Association of Genetic Variants Affecting microRNAs and Pancreatic Cancer Risk
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
Grant support
MC_UU_12015/1
Medical Research Council - United Kingdom
MR/N003284/1
Medical Research Council - United Kingdom
PubMed
34527018
PubMed Central
PMC8435735
DOI
10.3389/fgene.2021.693933
Knihovny.cz E-resources
- Keywords
- genetic polymorphisms, miRNA, pancreatic cancer, pancreatic ductal adenocarcinoma, susceptibility,
- Publication type
- Journal Article MeSH
Genetic factors play an important role in the susceptibility to pancreatic cancer (PC). However, established loci explain a small proportion of genetic heritability for PC; therefore, more progress is needed to find the missing ones. We aimed at identifying single nucleotide polymorphisms (SNPs) affecting PC risk through effects on micro-RNA (miRNA) function. We searched in silico the genome for SNPs in miRNA seed sequences or 3 prime untranslated regions (3'UTRs) of miRNA target genes. Genome-wide association data of PC cases and controls from the Pancreatic Cancer Cohort (PanScan) Consortium and the Pancreatic Cancer Case-Control (PanC4) Consortium were re-analyzed for discovery, and genotyping data from two additional consortia (PanGenEU and PANDoRA) were used for replication, for a total of 14,062 cases and 11,261 controls. None of the SNPs reached genome-wide significance in the meta-analysis, but for three of them the associations were in the same direction in all the study populations and showed lower value of p in the meta-analyses than in the discovery phase. Specifically, rs7985480 was consistently associated with PC risk (OR = 1.12, 95% CI 1.07-1.17, p = 3.03 × 10-6 in the meta-analysis). This SNP is in linkage disequilibrium (LD) with rs2274048, which modulates binding of various miRNAs to the 3'UTR of UCHL3, a gene involved in PC progression. In conclusion, our results expand the knowledge of the genetic PC risk through miRNA-related SNPs and show the usefulness of functional prioritization to identify genetic polymorphisms associated with PC risk.
1st Department of Medicine Medical School University of Pécs Pécs Hungary
1st Faculty of Medicine Institute of Biology and Medical Genetics Charles University Prague Czechia
ARC NET Centre for Applied Research on Cancer University and Hospital Trust of Verona Verona Italy
Biomedical Center Faculty of Medicine in Pilsen Charles University Pilsen Czechia
Blood Transfusion Service Azienda Ospedaliero Universitaria Meyer Children's Hospital Florence Italy
Department for Determinants of Chronic Diseases Bilthoven Netherlands
Department of Biology University of Pisa Pisa Italy
Department of Biomedical Sciences Humanitas University Milan Italy
Department of Digestive Tract Diseases Medical University of Lodz Lodz Poland
Department of Gastroenterology San Carlo Hospital Potenza Italy
Department of General Surgery University of Heidelberg Heidelberg Germany
Department of Hematology Institute of Hematology and Transfusion Medicine Warsaw Poland
Department of Medicine Centre for Translational Medicine University of Szeged Szeged Hungary
Department of Medicine DIMED Padua University Hospital Padua Italy
Department of Radiology and Oncology Institute of Cancer of São Paulo São Paulo Brazil
Department of Surgery DiSCOG Padua University Hospital Padua Italy
Department of Surgery Erasmus Medical Center Erasmus University Rotterdam Netherlands
Digestive and Liver Disease Unit Sant'Andrea Hospital Rome Italy
Division of General and Transplant Surgery University of Pisa Pisa Italy
Division of Preventive Oncology German Cancer Research Center Heidelberg Germany
Endoscopic Surgery Department Hippocratio General Hospital of Athens Athens Greece
Faculty of Medicine and Psychology Sapienza University of Rome Rome Italy
Faculty of Medicine University of São Paulo São Paulo Brazil
Fundeni Clinical Institute Bucharest Romania
Genetic and Molecular Epidemiology Group Spanish National Cancer Research Centre Madrid Spain
Genomic Epidemiology Group German Cancer Research Center Heidelberg Germany
German Cancer Consortium Heidelberg Germany
Institute for Risk Assessment Sciences Utrecht University Utrecht Netherlands
Institute for Translational Medicine Medical School University of Pécs Pécs Hungary
Laboratory for Applied Science and Technology in Health Carlos Chagas Institute Curitiba Brazil
Laboratory of Biology Medical School National and Kapodistrian University of Athens Athens Greece
Medical Faculty Heidelberg University of Heidelberg Heidelberg Germany
Pancreatic Surgery Unit Humanitas Clinical and Research Center IRCCS Milan Italy
Szent György University Teaching Hospital of County Fejér Székesfehérvár Hungary
See more in PubMed
Abdi A., Zafarpiran M., Farsani Z. S. (2020). The computational analysis conducted on miRNA target sites in association with SNPs at 3’UTR of ADHD-implicated genes. Cent. Nerv. Syst. Agents Med. Chem. 20, 58–75. 10.2174/1871524919666191014104843, PMID: PubMed DOI PMC
Amundadottir L., Kraft P., Stolzenberg-Solomon R. Z., Fuchs C. S., Petersen G. M., Arslan A. A., et al. . (2009). Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer. Nat. Genet. 41, 986–990. 10.1038/ng.429, PMID: PubMed DOI PMC
Bahreini F., Ramezani S., Shahangian S. S., Salehi Z., Mashayekhi F. (2020). miR-559 polymorphism rs58450758 is linked to breast cancer. Br. J. Biomed. Sci. 77, 29–34. 10.1080/09674845.2019.1683309, PMID: PubMed DOI
Barone E., Corrado A., Gemignani F., Landi S. (2016). Environmental risk factors for pancreatic cancer: an update. Arch. Toxicol. 90, 2617–2642. 10.1007/s00204-016-1821-9, PMID: PubMed DOI
Boyle A. P., Hong E. L., Hariharan M., Cheng Y., Schaub M. A., Kasowski M., et al. . (2012). Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 22, 1790–1797. 10.1101/gr.137323.112, PMID: PubMed DOI PMC
Campa D., Capurso G., Pastore M., Talar-Wojnarowska R., Milanetto A. C., Landoni L., et al. . (2016a). Common germline variants within the CDKN2A/2B region affect risk of pancreatic neuroendocrine tumors. Sci. Rep. 6:39565. 10.1038/srep39565 PubMed DOI PMC
Campa D., Gentiluomo M., Obazee O., Ballerini A., Vodickova L., Hegyi P., et al. . (2020). Genome-wide association study identifies an early onset pancreatic cancer risk locus. Int. J. Cancer 147, 2065–2074. 10.1002/ijc.33004, PMID: PubMed DOI
Campa D., Pastore M., Gentiluomo M., Talar-Wojnarowska R., Kupcinskas J., Malecka-Panas E., et al. . (2016b). Functional single nucleotide polymorphisms within the cyclindependent kinase inhibitor 2A/2B region affect pancreatic cancer risk. Oncotarget 7, 57011–57020. 10.18632/oncotarget.10935 PubMed DOI PMC
Campa D., Rizzato C., Bauer A. S., Werner J., Capurso G., Costello E., et al. . (2013a). Lack of replication of seven pancreatic cancer susceptibility loci identified in two Asian populations. Cancer Epidemiol. Biomark. Prev. 22, 320–323. 10.1158/1055-9965.EPI-12-1182, PMID: PubMed DOI
Campa D., Rizzato C., Capurso G., Giese N., Funel N., Greenhalf W., et al. . (2013b). Genetic susceptibility to pancreatic cancer and its functional characterisation: the PANcreatic disease research (PANDoRA) consortium. Dig. Liver Dis. 45, 95–99. 10.1016/j.dld.2012.09.014 PubMed DOI
Campa D., Rizzato C., Stolzenberg-Solomon R., Pacetti P., Vodicka P., Cleary S. P., et al. . (2015). TERT gene harbors multiple variants associated with pancreatic cancer susceptibility. Int. J. Cancer 137, 2175–2183. 10.1002/ijc.29590, PMID: PubMed DOI PMC
Childs E. J., Mocci E., Campa D., Bracci P. M., Gallinger S., Goggins M., et al. . (2015). Common variation at 2p13.3, 3q29, 7p13 and 17q25.1 associated with susceptibility to pancreatic cancer. Nat. Genet. 47, 911–916. 10.1038/ng.3341, PMID: PubMed DOI PMC
Corradi C., Gentiluomo M., Gajdán L., Cavestro G. M., Kreivenaite E., Di Franco G., et al. . (2021). Genome-wide scan of long noncoding RNA single nucleotide polymorphisms and pancreatic cancer susceptibility. Int. J. Cancer 148, 2779–2788. 10.1002/ijc.33475, PMID: PubMed DOI
Das S., Forer L., Schönherr S., Sidore C., Locke A. E., Kwong A., et al. . (2016). Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287. 10.1038/ng.3656, PMID: PubMed DOI PMC
Dayem Ullah A. Z., Lemoine N. R., Chelala C. (2013). A practical guide for the functional annotation of genetic variations using SNPnexus. Brief. Bioinform. 14, 437–447. 10.1093/bib/bbt004, PMID: PubMed DOI
Feng Y., Liu H., Duan B., Liu Z., Abbruzzese J., Walsh K. M., et al. . (2019). Potential functional variants in SMC2 and TP53 in the AURORA pathway genes and risk of pancreatic cancer. Carcinogenesis 40, 521–528. 10.1093/carcin/bgz029, PMID: PubMed DOI PMC
Gallagher M. D., Chen-Plotkin A. S. (2018). The post-GWAS era: from association to function. Am. J. Hum. Genet. 102, 717–730. 10.1016/j.ajhg.2018.04.002, PMID: PubMed DOI PMC
Gentiluomo M., Canzian F., Nicolini A., Gemignani F., Landi S., Campa D. (2020). Germline genetic variability in pancreatic cancer risk and prognosis. Semin. Cancer Biol. 10.1016/j.semcancer.2020.08.003 [Epub ahead of print], PMID: PubMed DOI
Gentiluomo M., Lu Y., Canzian F., Campa D. (2019a). Genetic variants in taste-related genes and risk of pancreatic cancer. Mutagenesis 34, 391–394. 10.1093/mutage/gez032 PubMed DOI
Gentiluomo M., Peduzzi G., Lu Y., Campa D., Canzian F. (2019b). Genetic polymorphisms in inflammatory genes and pancreatic cancer risk: a two-phase study on more than 14 000 individuals. Mutagenesis 34, 395–401. 10.1093/mutage/gez040 PubMed DOI
Gomez-Rubio P., Zock J.-P., Rava M., Marquez M., Sharp L., Hidalgo M., et al. . (2017). Reduced risk of pancreatic cancer associated with asthma and nasal allergies. Gut 66, 314–322. 10.1136/gutjnl-2015-310442, PMID: PubMed DOI
Gong J., Liu C., Liu W., Wu Y., Ma Z., Chen H., et al. . (2015). An update of miRNASNP database for better SNP selection by GWAS data, miRNA expression and online tools. Database 2015:bav029. 10.1093/database/bav029, PMID: PubMed DOI PMC
Graham J. W. (2009). Missing data analysis: making it work in the real world. Annu. Rev. Psychol. 60, 549–576. 10.1146/annurev.psych.58.110405.085530, PMID: PubMed DOI
Hu C., Hart S. N., Polley E. C., Gnanaolivu R., Shimelis H., Lee K. Y., et al. . (2018). Association between inherited germline mutations in cancer predisposition genes and risk of pancreatic cancer. J. Am. Med. Assoc. 319, 2401–2409. 10.1001/jama.2018.6228, PMID: PubMed DOI PMC
Iuliano R., Vismara M. F. M., Dattilo V., Trapasso F., Baudi F., Perrotti N. (2013). The role of microRNAs in cancer susceptibility. Biomed. Res. Int. 2013:591931. 10.1155/2013/591931, PMID: PubMed DOI PMC
Jiao L. R., Frampton A. E., Jacob J., Pellegrino L., Krell J., Giamas G., et al. . (2012). microRNAs targeting oncogenes are down-regulated in pancreatic malignant transformation from benign tumors. PLoS One 7:e32068. 10.1371/journal.pone.0032068, PMID: PubMed DOI PMC
Klein A. P., Wolpin B. M., Risch H. A., Stolzenberg-Solomon R. Z., Mocci E., Zhang M., et al. . (2018). Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer. Nat. Commun. 9:556. 10.1038/s41467-018-02942-5, PMID: PubMed DOI PMC
Kozomara A., Birgaoanu M., Griffiths-Jones S. (2019). miRBase: from microRNA sequences to function. Nucleic Acids Res. 47, D155–D162. 10.1093/nar/gky1141, PMID: PubMed DOI PMC
Kupcinskas J., Wex T., Link A., Leja M., Bruzaite I., Steponaitiene R., et al. . (2014). Gene polymorphisms of microRNAs in helicobacter pylori-induced high risk atrophic gastritis and gastric cancer. PLoS One 9:e87467. 10.1371/journal.pone.0087467, PMID: PubMed DOI PMC
Landi D., Gemignani F., Landi S. (2012). Role of variations within microRNA-binding sites in cancer. Mutagenesis 27, 205–210. 10.1093/mutage/ger055 PubMed DOI
Lin Y., Nakatochi M., Hosono Y., Ito H., Kamatani Y., Inoko A., et al. . (2020). Genome-wide association meta-analysis identifies GP2 gene risk variants for pancreatic cancer. Nat. Commun. 11:3175. 10.1038/s41467-020-16711-w, PMID: PubMed DOI PMC
Liu C., Zhang F., Li T., Lu M., Wang L., Yue W., et al. . (2012). MirSNP, a database of polymorphisms altering miRNA target sites, identifies miRNA-related SNPs in GWAS SNPs and eQTLs. BMC Genomics 13:661. 10.1186/1471-2164-13-661, PMID: PubMed DOI PMC
Lonsdale J., Thomas J., Salvatore M., Phillips R., Lo E., Shad S., et al. . (2013). The genotype-tissue expression (GTEx) project. Nat. Genet. 45, 580–585. 10.1038/ng.2653, PMID: PubMed DOI PMC
López de Maturana E., Rodríguez J. A., Alonso L., Lao O., Molina-Montes E., Martín-Antoniano I. A., et al. . (2021). A multilayered post-GWAS assessment on genetic susceptibility to pancreatic cancer. Genome Med. 13:15. 10.1186/s13073-020-00816-4, PMID: PubMed DOI PMC
Low S. K., Kuchiba A., Zembutsu H., Saito A., Takahashi A., Kubo M., et al. . (2010). Genome-wide association study of pancreatic cancer in Japanese population. PLoS One 5:e11824. 10.1371/journal.pone.0011824, PMID: PubMed DOI PMC
Macauda A., Calvetti D., Maccari G., Hemminki K., Försti A., Goldschmidt H., et al. . (2017). Identification of miRSNPs associated with the risk of multiple myeloma. Int. J. Cancer 140, 526–534. 10.1002/ijc.30465, PMID: PubMed DOI
Maisonneuve P., Lowenfels A. B. (2015). Risk factors for pancreatic cancer: a summary review of meta-analytical studies. Int. J. Epidemiol. 44, 186–198. 10.1093/ije/dyu240, PMID: PubMed DOI
McCarthy S., Das S., Kretzschmar W., Delaneau O., Wood A. R., Teumer A., et al. . (2016). A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283. 10.1038/ng.3643, PMID: PubMed DOI PMC
Molina-Montes E., Coscia C., Gómez-Rubio P., Fernández A., Boenink R., Rava M., et al. . (2020). Deciphering the complex interplay between pancreatic cancer, diabetes mellitus subtypes and obesity/BMI through causal inference and mediation analyses. Gut 70, 319–329. 10.1136/gutjnl-2019-319990, PMID: PubMed DOI
Mosallaei M., Simonian M., Esmaeilzadeh E., Bagheri H., Miraghajani M., Salehi A. R., et al. . (2019). Single nucleotide polymorphism rs10889677 in miRNAs let-7e and let-7f binding site of IL23R gene is a strong colorectal cancer determinant: report and meta-analysis. Cancer Genet. 239, 46–53. 10.1016/j.cancergen.2019.09.003, PMID: PubMed DOI
Petersen G. M., Amundadottir L., Fuchs C. S., Kraft P., Stolzenberg-Solomon R. Z., Jacobs K. B., et al. . (2010). A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Nat. Genet. 42, 224–228. 10.1038/ng.522, PMID: PubMed DOI PMC
Petkevicius V., Salteniene V., Juzenas S., Wex T., Link A., Leja M., et al. . (2017). Polymorphisms of microRNA target genes IL12B, INSR, CCND1 and IL10 in gastric cancer. World J. Gastroenterol. 23, 3480–3487. 10.3748/wjg.v23.i19.3480, PMID: PubMed DOI PMC
Principe D. R., Rana A. (2020). Updated risk factors to inform early pancreatic cancer screening and identify high risk patients: pancreatic cancer risk factors. Cancer Lett. 485, 56–65. 10.1016/j.canlet.2020.04.022, PMID: PubMed DOI PMC
Rawat M., Kadian K., Gupta Y., Kumar A., Chain P. S. G., Kovbasnjuk O., et al. . (2019). microRNA in pancreatic cancer: from biology to therapeutic potential. Gene 10:752. 10.3390/genes10100752, PMID: PubMed DOI PMC
Riboli E., Hunt K., Slimani N., Ferrari P., Norat T., Fahey M., et al. . (2002). European prospective investigation into cancer and nutrition (EPIC): study populations and data collection. Public Health Nutr. 5, 1113–1124. 10.1079/PHN2002394, PMID: PubMed DOI
Ryan B. M. (2017). microRNAs in cancer susceptibility. Adv. Cancer Res. 135, 151–171. 10.1016/bs.acr.2017.06.004 PubMed DOI
Ryan B. M., Robles A. I., McClary A. C., Haznadar M., Bowman E. D., Pine S. R., et al. . (2015). Identification of a functional SNP in the 3'UTR of CXCR2 that is associated with reduced risk of lung cancer. Cancer Res. 75, 566–575. 10.1158/0008-5472.CAN-14-2101, PMID: PubMed DOI PMC
Song Z., Li J., Zhang L., Deng J., Fang Z., Xiang X., et al. . (2019). UCHL3 promotes pancreatic cancer progression and chemo-resistance through FOXM1 stabilization. Am. J. Cancer Res. 9, 1970–1981. PMID: PubMed PMC
Tang Z., Li C., Kang B., Gao G., Li C., Zhang Z. (2017). GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 45, W98–W102. 10.1093/nar/gkx247, PMID: PubMed DOI PMC
Timpson N. J., Lindgren C. M., Weedon M. N., Randall J., Ouwehand W. H., Strachan D. P., et al. . (2009). Adiposity-related heterogeneity in patterns of type 2 diabetes susceptibility observed in genome-wide association data. Diabetes 58, 505–510. 10.2337/db08-0906, PMID: PubMed DOI PMC
van Buuren S., Groothuis-Oudshoorn K. (2011). Mice: multivariate imputation by chained equations in R. J. Stat. Softw. 45, 1–67. 10.18637/jss.v045.i03 DOI
Ward L. D., Kellis M. (2016). HaploReg v4: systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease. Nucleic Acids Res. 44, D877–D881. 10.1093/nar/gkv1340, PMID: PubMed DOI PMC
Wolpin B. M., Rizzato C., Kraft P., Kooperberg C., Petersen G. M., Wang Z., et al. . (2014). Genome-wide association study identifies multiple susceptibility loci for pancreatic cancer. Nat. Genet. 46, 994–1000. 10.1038/ng.3052, PMID: PubMed DOI PMC
Wu C., Miao X., Huang L., Che X., Jiang G., Yu D., et al. . (2012). Genome-wide association study identifies five loci associated with susceptibility to pancreatic cancer in Chinese populations. Nat. Genet. 44, 62–66. 10.1038/ng.1020 PubMed DOI
Xu X., Qian D., Liu H., Cruz D., Luo S., Walsh K. M., et al. . (2019). Genetic variants in the liver kinase B1-AMP-activated protein kinase pathway genes and pancreatic cancer risk. Mol. Carcinog. 58, 1338–1348. 10.1002/mc.23018, PMID: PubMed DOI PMC
Yang W., Liu H., Duan B., Xu X., Carmody D., Luo S., et al. . (2019). Three novel genetic variants in NRF2 signaling pathway genes are associated with pancreatic cancer risk. Cancer Sci. 110, 2022–2032. 10.1111/cas.14017, PMID: PubMed DOI PMC
Yonemori K., Kurahara H., Maemura K., Natsugoe S. (2017). microRNA in pancreatic cancer. J. Hum. Genet. 62, 33–40. 10.1038/jhg.2016.59, PMID: PubMed DOI
Yu S., Lu Z., Liu C., Meng Y., Ma Y., Zhao W., et al. . (2010). miRNA-96 suppresses KRAS and functions as a tumor suppressor gene in pancreatic cancer. Cancer Res. 70, 6015–6025. 10.1158/0008-5472.CAN-09-4531, PMID: PubMed DOI
Zhang Y. D., Hurson A. N., Zhang H., Choudhury P. P., Easton D. F., Milne R. L., et al. . (2020). Assessment of polygenic architecture and risk prediction based on common variants across fourteen cancers. Nat. Commun. 11, 1–13. 10.1038/s41467-020-16483-3 PubMed DOI PMC
Zhang M., Wang Z., Obazee O., Jia J., Childs E. J., Hoskins J., et al. . (2016). Three new pancreatic cancer susceptibility signals identified on chromosomes 1q32.1, 5p15.33 and 8q24.21. Oncotarget 7, 66328–66343. 10.18632/oncotarget.11041, PMID: PubMed DOI PMC
Zhao W., Rasheed A., Tikkanen E., Lee J.-J., Butterworth A. S., Howson J. M. M., et al. . (2017). Identification of new susceptibility loci for type 2 diabetes and shared etiological pathways with coronary heart disease. Nat. Genet. 49, 1450–1457. 10.1038/ng.3943, PMID: PubMed DOI PMC
Zhao W.-G., Yu S.-N., Lu Z.-H., Ma Y.-H., Gu Y.-M., Chen J. (2010). The miR-217 microRNA functions as a potential tumor suppressor in pancreatic ductal adenocarcinoma by targeting KRAS. Carcinogenesis 31, 1726–1733. 10.1093/carcin/bgq160, PMID: PubMed DOI
Zheng J., Huang X., Tan W., Yu D., Du Z., Chang J., et al. . (2016). Pancreatic cancer risk variant in LINC00673 creates a miR-1231 binding site and interferes with PTPN11 degradation. Nat. Genet. 48, 747–757. 10.1038/ng.3568, PMID: PubMed DOI
Zhong J., Jermusyk A., Wu L., Hoskins J. W., Collins I., Mocci E., et al. . (2020). A transcriptome-wide association study identifies novel candidate susceptibility genes for pancreatic cancer. J. Natl. Cancer Inst. 112, 1003–1012. 10.1093/jnci/djz246 PubMed DOI PMC