• This record comes from PubMed

Association of Genetic Variants Affecting microRNAs and Pancreatic Cancer Risk

. 2021 ; 12 () : 693933. [epub] 20210830

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

Grant support
MC_UU_12015/1 Medical Research Council - United Kingdom
MR/N003284/1 Medical Research Council - United Kingdom

Genetic factors play an important role in the susceptibility to pancreatic cancer (PC). However, established loci explain a small proportion of genetic heritability for PC; therefore, more progress is needed to find the missing ones. We aimed at identifying single nucleotide polymorphisms (SNPs) affecting PC risk through effects on micro-RNA (miRNA) function. We searched in silico the genome for SNPs in miRNA seed sequences or 3 prime untranslated regions (3'UTRs) of miRNA target genes. Genome-wide association data of PC cases and controls from the Pancreatic Cancer Cohort (PanScan) Consortium and the Pancreatic Cancer Case-Control (PanC4) Consortium were re-analyzed for discovery, and genotyping data from two additional consortia (PanGenEU and PANDoRA) were used for replication, for a total of 14,062 cases and 11,261 controls. None of the SNPs reached genome-wide significance in the meta-analysis, but for three of them the associations were in the same direction in all the study populations and showed lower value of p in the meta-analyses than in the discovery phase. Specifically, rs7985480 was consistently associated with PC risk (OR = 1.12, 95% CI 1.07-1.17, p = 3.03 × 10-6 in the meta-analysis). This SNP is in linkage disequilibrium (LD) with rs2274048, which modulates binding of various miRNAs to the 3'UTR of UCHL3, a gene involved in PC progression. In conclusion, our results expand the knowledge of the genetic PC risk through miRNA-related SNPs and show the usefulness of functional prioritization to identify genetic polymorphisms associated with PC risk.

1st Department of Medicine Medical School University of Pécs Pécs Hungary

1st Faculty of Medicine Institute of Biology and Medical Genetics Charles University Prague Czechia

1st Propaedeutic University Surgery Clinic Hippocratio General Hospital Medical School National and Kapodistrian University of Athens Athens Greece

ARC NET Centre for Applied Research on Cancer University and Hospital Trust of Verona Verona Italy

Biomedical Center Faculty of Medicine in Pilsen Charles University Pilsen Czechia

Biomedical Centre and Department of Surgery Faculty of Medicine in Pilsen Charles University Pilsen Czechia

Blood Transfusion Service Azienda Ospedaliero Universitaria Meyer Children's Hospital Florence Italy

Deparment of Pathology Cancer Center Amsterdam Amsterdam University Medical Centers University of Amsterdam Amsterdam Netherlands

Department for Determinants of Chronic Diseases Bilthoven Netherlands

Department of Biology University of Pisa Pisa Italy

Department of Biomedical Sciences Humanitas University Milan Italy

Department of Digestive Tract Diseases Medical University of Lodz Lodz Poland

Department of Gastroenterology Institute for Digestive Research Medical Academy Lithuanian University of Health Sciences Kaunas Lithuania

Department of Gastroenterology San Carlo Hospital Potenza Italy

Department of General Surgery University of Heidelberg Heidelberg Germany

Department of General Visceral and Thoracic Surgery University Medical Center Hamburg Eppendorf Hamburg Germany

Department of Hematology Institute of Hematology and Transfusion Medicine Warsaw Poland

Department of Medical Oncology Cancer Center Amsterdam Amsterdam University Medical Center University of Amsterdam Amsterdam Netherlands

Department of Medicine Centre for Translational Medicine University of Szeged Szeged Hungary

Department of Medicine DIMED Padua University Hospital Padua Italy

Department of Molecular and Clinical Cancer Medicine University of Liverpool Liverpool United Kingdom

Department of Molecular Biology of Cancer Institute of Experimental Medicine of the Czech Academy of Sciences Prague Czechia

Department of Oncology Faculty of Medicine and Dentistry Palacky University Olomouc and University Hospital Olomouc Olomouc Czechia

Department of Oncology Fondazione IRCCS Casa Sollievo della Sofferenza Hospital San Giovanni Rotondo Italy

Department of Radiology and Oncology Institute of Cancer of São Paulo São Paulo Brazil

Department of Surgery 1 Faculty of Medicine and Dentistry Palacky University Olomouc and University Hospital Olomouc Olomouc Czechia

Department of Surgery DiSCOG Padua University Hospital Padua Italy

Department of Surgery Erasmus Medical Center Erasmus University Rotterdam Netherlands

Department of Surgery Faculty Hospital Kralovske Vinohrady and 3rd Faculty of Medicine Charles University Prague Czechia

Digestive and Liver Disease Unit Sant'Andrea Hospital Rome Italy

Division of Clinical Epidemiology and Aging Research German Cancer Research Center Heidelberg Germany

Division of Experimental Oncology Gastroenterology and Gastrointestinal Endoscopy Unit Vita Salute San Raffaele University IRCCS San Raffaele Scientific Institute Milan Italy

Division of Gastroenterology and Digestive Endoscopy Department of Gastroenterology Humanitas Clinical and Research Center IRCCS Milan Italy

Division of Gastroenterology and Research Laboratory Fondazione IRCCS Casa Sollievo della Sofferenza Hospital San Giovanni Rotondo Italy

Division of General and Transplant Surgery University of Pisa Pisa Italy

Division of Preventive Oncology German Cancer Research Center Heidelberg Germany

Endoscopic Surgery Department Hippocratio General Hospital of Athens Athens Greece

Faculty of Medicine and Psychology Sapienza University of Rome Rome Italy

Faculty of Medicine University of São Paulo São Paulo Brazil

Fundeni Clinical Institute Bucharest Romania

General Surgery Department of Translational Research and New Technologies in Medicine and Surgery University of Pisa Pisa Italy

Genetic and Molecular Epidemiology Group Spanish National Cancer Research Centre Madrid Spain

Genomic Epidemiology Group German Cancer Research Center Heidelberg Germany

German Cancer Consortium Heidelberg Germany

Institute for Risk Assessment Sciences Utrecht University Utrecht Netherlands

Institute for Translational Medicine Medical School University of Pécs Pécs Hungary

Laboratory for Applied Science and Technology in Health Carlos Chagas Institute Curitiba Brazil

Laboratory of Biology Medical School National and Kapodistrian University of Athens Athens Greece

Medical Faculty Heidelberg University of Heidelberg Heidelberg Germany

Oncological Department Azienda USL Toscana Nord Ovest Oncological Unit of Massa Carrara Carrara Italy

Pancreatic Surgery Unit Humanitas Clinical and Research Center IRCCS Milan Italy

Pancreato Biliary Endoscopy and Endosonography Division Pancreas Translational and Clinical Research Center IRSSC San Raffaele Scientific Institute Milan Italy

Szent György University Teaching Hospital of County Fejér Székesfehérvár Hungary

See more in PubMed

Abdi A., Zafarpiran M., Farsani Z. S. (2020). The computational analysis conducted on miRNA target sites in association with SNPs at 3’UTR of ADHD-implicated genes. Cent. Nerv. Syst. Agents Med. Chem. 20, 58–75. 10.2174/1871524919666191014104843, PMID: PubMed DOI PMC

Amundadottir L., Kraft P., Stolzenberg-Solomon R. Z., Fuchs C. S., Petersen G. M., Arslan A. A., et al. . (2009). Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer. Nat. Genet. 41, 986–990. 10.1038/ng.429, PMID: PubMed DOI PMC

Bahreini F., Ramezani S., Shahangian S. S., Salehi Z., Mashayekhi F. (2020). miR-559 polymorphism rs58450758 is linked to breast cancer. Br. J. Biomed. Sci. 77, 29–34. 10.1080/09674845.2019.1683309, PMID: PubMed DOI

Barone E., Corrado A., Gemignani F., Landi S. (2016). Environmental risk factors for pancreatic cancer: an update. Arch. Toxicol. 90, 2617–2642. 10.1007/s00204-016-1821-9, PMID: PubMed DOI

Boyle A. P., Hong E. L., Hariharan M., Cheng Y., Schaub M. A., Kasowski M., et al. . (2012). Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 22, 1790–1797. 10.1101/gr.137323.112, PMID: PubMed DOI PMC

Campa D., Capurso G., Pastore M., Talar-Wojnarowska R., Milanetto A. C., Landoni L., et al. . (2016a). Common germline variants within the CDKN2A/2B region affect risk of pancreatic neuroendocrine tumors. Sci. Rep. 6:39565. 10.1038/srep39565 PubMed DOI PMC

Campa D., Gentiluomo M., Obazee O., Ballerini A., Vodickova L., Hegyi P., et al. . (2020). Genome-wide association study identifies an early onset pancreatic cancer risk locus. Int. J. Cancer 147, 2065–2074. 10.1002/ijc.33004, PMID: PubMed DOI

Campa D., Pastore M., Gentiluomo M., Talar-Wojnarowska R., Kupcinskas J., Malecka-Panas E., et al. . (2016b). Functional single nucleotide polymorphisms within the cyclindependent kinase inhibitor 2A/2B region affect pancreatic cancer risk. Oncotarget 7, 57011–57020. 10.18632/oncotarget.10935 PubMed DOI PMC

Campa D., Rizzato C., Bauer A. S., Werner J., Capurso G., Costello E., et al. . (2013a). Lack of replication of seven pancreatic cancer susceptibility loci identified in two Asian populations. Cancer Epidemiol. Biomark. Prev. 22, 320–323. 10.1158/1055-9965.EPI-12-1182, PMID: PubMed DOI

Campa D., Rizzato C., Capurso G., Giese N., Funel N., Greenhalf W., et al. . (2013b). Genetic susceptibility to pancreatic cancer and its functional characterisation: the PANcreatic disease research (PANDoRA) consortium. Dig. Liver Dis. 45, 95–99. 10.1016/j.dld.2012.09.014 PubMed DOI

Campa D., Rizzato C., Stolzenberg-Solomon R., Pacetti P., Vodicka P., Cleary S. P., et al. . (2015). TERT gene harbors multiple variants associated with pancreatic cancer susceptibility. Int. J. Cancer 137, 2175–2183. 10.1002/ijc.29590, PMID: PubMed DOI PMC

Childs E. J., Mocci E., Campa D., Bracci P. M., Gallinger S., Goggins M., et al. . (2015). Common variation at 2p13.3, 3q29, 7p13 and 17q25.1 associated with susceptibility to pancreatic cancer. Nat. Genet. 47, 911–916. 10.1038/ng.3341, PMID: PubMed DOI PMC

Corradi C., Gentiluomo M., Gajdán L., Cavestro G. M., Kreivenaite E., Di Franco G., et al. . (2021). Genome-wide scan of long noncoding RNA single nucleotide polymorphisms and pancreatic cancer susceptibility. Int. J. Cancer 148, 2779–2788. 10.1002/ijc.33475, PMID: PubMed DOI

Das S., Forer L., Schönherr S., Sidore C., Locke A. E., Kwong A., et al. . (2016). Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287. 10.1038/ng.3656, PMID: PubMed DOI PMC

Dayem Ullah A. Z., Lemoine N. R., Chelala C. (2013). A practical guide for the functional annotation of genetic variations using SNPnexus. Brief. Bioinform. 14, 437–447. 10.1093/bib/bbt004, PMID: PubMed DOI

Feng Y., Liu H., Duan B., Liu Z., Abbruzzese J., Walsh K. M., et al. . (2019). Potential functional variants in SMC2 and TP53 in the AURORA pathway genes and risk of pancreatic cancer. Carcinogenesis 40, 521–528. 10.1093/carcin/bgz029, PMID: PubMed DOI PMC

Gallagher M. D., Chen-Plotkin A. S. (2018). The post-GWAS era: from association to function. Am. J. Hum. Genet. 102, 717–730. 10.1016/j.ajhg.2018.04.002, PMID: PubMed DOI PMC

Gentiluomo M., Canzian F., Nicolini A., Gemignani F., Landi S., Campa D. (2020). Germline genetic variability in pancreatic cancer risk and prognosis. Semin. Cancer Biol. 10.1016/j.semcancer.2020.08.003 [Epub ahead of print], PMID: PubMed DOI

Gentiluomo M., Lu Y., Canzian F., Campa D. (2019a). Genetic variants in taste-related genes and risk of pancreatic cancer. Mutagenesis 34, 391–394. 10.1093/mutage/gez032 PubMed DOI

Gentiluomo M., Peduzzi G., Lu Y., Campa D., Canzian F. (2019b). Genetic polymorphisms in inflammatory genes and pancreatic cancer risk: a two-phase study on more than 14 000 individuals. Mutagenesis 34, 395–401. 10.1093/mutage/gez040 PubMed DOI

Gomez-Rubio P., Zock J.-P., Rava M., Marquez M., Sharp L., Hidalgo M., et al. . (2017). Reduced risk of pancreatic cancer associated with asthma and nasal allergies. Gut 66, 314–322. 10.1136/gutjnl-2015-310442, PMID: PubMed DOI

Gong J., Liu C., Liu W., Wu Y., Ma Z., Chen H., et al. . (2015). An update of miRNASNP database for better SNP selection by GWAS data, miRNA expression and online tools. Database 2015:bav029. 10.1093/database/bav029, PMID: PubMed DOI PMC

Graham J. W. (2009). Missing data analysis: making it work in the real world. Annu. Rev. Psychol. 60, 549–576. 10.1146/annurev.psych.58.110405.085530, PMID: PubMed DOI

Hu C., Hart S. N., Polley E. C., Gnanaolivu R., Shimelis H., Lee K. Y., et al. . (2018). Association between inherited germline mutations in cancer predisposition genes and risk of pancreatic cancer. J. Am. Med. Assoc. 319, 2401–2409. 10.1001/jama.2018.6228, PMID: PubMed DOI PMC

Iuliano R., Vismara M. F. M., Dattilo V., Trapasso F., Baudi F., Perrotti N. (2013). The role of microRNAs in cancer susceptibility. Biomed. Res. Int. 2013:591931. 10.1155/2013/591931, PMID: PubMed DOI PMC

Jiao L. R., Frampton A. E., Jacob J., Pellegrino L., Krell J., Giamas G., et al. . (2012). microRNAs targeting oncogenes are down-regulated in pancreatic malignant transformation from benign tumors. PLoS One 7:e32068. 10.1371/journal.pone.0032068, PMID: PubMed DOI PMC

Klein A. P., Wolpin B. M., Risch H. A., Stolzenberg-Solomon R. Z., Mocci E., Zhang M., et al. . (2018). Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer. Nat. Commun. 9:556. 10.1038/s41467-018-02942-5, PMID: PubMed DOI PMC

Kozomara A., Birgaoanu M., Griffiths-Jones S. (2019). miRBase: from microRNA sequences to function. Nucleic Acids Res. 47, D155–D162. 10.1093/nar/gky1141, PMID: PubMed DOI PMC

Kupcinskas J., Wex T., Link A., Leja M., Bruzaite I., Steponaitiene R., et al. . (2014). Gene polymorphisms of microRNAs in helicobacter pylori-induced high risk atrophic gastritis and gastric cancer. PLoS One 9:e87467. 10.1371/journal.pone.0087467, PMID: PubMed DOI PMC

Landi D., Gemignani F., Landi S. (2012). Role of variations within microRNA-binding sites in cancer. Mutagenesis 27, 205–210. 10.1093/mutage/ger055 PubMed DOI

Lin Y., Nakatochi M., Hosono Y., Ito H., Kamatani Y., Inoko A., et al. . (2020). Genome-wide association meta-analysis identifies GP2 gene risk variants for pancreatic cancer. Nat. Commun. 11:3175. 10.1038/s41467-020-16711-w, PMID: PubMed DOI PMC

Liu C., Zhang F., Li T., Lu M., Wang L., Yue W., et al. . (2012). MirSNP, a database of polymorphisms altering miRNA target sites, identifies miRNA-related SNPs in GWAS SNPs and eQTLs. BMC Genomics 13:661. 10.1186/1471-2164-13-661, PMID: PubMed DOI PMC

Lonsdale J., Thomas J., Salvatore M., Phillips R., Lo E., Shad S., et al. . (2013). The genotype-tissue expression (GTEx) project. Nat. Genet. 45, 580–585. 10.1038/ng.2653, PMID: PubMed DOI PMC

López de Maturana E., Rodríguez J. A., Alonso L., Lao O., Molina-Montes E., Martín-Antoniano I. A., et al. . (2021). A multilayered post-GWAS assessment on genetic susceptibility to pancreatic cancer. Genome Med. 13:15. 10.1186/s13073-020-00816-4, PMID: PubMed DOI PMC

Low S. K., Kuchiba A., Zembutsu H., Saito A., Takahashi A., Kubo M., et al. . (2010). Genome-wide association study of pancreatic cancer in Japanese population. PLoS One 5:e11824. 10.1371/journal.pone.0011824, PMID: PubMed DOI PMC

Macauda A., Calvetti D., Maccari G., Hemminki K., Försti A., Goldschmidt H., et al. . (2017). Identification of miRSNPs associated with the risk of multiple myeloma. Int. J. Cancer 140, 526–534. 10.1002/ijc.30465, PMID: PubMed DOI

Maisonneuve P., Lowenfels A. B. (2015). Risk factors for pancreatic cancer: a summary review of meta-analytical studies. Int. J. Epidemiol. 44, 186–198. 10.1093/ije/dyu240, PMID: PubMed DOI

McCarthy S., Das S., Kretzschmar W., Delaneau O., Wood A. R., Teumer A., et al. . (2016). A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283. 10.1038/ng.3643, PMID: PubMed DOI PMC

Molina-Montes E., Coscia C., Gómez-Rubio P., Fernández A., Boenink R., Rava M., et al. . (2020). Deciphering the complex interplay between pancreatic cancer, diabetes mellitus subtypes and obesity/BMI through causal inference and mediation analyses. Gut 70, 319–329. 10.1136/gutjnl-2019-319990, PMID: PubMed DOI

Mosallaei M., Simonian M., Esmaeilzadeh E., Bagheri H., Miraghajani M., Salehi A. R., et al. . (2019). Single nucleotide polymorphism rs10889677 in miRNAs let-7e and let-7f binding site of IL23R gene is a strong colorectal cancer determinant: report and meta-analysis. Cancer Genet. 239, 46–53. 10.1016/j.cancergen.2019.09.003, PMID: PubMed DOI

Petersen G. M., Amundadottir L., Fuchs C. S., Kraft P., Stolzenberg-Solomon R. Z., Jacobs K. B., et al. . (2010). A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Nat. Genet. 42, 224–228. 10.1038/ng.522, PMID: PubMed DOI PMC

Petkevicius V., Salteniene V., Juzenas S., Wex T., Link A., Leja M., et al. . (2017). Polymorphisms of microRNA target genes IL12B, INSR, CCND1 and IL10 in gastric cancer. World J. Gastroenterol. 23, 3480–3487. 10.3748/wjg.v23.i19.3480, PMID: PubMed DOI PMC

Principe D. R., Rana A. (2020). Updated risk factors to inform early pancreatic cancer screening and identify high risk patients: pancreatic cancer risk factors. Cancer Lett. 485, 56–65. 10.1016/j.canlet.2020.04.022, PMID: PubMed DOI PMC

Rawat M., Kadian K., Gupta Y., Kumar A., Chain P. S. G., Kovbasnjuk O., et al. . (2019). microRNA in pancreatic cancer: from biology to therapeutic potential. Gene 10:752. 10.3390/genes10100752, PMID: PubMed DOI PMC

Riboli E., Hunt K., Slimani N., Ferrari P., Norat T., Fahey M., et al. . (2002). European prospective investigation into cancer and nutrition (EPIC): study populations and data collection. Public Health Nutr. 5, 1113–1124. 10.1079/PHN2002394, PMID: PubMed DOI

Ryan B. M. (2017). microRNAs in cancer susceptibility. Adv. Cancer Res. 135, 151–171. 10.1016/bs.acr.2017.06.004 PubMed DOI

Ryan B. M., Robles A. I., McClary A. C., Haznadar M., Bowman E. D., Pine S. R., et al. . (2015). Identification of a functional SNP in the 3'UTR of CXCR2 that is associated with reduced risk of lung cancer. Cancer Res. 75, 566–575. 10.1158/0008-5472.CAN-14-2101, PMID: PubMed DOI PMC

Song Z., Li J., Zhang L., Deng J., Fang Z., Xiang X., et al. . (2019). UCHL3 promotes pancreatic cancer progression and chemo-resistance through FOXM1 stabilization. Am. J. Cancer Res. 9, 1970–1981. PMID: PubMed PMC

Tang Z., Li C., Kang B., Gao G., Li C., Zhang Z. (2017). GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 45, W98–W102. 10.1093/nar/gkx247, PMID: PubMed DOI PMC

Timpson N. J., Lindgren C. M., Weedon M. N., Randall J., Ouwehand W. H., Strachan D. P., et al. . (2009). Adiposity-related heterogeneity in patterns of type 2 diabetes susceptibility observed in genome-wide association data. Diabetes 58, 505–510. 10.2337/db08-0906, PMID: PubMed DOI PMC

van Buuren S., Groothuis-Oudshoorn K. (2011). Mice: multivariate imputation by chained equations in R. J. Stat. Softw. 45, 1–67. 10.18637/jss.v045.i03 DOI

Ward L. D., Kellis M. (2016). HaploReg v4: systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease. Nucleic Acids Res. 44, D877–D881. 10.1093/nar/gkv1340, PMID: PubMed DOI PMC

Wolpin B. M., Rizzato C., Kraft P., Kooperberg C., Petersen G. M., Wang Z., et al. . (2014). Genome-wide association study identifies multiple susceptibility loci for pancreatic cancer. Nat. Genet. 46, 994–1000. 10.1038/ng.3052, PMID: PubMed DOI PMC

Wu C., Miao X., Huang L., Che X., Jiang G., Yu D., et al. . (2012). Genome-wide association study identifies five loci associated with susceptibility to pancreatic cancer in Chinese populations. Nat. Genet. 44, 62–66. 10.1038/ng.1020 PubMed DOI

Xu X., Qian D., Liu H., Cruz D., Luo S., Walsh K. M., et al. . (2019). Genetic variants in the liver kinase B1-AMP-activated protein kinase pathway genes and pancreatic cancer risk. Mol. Carcinog. 58, 1338–1348. 10.1002/mc.23018, PMID: PubMed DOI PMC

Yang W., Liu H., Duan B., Xu X., Carmody D., Luo S., et al. . (2019). Three novel genetic variants in NRF2 signaling pathway genes are associated with pancreatic cancer risk. Cancer Sci. 110, 2022–2032. 10.1111/cas.14017, PMID: PubMed DOI PMC

Yonemori K., Kurahara H., Maemura K., Natsugoe S. (2017). microRNA in pancreatic cancer. J. Hum. Genet. 62, 33–40. 10.1038/jhg.2016.59, PMID: PubMed DOI

Yu S., Lu Z., Liu C., Meng Y., Ma Y., Zhao W., et al. . (2010). miRNA-96 suppresses KRAS and functions as a tumor suppressor gene in pancreatic cancer. Cancer Res. 70, 6015–6025. 10.1158/0008-5472.CAN-09-4531, PMID: PubMed DOI

Zhang Y. D., Hurson A. N., Zhang H., Choudhury P. P., Easton D. F., Milne R. L., et al. . (2020). Assessment of polygenic architecture and risk prediction based on common variants across fourteen cancers. Nat. Commun. 11, 1–13. 10.1038/s41467-020-16483-3 PubMed DOI PMC

Zhang M., Wang Z., Obazee O., Jia J., Childs E. J., Hoskins J., et al. . (2016). Three new pancreatic cancer susceptibility signals identified on chromosomes 1q32.1, 5p15.33 and 8q24.21. Oncotarget 7, 66328–66343. 10.18632/oncotarget.11041, PMID: PubMed DOI PMC

Zhao W., Rasheed A., Tikkanen E., Lee J.-J., Butterworth A. S., Howson J. M. M., et al. . (2017). Identification of new susceptibility loci for type 2 diabetes and shared etiological pathways with coronary heart disease. Nat. Genet. 49, 1450–1457. 10.1038/ng.3943, PMID: PubMed DOI PMC

Zhao W.-G., Yu S.-N., Lu Z.-H., Ma Y.-H., Gu Y.-M., Chen J. (2010). The miR-217 microRNA functions as a potential tumor suppressor in pancreatic ductal adenocarcinoma by targeting KRAS. Carcinogenesis 31, 1726–1733. 10.1093/carcin/bgq160, PMID: PubMed DOI

Zheng J., Huang X., Tan W., Yu D., Du Z., Chang J., et al. . (2016). Pancreatic cancer risk variant in LINC00673 creates a miR-1231 binding site and interferes with PTPN11 degradation. Nat. Genet. 48, 747–757. 10.1038/ng.3568, PMID: PubMed DOI

Zhong J., Jermusyk A., Wu L., Hoskins J. W., Collins I., Mocci E., et al. . (2020). A transcriptome-wide association study identifies novel candidate susceptibility genes for pancreatic cancer. J. Natl. Cancer Inst. 112, 1003–1012. 10.1093/jnci/djz246 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...