Comparison of proteomic approaches used for the detection of potential biomarkers of Alzheimer's disease in blood plasma
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
A2_FPBT_2021_016
Specific University Research
A1_FPBT_2021_003
Specific University Research
A2_FCHI-2020_003
Specific University Research
17-05292S
Czech Science Foundation
LTAIN19007
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
34545700
DOI
10.1002/jssc.202100468
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer's disease, biomarkers, blood plasma, mass spectrometry, proteomics,
- MeSH
- Alzheimerova nemoc * krev diagnóza MeSH
- biologické markery krev MeSH
- chromatografie kapalinová metody MeSH
- krevní plazma chemie MeSH
- krevní proteiny analýza MeSH
- lidé středního věku MeSH
- lidé MeSH
- lipidy krev MeSH
- metabolismus lipidů MeSH
- proteomika metody MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice metody MeSH
- tandemová hmotnostní spektrometrie metody MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
- krevní proteiny MeSH
- lipidy MeSH
At present, Alzheimer's disease is detected mainly using psychological tests, which can only confirm the disease in its more advanced phases. Therefore, bioanalytical possibilities for detecting this disease earlier are being investigated. To date, the results of analyses, which focus mainly on the study of lipids and proteins either in cerebrospinal fluid or much less often in blood plasma, do not provide satisfactory results. In addition, cerebrospinal fluid sampling is uncomfortable for the patients and involves many health risks. In this work, we deal with proteomic analysis using Matrix-Assisted Laser Desorption/Ionisation-Time of Flight and Liquid Chromatography coupled to tandem Mass Spectrometry of blood plasma with a focus on various ways of preanalytical sample treatments. This should lead to results improvement and facilitate the subsequent evaluation using principal component analysis and partial least squares discriminant analysis. The obtained results indicate the direction of further research, namely the study of interactions between proteins and lipids contained in blood plasma. These substances may be regarded as potential biomarkers allowing for the diagnosis of Alzheimer´s disease even in its early stages.
Zobrazit více v PubMed
Ueno I, Sakai T, Yamaoka M, Yoshida R, Tsugita A. Analysis of blood plasma proteins in patients with Alzheimer's disease by two-dimensional electrophoresis, sequence homology and immunodetection. Electrophoresis. 2000;21:1832-45.
Zahodne LB, Ornstein K, Cosentino S, Devanand DP, Stern Y. Longitudinal relationships between Alzheimer disease progression and psychosis, depressed mood, and agitation/aggression. Am J Geriatr Psychiatr. 2015;23:130-40.
Hampel H, O'Bryant SE, Molinuevo JL, Zetterberg H, Masters CL, Lista S, Kiddle SJ, Batrla R, Blennow K. Blood-based biomarkers for Alzheimer disease: Mapping the road to the clinic. Nat Rev Neurol. 2018;14:639-52.
Dauwels J, Vialatte F, Cichocki A. Diagnosis of Alzheimer's disease from EEG signals: Where are we standing? Curr Alzheimer Res. 2010;7:487-505.
Alberdi A, Aztiria A, Basarab A. On the early diagnosis of Alzheimer's disease from multimodal signals: A survey. Artif Intell Med. 2016;71:1-29.
Cacace R, Sleegers K, Van Broeckhoven C. Molecular genetics of early-onset Alzheimer's disease revisited. Alzheimer's Dementia. 2016;12:733-48.
Fortea J, Carmona-Iragui M, Benejam B, Fernandez S, Videla L, Barroeta I, Alcolea D, Pegueroles J, Munoz L, Belbin O, de Leon MJ, Maceski AM, Hirtz C, Clarimon J, Videla S, Delaby C, Lehmann S, Blesa R, Lleo A. Plasma and CSF biomarkers for the diagnosis of Alzheimer's disease in adults with Down syndrome: A cross-sectional study. Lancet Neurol. 2018;17:860-9.
Boschetti E, D'Amato A, Candiano G, Righetti PG. Protein biomarkers for early detection of diseases: The decisive contribution of combinatorial peptide ligand libraries. J Proteomics. 2018;188:1-14.
Mayeux RCR. Alzheimer disease: Epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol. 2014;88:640-51.
Thomas SL, Thacker JB, Schug KA, Maráková K, Sample preparation and fractionation techniques for intact proteins for mass spectrometric analysis. J Sep Sci. 2021;44:211-46.
O'Bryant SE, Gupta V, Henriksen K, Edwards M, Jeromin A, Lista S, Bazenet C, Soares H, Lovestone S, Hampel H, Montine T, Blennow K, Foroud T, Carrillo M, Graff-Radford N, Laske C, Breteler M, Shaw L, Trojanowski JQ, Schupf N, Rissman RA, Fagan AM, Oberoi P, Umek R, Weiner MW, Grammas P, Posner H, Martins R, Grp S-BW, Grp BW. Guidelines for the standardization of preanalytic variables for blood-based biomarker studies in Alzheimer's disease research. Alzheimer's Dementia. 2015;11:549-60.
Yu Z, Kastenmüller G, He Y, Belcredi P, Möller G, Prehn C, Mendes J, Wahl S, Roemisch-Margl W, Ceglarek U, Polonikov A, Dahmen N, Prokisch H, Xie L, Li Y, Wichmann HE, Peters A, Kronenberg F, Suhre K, Adamski J, Illig T, Wang-Sattler R. Differences between human plasma and serum metabolite profiles. PLoS One. 2011;6:e21230.
Anderson L, Hunter CL. Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol Cell Proteomics. 2006;5:573-88.
Li NJ, Liu WT, Li W, Li SQ, Chen XH, Bi KS, He P. Plasma metabolic profiling of Alzheimer's disease by liquid chromatography/mass spectrometry. Clin Biochem. 2010;43:992-7.
Otto OPM. A review on MS-based blood biomarkers for Alzheimer's disease. Neurol Ther. 2019;8:113-27.
Ahmed FE. Sample preparation and fractionation for proteome analysis and cancer biomarker discovery by mass spectrometry. J Sep Sci. 2009;32:771-98.
Pavlovic DM, Babic S, Horvat AJM, Kastelan-Macan M. Sample preparation in analysis of pharmaceuticals. Trac-Trends Anal Chem. 2007;26:1062-75.
Shen SC, An B, Qu J. Sample preparation methods for targeted biomarker quantification by LC-MS. In: N. Weng and W. Jian, editors. Targeted biomarker quantitation by LC-MS. Hoboken, NJ: John Wiley & Sons Inc; 2017. pp. 79-106.
Russell WK, Park ZY, Russell DH. Proteolysis in mixed organic-aqueous solvent systems: Applications for peptide mass mapping using mass spectrometry. Anal Chem. 2001;73:2682-5.
Schriemer SGWDC. On-column digestion of proteins in aqueous-organic solvents. Rapid Commun Mass Spectrom. 2003;17:1044-50.
Shekhar S, Yadav SK, Rai N, Kumar R, Yadav Y, Tripathi M, Dey AB, Dey S. 5-LOX in Alzheimer's disease: Potential serum marker and in vitro evidences for rescue of neurotoxicity by its inhibitor YWCS. Mol Neurobiol. 2018;55:2754-62.
Junková P, Daněk M, Kocourková D, Brouzdová J, Kroumanová K, Zelazny E, Janda M, Hynek R, Martinec J, Valentová O. Mapping of plasma membrane proteins interacting with Arabidopsis thaliana flotillin 2. Front. Recent Dev. Plant Sci. 2018;9:991.
Viskin A. Preparation of blood plasma samples for detection of neurological diseases by mass spectrometry. Prague: University of Chemistry and Technology; 2020. pp. 1-81.
Kuckova SH, Rambouskova G, Hynek R, Cejnar P, Oltrogge D, Fuchs R. Evaluation of mass spectrometric data using principal component analysis for determination of the effects of organic lakes on protein binder identification. J Mass Spectrom. 2015;50:1270-8.
Kuckova S, Zitkova K, Novotny O, Smirnova T. Verification of cheeses authenticity by mass spectrometry. J Sep Sci. 2019;42:3487-96.
Kuckova S, Rambouskova G, Junkova P, Santrucek J, Cejnar P, Smirnova TA, Novotny O, Hynek R. Analysis of protein additives degradation in aged mortars using mass spectrometry and principal component analysis. Constr Build Mater. 2021;288:123124.
Cejnar P, Kuckova S, Prochazka A, Karamonova L, Svobodova B. Principal component analysis of normalized full spectrum mass spectrometry data in multiMS-toolbox: An effective tool to identify important factors for classification of different metabolic patterns and bacterial strains. Rapid Commun Mass Spectrom. 2018;32:871-81.
Michalusová I, Sázelová P, Cejnar P, Kučková Š, Hynek R, Kašička V. Capillary electrophoretic profiling of in-bone tryptic digests of proteins as a potential tool for the detection of inflammatory states in oral surgery. J Sep Sci. 2020;43:3949-59.
Tyanova S, Temu T, Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc. 2016;11:2301-19.
Elias JE, Gygi SP. Target-decoy search strategy for mass spectrometry-based proteomics.Methods Mol Biol. 2010;604:55-71.
Michalusova I, Trubacova D, Cejnar P, Kuckova S, Santrucek J, Hynek R. Direct tryptic cleavage in bone tissue followed by LC-MS/MS as a first step towards routine characterization of proteins embedded in alveolar bones. Int J Mass Spectrom. 2020;455:116375.
Miike K, Aoki M, Yamashita R, Takegawa Y, Saya H, Miike T, Yamamura K. Proteome profiling reveals gender differences in the composition of human serum. Proteomics. 2010;10:2678-91.
Bobylev AG, Fadeev RS, Bobyleva LG, Kobyakova MI, Shlyapnikov YM, Popov DV, Vikhlyantsev IM. Amyloid aggregates of smooth-muscle titin impair cell adhesion. Int J Mol Sci. 2021;22:4579.
Loeffler DA, DeMaggio AJ, Juneau PL, Brickman CM, Mashour GA, Finkelman JH, Pomara N, LeWitt PA. Ceruloplasmin is increased in cerebrospinal fluid in Alzheimer's disease but not Parkinson's disease. Alzheimer Dis Assoc Disord. 1994;8:190-7.
Brandi J, Dalla Pozza E, Dando I, Biondani G, Robotti E, Jenkins R, Elliott V, Park K, Marengo E, Costello E, Scarpa A, Palmieri M, Cecconi D. Secretome protein signature of human pancreatic cancer stem-like cells. J Proteomics. 2016;136:1-12.
Cohen RD, Castellani LW, Qiao JH, VanLenten BJ, Lusis AJ, Reue K. Reduced aortic lesions and elevated high density lipoprotein levels in transgenic mice overexpressing mouse apolipoprotein A-IV. J Clin Invest. 1997;99:1906-16.
Császár A, Kálmán J, Szalai C, Janka Z, Romics L. Association of the apolipoprotein A-IV codon 360 mutation in patients with Alzheimer's disease. Neurosci Lett. 1997;230:151-4.
Zhang X-J, Guo J, Yang J. Cerebrospinal fluid biomarkers in idiopathic normal pressure hydrocephalus. Neuroimmunol. Neuroinflammation. 2020;7:109-19.
Uberti D, Cenini G, Bonini SA, Barcikowska M, Styczynska M, Szybinska A, Memo M. Increased CD44 gene expression in lymphocytes derived from Alzheimer disease patients. Neurodegener Dis. 2010;7:143-7.
Gursky DMO. Amyloid-forming properties of human apolipoproteins: Sequence analyses and structural insights. Adv Exp Med Biol. 2015;855:175-211.
Kratzer I, Bernhart E, Wintersperger A, Hammer A, Waltl S, Malle E, Sperk G, Wietzorrek G, Dieplinger H, Sattler W. Afamin is synthesized by cerebrovascular endothelial cells and mediates alpha-tocopherol transport across an in vitro model of the blood-brain barrier. J Neurochem. 2009;108:707-18.
Fournier T, Medjoubi NN, Porquet D. Alpha-1-acid glycoprotein. Biochim Biophys Acta. 2000;1482:157-71.
Ninivaggi M, Kelchtermans H, Lindhout T, de Laat B. Conformation of beta2glycoprotein I and its effect on coagulation. Thromb Res. 2012;130:33-6.
McDonnell T, Wincup C, Buchholz I, Pericleous C, Giles I, Ripoll V, Cohen H, Delcea M, Rahman A. The role of beta-2-glycoprotein I in health and disease associating structure with function: More than just APS. Blood Rev. 2020;39:14.
Li K, Li Y, Wang J, Huo Y, Huang D, Li S, Liu J, Li X, Liu R, Chen X, Yao Y-G, Chen C, Xiao X, Li M, Luo X-J. A functional missense variant in ITIH3 affects protein expression and neurodevelopment and confers schizophrenia risk in the Han Chinese population. J Genet Genomics. 2020;47:233-48.
Ebana Y, Ozaki K, Inoue K, Sato H, Iida A, Lwin H, Saito S, Mizuno H, Takahashi A, Nakamura T, Miyamoto Y, Ikegawa S, Odashiro K, Nobuyoshi M, Kamatani N, Hori M, Isobe M, Nakamura Y, Tanaka T. A functional SNP in ITIH3 is associated with susceptibility to myocardial infarction. J Hum Genet. 2007;52:220-9.
Tang W, Gunn TM, McLaughlin DF, Barsh GS, Schlossman SF, Duke-Cohan JS. Secreted and membrane attractin result from alternative splicing of the human ATRN gene. Proc Natl Acad Sci USA. 2000;97:6025-30.