC
Lammert E, Cleaver O, Melton DA. Induction of pancreatic differentiation by signals from blood vessels. Science. 2001;294(5542):564–567. doi:10.1126/science.1064344. PubMed DOI
Pictet RL, Clark WR, Williams RH, Rutter WJ. An ultrastructural analysis of the developing embryonic pancreas. Dev Biol. 1972;29(4):436–467. doi:10.1016/0012-1606(72)90083-8. PubMed DOI
Kim SK, Hebrok M, Melton DA. Notochord to endoderm signaling is required for pancreas development. Dev Camb Engl. 1997;124:4243–4252. PubMed
Deutsch G, Jung J, Zheng M, Lóra J, Zaret KS. A bipotential precursor population for pancreas and liver within the embryonic endoderm. Dev Camb Engl. 2001;128:871–881. PubMed
Habener JF, Kemp DM, Thomas MK. Minireview: transcriptional regulation in pancreatic development. Endocrinology. 2005;146(3):1025–1034. doi:10.1210/en.2004-1576. PubMed DOI
Bonal C, Herrera PL. Genes controlling pancreas ontogeny. Int J Dev Bio. 2008;52(7):823–835. doi:10.1387/ijdb.072444cb. PubMed DOI
Dassaye R, Naidoo S, Cerf ME. Transcription factor regulation of pancreatic organogenesis, differentiation and maturation. Islets. 2015;8(1):13–34. doi:10.1080/19382014.2015.1075687. PubMed DOI PMC
Benitez CM, Goodyer WR, Kim SK. Deconstructing pancreas developmental biology. Csh Perspect Biol. 2012;4:a012401. PubMed PMC
Yoshitomi H, Zaret KS. Endothelial cell interactions initiate dorsal pancreas development by selectively inducing the transcription factor Ptf1a. Development. 2004;131(4):807–817. doi:10.1242/dev.00960. PubMed DOI
Zhou Q, Law AC, Rajagopal J, Anderson WJ, Gray PA, Melton DA. A multipotent progenitor domain guides pancreatic organogenesis. Dev Cell. 2007;13(1):103–114. doi:10.1016/j.devcel.2007.06.001. PubMed DOI
Sharon N, Chawla R, Mueller J, Vanderhooft J, Whitehorn LJ, Rosenthal B, Gürtler M, Estanboulieh RR, Shvartsman D, Gifford DK, et al. A peninsular structure coordinates asynchronous differentiation with morphogenesis to generate pancreatic islets. Cell. 2019;176(4):790–804.e13. doi:10.1016/j.cell.2018.12.003. PubMed DOI PMC
Stolovich-Rain M, Enk J, Vikesa J, Nielsen FC, Saada A, Glaser B, Dor Y. Weaning triggers a maturation step of pancreatic β cells. Dev Cell. 2015;32(5):535–545. doi:10.1016/j.devcel.2015.01.002. PubMed DOI
Bosco D, Armanet M, Morel P, Niclauss N, Sgroi A, Muller YD, Giovannoni L, Parnaud G, Berney T. Unique arrangement of alpha- and beta-cells in human islets of Langerhans. Diabetes. 2010;59(5):1202–1210. doi:10.2337/db09-1177. PubMed DOI PMC
Granger A, Kushner JA. Cellular origins of-cell regeneration: a legacy view of historical controversies. J Intern Med. 2009;266(4):325–338. doi:10.1111/j.1365-2796.2009.02156.x. PubMed DOI PMC
Butler AE, Cao-Minh L, Galasso R, Rizza RA, Corradin A, Cobelli C, Butler PC. Adaptive changes in pancreatic beta cell fractional area and beta cell turnover in human pregnancy. Diabetologia. 2010;53(10):2167–2176. doi:10.1007/s00125-010-1809-6. PubMed DOI PMC
Gregg BE, Moore PC, Demozay D, Hall BA, Li M, Husain A, Wright AJ, Atkinson MA, Rhodes CJ. Formation of a human β-cell population within pancreatic islets is set early in life. J Clin Endocrinol Metabolism. 2012;97(9):3197–3206. doi:10.1210/jc.2012-1206. PubMed DOI PMC
Bonner-Weir S, Baxter LA, Schuppin GT, Smith FE. A second pathway for regeneration of adult exocrine and endocrine pancreas. A possible recapitulation of embryonic development. Diabetes. 1993;42(12):1715–1720. doi:10.2337/diab.42.12.1715. PubMed DOI
Inada A, Nienaber C, Katsuta H, Fujitani Y, Levine J, Morita R, Sharma A, Bonner-Weir S. Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth. P Natl Acad Sci USA. 2008;105(50):19915–19919. doi:10.1073/pnas.0805803105. PubMed DOI PMC
Xu X, D’Hoker J, Stangé G, Bonné S, Leu ND, Xiao X, Van De Casteele M, Mellitzer G, Ling Z, Pipeleers D, et al. Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell. 2008;132(2):197–207. doi:10.1016/j.cell.2007.12.015. PubMed DOI
Criscimanna A, Speicher JA, Houshmand G, Shiota C, Prasadan K, Ji B, Logsdon CD, Gittes GK, Esni F. Duct cells contribute to regeneration of endocrine and acinar cells following pancreatic damage in adult mice. Gastroenterology. 2011;141(4):1451–1462.e6. doi:10.1053/j.gastro.2011.07.003. PubMed DOI PMC
Desai BM, Oliver-Krasinski J, Leon DDD, Farzad C, Hong N, Leach SD, Stoffers DA. Preexisting pancreatic acinar cells contribute to acinar cell, but not islet beta cell, regeneration. J Clin Invest. 2007;117(4):971–977. doi:10.1172/JCI29988. PubMed DOI PMC
Teta M, Rankin MM, Long SY, Stein GM, Kushner JA. Growth and regeneration of adult beta cells does not involve specialized progenitors. Dev Cell. 2007;12(5):817–826. doi:10.1016/j.devcel.2007.04.011. PubMed DOI
Solar M, Cardalda C, Houbracken I, Martín M, Maestro MA, Medts ND, Xu X, Grau V, Heimberg H, Bouwens L, et al. Pancreatic exocrine duct cells give rise to insulin-producing cells during embryogenesis but not after birth. Dev Cell. 2009;17(6):849–860. doi:10.1016/j.devcel.2009.11.003. PubMed DOI
Kopp JL, Dubois CL, Schaffer AE, Hao E, Shih HP, Seymour PA, Ma J, Sander M. Sox9+ ductal cells are multipotent progenitors throughout development but do not produce new endocrine cells in the normal or injured adult pancreas. Development. 2011;138(4):653–665. doi:10.1242/dev.056499. PubMed DOI PMC
Furuyama K, Kawaguchi Y, Akiyama H, Horiguchi M, Kodama S, Kuhara T, Hosokawa S, Elbahrawy A, Soeda T, Koizumi M, et al. Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat Genet. 2011;43(1):34–41. doi:10.1038/ng.722. PubMed DOI
Xiao X, Chen Z, Shiota C, Prasadan K, Guo P, El-Gohary Y, Paredes J, Welsh C, Wiersch J, Gittes GK. No evidence for β cell neogenesis in murine adult pancreas. J Clin Invest. 2013;123(5):2207–2217. doi:10.1172/JCI66323. PubMed DOI PMC
Dor Y, Brown J, Martinez OI, Melton DA. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature. 2004;429(6987):41–46. doi:10.1038/nature02520. PubMed DOI
Stolovich-Rain M, Hija A, Grimsby J, Glaser B, Dor Y. Pancreatic beta cells in very old mice retain capacity for compensatory proliferation. J Biol Chem. 2012;287(33):27407–27414. doi:10.1074/jbc.M112.350736. PubMed DOI PMC
Nir T, Melton DA, Dor Y. Recovery from diabetes in mice by β cell regeneration. J Clin Invest. 2007;117(9):2553–2561. doi:10.1172/JCI32959. PubMed DOI PMC
Dor Y, Melton DA. Facultative endocrine progenitor cells in the adult pancreas. Cell. 2008;132(2):183–184. doi:10.1016/j.cell.2008.01.004. PubMed DOI
Yanger K, Stanger BZ. Facultative stem cells in liver and pancreas: fact and fancy. Dev Dynam. 2011;240(3):521–529. doi:10.1002/dvdy.22561. PubMed DOI PMC
Lysy PA, Weir GC, Bonner-Weir S. Making β cells from adult cells within the pancreas. Curr Diabetes Rep. 2013;13(5):695–703. doi:10.1007/s11892-013-0400-1. PubMed DOI PMC
Ziv O, Glaser B, Dor Y. The plastic pancreas. Dev Cell. 2013;26(1):3–7. doi:10.1016/j.devcel.2013.06.013. PubMed DOI
Dan YY. Chasing the facultative liver progenitor cell. Hepatology. 2016;64(1):297–300. doi:10.1002/hep.28642. PubMed DOI
Yu K, Fischbach S, Xiao X. Beta cell regeneration in adult mice: controversy over the involvement of stem cells. Curr Stem Cell Res T. 2016;11(7):542–546. doi:10.2174/1574888X10666141126113110. PubMed DOI PMC
Afelik S, Rovira M. Pancreatic β-cell regeneration: facultative or dedicated progenitors? Mol Cell Endocrinol. 2017;445:85–94. doi:10.1016/j.mce.2016.11.008. PubMed DOI
Aguayo-Mazzucato C, Bonner-Weir S. Pancreatic β cell regeneration as a possible therapy for diabetes. Cell Metab. 2018;27(1):57–67. doi:10.1016/j.cmet.2017.08.007. PubMed DOI PMC
Zhou Q, Melton DA. Pancreas regeneration. Nature. 2018;557(7705):351–358. doi:10.1038/s41586-018-0088-0. PubMed DOI PMC
Thorel F, Népote V, Avril I, Kohno K, Desgraz R, Chera S, Herrera PL. Conversion of adult pancreatic α-cells to β-cells after extreme β-cell loss. Nature. 2010;464(7292):1149–1154. doi:10.1038/nature08894. PubMed DOI PMC
Chera S, Baronnier D, Ghila L, Cigliola V, Jensen JN, Gu G, Furuyama K, Thorel F, Gribble FM, Reimann F, et al. Diabetes recovery by age-dependent conversion of pancreatic δ-cells into insulin producers. Nature. 2014;514(7523):503–507. doi:10.1038/nature13633. PubMed DOI PMC
Clevers H, Watt FM. Defining adult stem cells by function, not by phenotype. Annu Rev Biochem. 2018;87(1):1–13. doi:10.1146/annurev-biochem-062917-012341. PubMed DOI
Gehart H, Clevers H. Tales from the crypt: new insights into intestinal stem cells. Nat Rev Gastroentero. 2019;16(1):19–34. doi:10.1038/s41575-018-0081-y. PubMed DOI
Gurdon JB. A community effect in animal development. Nature. 1988;336(6201):772–774. doi:10.1038/336772a0. PubMed DOI
Bonner-Weir S, Taneja M, Weir GC, Tatarkiewicz K, Song KH, Sharma A, O’Neil JJ. In vitro cultivation of human islets from expanded ductal tissue. P Natl Acad Sci USA. 2000;97(14):7999–8004. doi:10.1073/pnas.97.14.7999. PubMed DOI PMC
Kumar KK, Burgess AW, Gulbis JM. Structure and function of LGR5: an enigmatic G-protein coupled receptor marking stem cells. Protein Sci. 2014;23(5):551–565. doi:10.1002/pro.2446. PubMed DOI PMC
Morita H, Mazerbourg S, Bouley DM, Luo C-W, Kawamura K, Kuwabara Y, Baribault H, Tian H, Hsueh AJW. Neonatal lethality of LGR5 null mice is associated with ankyloglossia and gastrointestinal distension. Mol Cell Biol. 2004;24(22):9736–9743. doi:10.1128/MCB.24.22.9736-9743.2004. PubMed DOI PMC
Jaks V, Barker N, Kasper M, Van Es JH, Snippert HJ, Clevers H, Toftgård R. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat Genet. 2008;40(11):1291–1299. doi:10.1038/ng.239. PubMed DOI
Barker N, Van Es JH, Jaks V, Kasper M, Snippert H, Toftgård R, Clevers H. Very long-term self-renewal of small intestine, colon, and hair follicles from cycling Lgr5+ve STEM CELls. Cold Spring Harb Sym. 2008;73(0):351–356. doi:10.1101/sqb.2008.72.003. PubMed DOI
Pan FC, Bankaitis ED, Boyer D, Xu X, De Casteele MV, Magnuson MA, Heimberg H, Wright CVE. Spatiotemporal patterns of multipotentiality in Ptf1a-expressing cells during pancreas organogenesis and injury-induced facultative restoration. Development. 2013;140(4):751–764. doi:10.1242/dev.090159. PubMed DOI PMC
Jin K, Xiang M. Transcription factor Ptf1a in development, diseases and reprogramming. Cell Mol Life Sci. 2019;76(5):921–940. doi:10.1007/s00018-018-2972-z. PubMed DOI PMC
Öström M, Loffler KA, Edfalk S, Selander L, Dahl U, Ricordi C, Jeon J, Correa-Medina M, Diez J, Edlund H. Retinoic acid promotes the generation of pancreatic endocrine progenitor cells and their further differentiation into β-cells. Plos One. 2008;3(7):e2841. doi:10.1371/journal.pone.0002841. PubMed DOI PMC
Ioannou M, Serafimidis I, Arnes L, Sussel L, Singh S, Vasiliou V, Gavalas A. ALDH1B1 is a potential stem/progenitor marker for multiple pancreas progenitor pools. Dev Biol. 2013;374(1):153–163. doi:10.1016/j.ydbio.2012.10.030. PubMed DOI PMC
Yatoh S, Dodge R, Akashi T, Omer A, Sharma A, Weir GC, Bonner-Weir S. Differentiation of affinity-purified human pancreatic duct cells to beta-cells. Diabetes. 2007;56(7):1802–1809. doi:10.2337/db06-1670. PubMed DOI
Rovira M, Scott S-G, Liss AS, Jensen J, Thayer SP, Leach SD. Isolation and characterization of centroacinar/terminal ductal progenitor cells in adult mouse pancreas. Proc National Acad Sci. 2010;107(1):75–80. doi:10.1073/pnas.0912589107. PubMed DOI PMC
Socorro M, Criscimanna A, Riva P, Tandon M, Prasadan K, Guo P, Humar A, Husain SZ, Leach SD, Gittes GK, et al. Identification of newly committed pancreatic cells in the adult mouse pancreas. Sci Rep-uk. 2017;7(1):17539. doi:10.1038/s41598-017-17884-z. PubMed DOI PMC
Kania G, Corbeil D, Fuchs J, Tarasov KV, Blyszczuk P, Huttner WB, Boheler KR, Wobus AM. Somatic stem cell marker prominin-1/CD133 is expressed in embryonic stem cell–derived progenitors. Stem Cells. 2005;23(6):791–804. doi:10.1634/stemcells.2004-0232. PubMed DOI
Ratajczak MZ, Kucia M, Reca R, Majka M, Janowska-Wieczorek A, Ratajczak J. Stem cell plasticity revisited: CXCR4-positive cells expressing mRNA for early muscle, liver and neural cells “hide out” in the bone marrow. Leukemia. 2004;18(1):29–40. doi:10.1038/sj.leu.2403184. PubMed DOI
Gallacher L, Murdoch B, Wu DM, Karanu FN, Keeney M, Bhatia M. Isolation and characterization of human CD34(-)Lin(-) and CD34(+)Lin(-) hematopoietic stem cells using cell surface markers AC133 and CD7. Blood. 2000;95(9):2813–2820. doi:10.1182/blood.V95.9.2813.009k20_2813_2820. PubMed DOI
Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, Tsukamoto AS, Gage FH, Weissman IL. Direct isolation of human central nervous system stem cells. Proc National Acad Sci. 2000;97(26):14720–14725. doi:10.1073/pnas.97.26.14720. PubMed DOI PMC
Lardon J, Corbeil D, Huttner WB, Ling Z, Bouwens L. Stem cell marker prominin-1/AC133 is expressed in duct cells of the adult human pancreas. Pancreas. 2008;36(1):e1–6. doi:10.1097/mpa.0b013e318149f2dc. PubMed DOI
Karbanová J, Missol-Kolka E, Fonseca A-V, Lorra C, Janich P, Hollerová H, Jászai J, Ehrmann J, Kolář Z, Liebers C, et al. The stem cell marker CD133 (Prominin-1) is expressed in various human glandular epithelia. J Histochem Cytochem. 2008;56(11):977–993. doi:10.1369/jhc.2008.951897. PubMed DOI PMC
Sugiyama T, Rodriguez RT, McLean GW, Kim SK. Conserved markers of fetal pancreatic epithelium permit prospective isolation of islet progenitor cells by FACS. P Natl Acad Sci USA. 2007;104(1):175–180. doi:10.1073/pnas.0609490104. PubMed DOI PMC
Oshima Y, Suzuki A, Kawashimo K, Ishikawa M, Ohkohchi N, Taniguchi H. Isolation of mouse pancreatic ductal progenitor cells expressing CD133 and c-Met by flow cytometric cell sorting. Gastroenterology. 2007;132(2):720–732. doi:10.1053/j.gastro.2006.11.027. PubMed DOI
Jin L, Gao D, Feng T, Tremblay JR, Ghazalli N, Luo A, Rawson J, Quijano JC, Chai J, Wedeken L, et al. Cells with surface expression of CD133 high CD71 low are enriched for tripotent colony-forming progenitor cells in the adult murine pancreas. Stem Cell Res. 2016;16(1):40–53. doi:10.1016/j.scr.2015.11.015. PubMed DOI PMC
Koblas T, Pektorova L, Zacharovova K, Berkova Z, Girman P, Dovolilova E, Karasova L, Saudek F. Differentiation of CD133-positive pancreatic cells into insulin-producing islet-like cell clusters. Transpl P. 2008;40(2):415–418. doi:10.1016/j.transproceed.2008.02.017. PubMed DOI
Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature. 2008;455(7213):627–632. doi:10.1038/nature07314. PubMed DOI PMC
Vorburger SA, Hunt KK. Adenoviral gene therapy. Oncol. 2002;7(1):46–59. doi:10.1634/theoncologist.7-1-46. PubMed DOI
Wang D, Wang J, Bai L, Pan H, Feng H, Clevers H, Zeng YA. Long-Term expansion of pancreatic islet organoids from resident procr+ progenitors. Cell. 2020;180(6):1198–1211.e19. doi:10.1016/j.cell.2020.02.048. PubMed DOI
Balazs AB, Fabian AJ, Esmon CT, Mulligan RC. Endothelial protein C receptor (CD201) explicitly identifies hematopoietic stem cells in murine bone marrow. Blood. 2006;107(6):2317–2321. doi:10.1182/blood-2005-06-2249. PubMed DOI PMC
Martin GH, Park CY. EPCR: a novel marker of cultured cord blood HSCs. Blood. 2017;129(25):3279–3280. doi:10.1182/blood-2017-05-780007. PubMed DOI PMC
Yu QC, Song W, Wang D, Zeng YA. Identification of blood vascular endothelial stem cells by the expression of protein C receptor. Cell Res. 2016;26(10):1079–1098. doi:10.1038/cr.2016.85. PubMed DOI PMC
Wang D, Liu C, Wang J, Jia Y, Hu X, Jiang H, Shao Z, Zeng YA. Protein C receptor stimulates multiple signaling pathways in breast cancer cells. J Biol Chem. 2018;293(4):1413–1424. doi:10.1074/jbc.M117.814046. PubMed DOI PMC
Pisania A, Weir GC, O’Neil JJ, Omer A, Tchipashvili V, Lei J, Colton CK, Bonner-Weir S. Quantitative analysis of cell composition and purity of human pancreatic islet preparations. Lab Invest. 2010;90(11):1661–1675. doi:10.1038/labinvest.2010.124. PubMed DOI PMC
Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, Young H, Richardson M, Smart NG, Cunningham J, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol. 2008;26(4):443–452. doi:10.1038/nbt1393. PubMed DOI
Rorsman P, Braun M. Regulation of insulin secretion in human pancreatic islets. Annu Rev Physiol. 2013;75(1):155–179. doi:10.1146/annurev-physiol-030212-183754. PubMed DOI
Nikolova G, Strilic B, Lammert E. The vascular niche and its basement membrane. Trends Cell Biol. 2007;17(1):19–25. doi:10.1016/j.tcb.2006.11.005. PubMed DOI
Lammert E, Thorn P. The role of the islet niche on beta cell structure and function. J Mol Biol. 2019;432(5):1407–1418. doi:10.1016/j.jmb.2019.10.032. PubMed DOI