Synthesis and In Vitro Evaluation of Novel Dopamine Receptor D2 3,4-dihydroquinolin-2(1H)-one Derivatives Related to Aripiprazole
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34572475
PubMed Central
PMC8464836
DOI
10.3390/biom11091262
PII: biom11091262
Knihovny.cz E-zdroje
- Klíčová slova
- aripiprazole, blood–brain barrier, dopamine receptor, molecular modeling studies, schizophrenia,
- MeSH
- aripiprazol chemická syntéza farmakologie MeSH
- buněčná smrt MeSH
- centrální nervový systém účinky léků MeSH
- chinolony chemická syntéza chemie farmakologie MeSH
- CHO buňky MeSH
- Cricetulus MeSH
- hematoencefalická bariéra účinky léků patologie MeSH
- ligandy MeSH
- molekulární modely MeSH
- racionální návrh léčiv MeSH
- receptory dopaminu D2 chemie metabolismus MeSH
- vazebná místa MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aripiprazol MeSH
- chinolony MeSH
- dihydroquinolin-2(1H)-one MeSH Prohlížeč
- ligandy MeSH
- receptory dopaminu D2 MeSH
In this pilot study, a series of new 3,4-dihydroquinolin-2(1H)-one derivatives as potential dopamine receptor D2 (D2R) modulators were synthesized and evaluated in vitro. The preliminary structure-activity relationship disclosed that compound 5e exhibited the highest D2R affinity among the newly synthesized compounds. In addition, 5e showed a very low cytotoxic profile and a high probability to cross the blood-brain barrier, which is important considering the observed affinity. However, molecular modelling simulation revealed completely different binding mode of 5e compared to USC-D301, which might be the culprit of the reduced affinity of 5e toward D2R in comparison with USC-D301.
Institute of Physiology Czech Academy of Sciences Videnska 1083 142 20 Prague Czech Republic
National Institute of Mental Health Topolova 748 250 67 Klecany Czech Republic
Zobrazit více v PubMed
Matt S.M., Gaskill P.J. Where Is Dopamine and How Do Immune Cells See It? Dopamine-Mediated Immune Cell Function in Health and Disease. J. Neuroimmune Pharm. 2020;15:114–164. doi: 10.1007/s11481-019-09851-4. PubMed DOI PMC
Ayano G. Dopamine: Receptors, Functions, Synthesis, Pathways, Locations and Mental Disorders: Review of Literatures. J. Ment. Disord. Treat. 2016;2 doi: 10.4172/2471-271X.1000120. DOI
Klein M.O., Battagello D.S., Cardoso A.R., Hauser D.N., Bittencourt J.C., Correa R.G. Dopamine: Functions, Signaling, and Association with Neurological Diseases. Cell. Mol. Neurobiol. 2019;39:31–59. doi: 10.1007/s10571-018-0632-3. PubMed DOI
Martel J.C., Gatti McArthur S. Dopamine Receptor Subtypes, Physiology and Pharmacology: New Ligands and Concepts in Schizophrenia. Front. Pharmacol. 2020;11:1003. doi: 10.3389/fphar.2020.01003. PubMed DOI PMC
Pivonello R., Ferone D., Lombardi G., Colao A., Lamberts S.W.J., Hofland L.J. Novel Insights in Dopamine Receptor Physiology. Eur. J. Endocrinol. 2007;156:S13–S21. doi: 10.1530/eje.1.02353. PubMed DOI
Żuk J., Bartuzi D., Matosiuk D., Kaczor A.A. Preferential Coupling of Dopamine D2S and D2L Receptor Isoforms with Gi1 and Gi2 Proteins—In Silico Study. Int. J. Mol. Sci. 2020;21:436. doi: 10.3390/ijms21020436. PubMed DOI PMC
Usiello A., Baik J.H., Rougé-Pont F., Picetti R., Dierich A., LeMeur M., Piazza P.V., Borrelli E. Distinct Functions of the Two Isoforms of Dopamine D2 Receptors. Nature. 2000;408:199–203. doi: 10.1038/35041572. PubMed DOI
Beaulieu J.-M., Gainetdinov R.R. The Physiology, Signaling, and Pharmacology of Dopamine Receptors. Pharm. Rev. 2011;63:182–217. doi: 10.1124/pr.110.002642. PubMed DOI
Stępnicki P., Kondej M., Kaczor A.A. Current Concepts and Treatments of Schizophrenia. Molecules. 2018;23:2087. doi: 10.3390/molecules23082087. PubMed DOI PMC
Wang S.-M., Han C., Lee S.-J., Jun T.-Y., Patkar A.A., Masand P.S., Pae C.-U. Second Generation Antipsychotics in the Treatment of Major Depressive Disorder: An Update. Chonnam. Med. J. 2016;52:159–172. doi: 10.4068/cmj.2016.52.3.159. PubMed DOI PMC
Mulder R., Hamilton A., Irwin L., Boyce P., Morris G., Porter R.J., Malhi G.S. Treating Depression with Adjunctive Antipsychotics. Bipolar Disord. 2018;20:17–24. doi: 10.1111/bdi.12701. PubMed DOI
Hershenberg R., Gros D.F., Brawman-Mintzer O. Role of Atypical Antipsychotics in the Treatment of Generalized Anxiety Disorder. CNS Drugs. 2014;28:519–533. doi: 10.1007/s40263-014-0162-6. PubMed DOI
Pignon B., Montcel C.T., Carton L., Pelissolo A. The Place of Antipsychotics in the Therapy of Anxiety Disorders and Obsessive-Compulsive Disorders. Curr. Psychiatry Rep. 2017;19:1–11. doi: 10.1007/s11920-017-0847-x. PubMed DOI
Marder S.R., Cannon T.D. Schizophrenia. N. Engl. J. Med. 2019;381:1753–1761. doi: 10.1056/NEJMra1808803. PubMed DOI
Radhakrishnan R., Kaser M., Guloksuz S. The Link Between the Immune System, Environment, and Psychosis. Schizophr. Bull. 2017;43:693–697. doi: 10.1093/schbul/sbx057. PubMed DOI PMC
Laruelle M. Schizophrenia: From Dopaminergic to Glutamatergic Interventions. Curr. Opin. Pharmacol. 2014;14:97–102. doi: 10.1016/j.coph.2014.01.001. PubMed DOI
McCutcheon R.A., Abi-Dargham A., Howes O.D. Schizophrenia, Dopamine and the Striatum: From Biology to Symptoms. Trends Neurosci. 2019;42:205–220. doi: 10.1016/j.tins.2018.12.004. PubMed DOI PMC
Kapur S., Zipursky R., Jones C., Remington G., Houle S. Relationship Between Dopamine D2 Occupancy, Clinical Response, and Side Effects: A Double-Blind PET Study of First-Episode Schizophrenia. AJP. 2000;157:514–520. doi: 10.1176/appi.ajp.157.4.514. PubMed DOI
Nordström A.-L., Farde L., Wiesel F.-A., Forslund K., Pauli S., Halldin C., Uppfeldt G. Central D2-Dopamine Receptor Occupancy in Relation to Antipsychotic Drug Effects: A Double-Blind PET Study of Schizophrenic Patients. Biol. Psychiatry. 1993;33:227–235. doi: 10.1016/0006-3223(93)90288-O. PubMed DOI
Richtand N.M., Welge J.A., Logue A.D., Keck P.E., Strakowski S.M., McNamara R.K. Dopamine and Serotonin Receptor Binding and Antipsychotic Efficacy. Neuropsychopharmacology. 2007;32:1715–1726. doi: 10.1038/sj.npp.1301305. PubMed DOI
Seeman P., Lee T., Chau-Wong M., Wong K. Antipsychotic Drug Doses and Neuroleptic/Dopamine Receptors. Nature. 1976;261:717–719. doi: 10.1038/261717a0. PubMed DOI
Karlsson P., Farde L., Härnryd C., Sedvall G., Smith L., Wiesel F.-A. Lack of Apparent Antipsychotic Effect of the D 1 -Dopamine Recepotr Antagonist SCH39166 in Acutely Ill Schizophrenic Patients. Psychopharmacology. 1995;121:309–316. doi: 10.1007/BF02246068. PubMed DOI
Redden L., Rendenbach-Mueller B., Abi-Saab W., Katz D., Goenjian A., Robieson W., Wang Y., Goss S., Greco N., Saltarelli M. A Double-Blind, Randomized, Placebo-Controlled Study of the Dopamine D-3 Receptor Antagonist ABT-925 in Patients With Acute Schizophrenia. J. Clin. Psychopharmacol. 2011;31:221–225. doi: 10.1097/JCP.0b013e31820e4818. PubMed DOI
Bristow L.J., Kramer M.S., Kulagowski J., Patel S., Ragan C.I., Seabrook G.R. Schizophrenia and L-745, 870, a Novel Dopamine D4 Receptor Antagonist. Trends Pharmacol. Sci. 1997;18:186–188. doi: 10.1016/S0165-6147(97)01066-3. PubMed DOI
George M.S., Molnar C.E., Grenesko E.L., Anderson B., Mu Q., Johnson K., Nahas Z., Knable M., Fernandes P., Juncos J., et al. A Single 20 Mg Dose of Dihydrexidine (DAR-0100), a Full Dopamine D1 Agonist, Is Safe and Tolerated in Patients with Schizophrenia. Schizophr. Res. 2007;93:42–50. doi: 10.1016/j.schres.2007.03.011. PubMed DOI
Girgis R.R., Van Snellenberg J.X., Glass A., Kegeles L.S., Thompson J.L., Wall M., Cho R.Y., Carter C.S., Slifstein M., Abi-Dargham A., et al. A Proof-of-Concept, Randomized Controlled Trial of DAR-0100A, a Dopamine-1 Receptor Agonist, for Cognitive Enhancement in Schizophrenia. J. Psychopharmacol. 2016;30:428–435. doi: 10.1177/0269881116636120. PubMed DOI
Rosell D., Zaluda L., McClure M., Perez-Rodriguez M., Strike S., Barch D., Harvey P., Girgis R., Hazlett E., Mailman R., et al. Effects of the D1 Dopamine Receptor Agonist Dihydrexidine (DAR-0100A) on Working Memory in Schizotypal Personality Disorder. Neuropsychopharmacology. 2015;40:446–453. doi: 10.1038/npp.2014.192. PubMed DOI PMC
Zheng W., Li X.H., Cai D.B., Yang X.H., Ungvari G.S., Ng C.H., Ning Y.P., Xiang Y.T. Adjunctive Azapirone for Schizophrenia: A Meta-Analysis of Randomized, Double-Blind, Placebo-Controlled Trials. Eur. Neuropsychopharmacol. 2018;28:149–158. doi: 10.1016/j.euroneuro.2017.11.007. PubMed DOI
Meltzer H., Huang M. In Vivo Actions of Atypical Antipsychotic Drug on Serotonergic and Dopaminergic Systems. Prog. Brain Res. 2008;172:177–197. doi: 10.1016/S0079-6123(08)00909-6. PubMed DOI
Kaar S.J., Natesan S., McCutcheon R., Howes O.D. Antipsychotics: Mechanisms Underlying Clinical Response and Side-Effects and Novel Treatment Approaches Based on Pathophysiology. Neuropharmacology. 2020;172:107704. doi: 10.1016/j.neuropharm.2019.107704. PubMed DOI
Richelson E., Souder T. Binding of Antipsychotic Drugs to Human Brain Receptors Focus on Newer Generation Compounds. Life Sci. 2000;68:29–39. doi: 10.1016/S0024-3205(00)00911-5. PubMed DOI
Schneider L.S. Pimavanserin for Patients with Alzheimer’s Disease Psychosis. Lancet Neurol. 2018;17:194–195. doi: 10.1016/S1474-4422(18)30052-8. PubMed DOI
Bebawy M., Chetty M. Differential Pharmacological Regulation of Drug Efflux and Pharmacoresistant Schizophrenia. BioEssays. 2008;30:183–188. doi: 10.1002/bies.20706. PubMed DOI
Carbon M., Correll C.U. Thinking and Acting beyond the Positive: The Role of the Cognitive and Negative Symptoms in Schizophrenia. CNS Spectr. 2014;19:35–53. doi: 10.1017/S1092852914000601. PubMed DOI
De Berardis D., Rapini G., Olivieri L., Di Nicola D., Tomasetti C., Valchera A., Fornaro M., Di Fabio F., Perna G., Di Nicola M., et al. Safety of Antipsychotics for the Treatment of Schizophrenia: A Focus on the Adverse Effects of Clozapine. Adv. Drug Saf. 2018;9:237–256. doi: 10.1177/2042098618756261. PubMed DOI PMC
Weston-Green K., Huang X.-F., Deng C. Second Generation Antipsychotic-Induced Type 2 Diabetes: A Role for the Muscarinic M3 Receptor. CNS Drugs. 2013;27:1069–1080. doi: 10.1007/s40263-013-0115-5. PubMed DOI
Osuch E., Marais A. The Pharmacological Management of Depression–Update 2017. South Afr. Fam. Pract. 2017;59:6–16. doi: 10.4102/safp.v59i1.4625. DOI
Bystritsky A., Khalsa S.S., Cameron M.E., Schiffman J. Current Diagnosis and Treatment of Anxiety Disorders. Pharm. Ther. 2013;38:30–57. PubMed PMC
Gustavsson A., Svensson M., Jacobi F., Allgulander C., Alonso J., Beghi E., Dodel R., Ekman M., Faravelli C., Fratiglioni L., et al. Cost of Disorders of the Brain in Europe 2010. Eur. Neuropsychopharmacol. 2011;21:718–779. doi: 10.1016/j.euroneuro.2011.08.008. PubMed DOI
Wood M., Reavill C. Aripiprazole Acts as a Selective Dopamine D2 Receptor Partial Agonist. Expert Opin. Investig. Drugs. 2007;16:771–775. doi: 10.1517/13543784.16.6.771. PubMed DOI
López L., Selent J., Ortega R., Masaguer C.F., Domínguez E., Areias F., Brea J., Loza M.I., Sanz F., Pastor M. Synthesis, 3D-QSAR, and Structural Modeling of Benzolactam Derivatives with Binding Affinity for the D2 and D3 Receptors. ChemMedChem. 2010;5:1300–1317. doi: 10.1002/cmdc.201000101. PubMed DOI
Niso M., Pati M.L., Berardi F., Abate C. Rigid versus Flexible Anilines or Anilides Confirm the Bicyclic Ring as the Hydrophobic Portion for Optimal Σ2 Receptor Binding and Provide Novel Tools for the Development of Future Σ2 Receptor PET Radiotracers. RSC Adv. 2016;6:88508–88518. doi: 10.1039/C6RA15783A. DOI
Skjaerback N., Koch K.N., Friberg B.L.M., Tolf B.-R. Tetrahydroquinoline Analogues as Muscarinic Agonists. WO2003057672A3. 2003 November 13;
Geneste H., Backfisch G., Braje W., Delzer J., Haupt A., Hutchins C.W., King L.L., Lubisch W., Steiner G., Teschendorf H.-J., et al. Synthesis and SAR of Highly Potent and Selective Dopamine D3-Receptor Antagonists: Quinolin(Di)One and Benzazepin(Di)One Derivatives. Bioorganic Med. Chem. Lett. 2006;16:658–662. doi: 10.1016/j.bmcl.2005.10.035. PubMed DOI
Oshiro Y., Sakurai Y., Sato S., Kurahashi N., Tanaka T., Kikuchi T., Tottori K., Uwahodo Y., Miwa T., Nishi T. 3,4-Dihydro-2(1H)-Quinolinone as a Novel Antidepressant Drug: Synthesis and Pharmacology of 1-[3-[4-(3-Chlorophenyl)-1-Piperazinyl]Propyl]-3,4-Dihydro-5-Methoxy-2(1H)-Quinolinone and Its Derivatives. J. Med. Chem. 2000;43:177–189. doi: 10.1021/jm980333v. PubMed DOI
Shi W., Wang Y., Wu C., Yang F., Zheng W., Wu S., Liu Y., Wang Z., He Y., Shen J. Synthesis and Biological Investigation of Triazolopyridinone Derivatives as Potential Multireceptor Atypical Antipsychotics. Bioorganic Med. Chem. Lett. 2020;30:127027. doi: 10.1016/j.bmcl.2020.127027. PubMed DOI
Chemical Computing Group ULC Molecular Operating Environment (MOE) 2019. [(accessed on 16 June 2021)]. Available online: https://www.chemcomp.com/Research-Citing_MOE.htm.
Wang S., Che T., Levit A., Shoichet B.K., Wacker D., Roth B.L. Structure of the D2 Dopamine Receptor Bound to the Atypical Antipsychotic Drug Risperidone. Nature. 2018;555:269–273. doi: 10.1038/nature25758. PubMed DOI PMC
Gupta M., Lee H.J., Barden C.J., Weaver D.F. The Blood–Brain Barrier (BBB) Score. J. Med. Chem. 2019;62:9824–9836. doi: 10.1021/acs.jmedchem.9b01220. PubMed DOI
El-Fakahany E.E., Jakubik J. Radioligand Binding at Muscarinic Receptors. In: Myslivecek J., Jakubik J., editors. Muscarinic Receptor: From Structure to Animal Models. Springer; New York, NY, USA: 2016. pp. 37–68. Neuromethods.
Peterson G.L. A Simplification of the Protein Assay Method of Lowry et Al. Which Is More Generally Applicable. Anal. Biochem. 1977;83:346–356. doi: 10.1016/0003-2697(77)90043-4. PubMed DOI
Malinak D., Dolezal R., Marek J., Salajkova S., Soukup O., Vejsova M., Korabecny J., Honegr J., Penhaker M., Musilek K., et al. 6-Hydroxyquinolinium Salts Differing in the Length of Alkyl Side-Chain: Synthesis and Antimicrobial Activity. Bioorganic Med. Chem. Lett. 2014;24:5238–5241. doi: 10.1016/j.bmcl.2014.09.060. PubMed DOI
Di L., Kerns E.H., Fan K., McConnell O.J., Carter G.T. High Throughput Artificial Membrane Permeability Assay for Blood–brain Barrier. Eur. J. Med. Chem. 2003;38:223–232. doi: 10.1016/S0223-5234(03)00012-6. PubMed DOI
Shapiro D.A., Renock S., Arrington E., Chiodo L.A., Liu L.-X., Sibley D.R., Roth B.L., Mailman R., Aripiprazole A. Novel Atypical Antipsychotic Drug with a Unique and Robust Pharmacology. Neuropsychopharmacology. 2003;28:1400–1411. doi: 10.1038/sj.npp.1300203. PubMed DOI
Pae C.-U., Forbes A., Patkar A. Aripiprazole as Adjunctive Therapy for Patients with Major Depressive Disorder. CNS Drugs. 2011;25:109–127. doi: 10.2165/11538980-000000000-00000. PubMed DOI
Jauhar S., Young A.H. Controversies in Bipolar Disorder; Role of Second-Generation Antipsychotic for Maintenance Therapy. Int. J. Bipolar Disord. 2019;7:1–9. doi: 10.1186/s40345-019-0145-0. PubMed DOI PMC
Brust T.F., Hayes M.P., Roman D.L., Watts V.J. New Functional Activity of Aripiprazole Revealed: Robust Antagonism of D2 Dopamine Receptor-Stimulated Gβγ Signaling. Biochem. Pharmacol. 2015;93:85–91. doi: 10.1016/j.bcp.2014.10.014. PubMed DOI PMC
Allen J.A., Yost J.M., Setola V., Chen X., Sassano M.F., Chen M., Peterson S., Yadav P.N., Huang X., Feng B., et al. Discovery of β-Arrestin–Biased Dopamine D2 Ligands for Probing Signal Transduction Pathways Essential for Antipsychotic Efficacy. Proc. Natl. Acad. Sci. USA. 2011;108:18488–18493. doi: 10.1073/pnas.1104807108. PubMed DOI PMC
Mailman R.B., Murthy V. Third Generation Antipsychotic Drugs: Partial Agonism or Receptor Functional Selectivity? Curr. Pharm. Des. 2010;16:488–501. doi: 10.2174/138161210790361461. PubMed DOI PMC
Lieberman J.A. Dopamine Partial Agonists. CNS Drugs. 2004;18:251–267. doi: 10.2165/00023210-200418040-00005. PubMed DOI
Keck P.E., Jr., McElroy S.L. Aripiprazole: A Partial Dopamine D2 Receptor Agonist Antipsychotic. Expert Opin. Investig. Drugs. 2003;12:655–662. doi: 10.1517/eoid.12.4.655.23750. PubMed DOI
Löber S., Hübner H., Tschammer N., Gmeiner P. Recent Advances in the Search for D3- and D4-Selective Drugs: Probes, Models and Candidates. Trends Pharmacol. Sci. 2011;32:148–157. doi: 10.1016/j.tips.2010.12.003. PubMed DOI
Bettinetti L., Schlotter K., Hübner H., Gmeiner P. Interactive SAR Studies: Rational Discovery of Super-Potent and Highly Selective Dopamine D3 Receptor Antagonists and Partial Agonists. J. Med. Chem. 2002;45:4594–4597. doi: 10.1021/jm025558r. PubMed DOI
Ehrlich K., Götz A., Bollinger S., Tschammer N., Bettinetti L., Härterich S., Hübner H., Lanig H., Gmeiner P. Dopamine D2, D3, and D4 Selective Phenylpiperazines as Molecular Probes To Explore the Origins of Subtype Specific Receptor Binding. J. Med. Chem. 2009;52:4923–4935. doi: 10.1021/jm900690y. PubMed DOI
De Simone A., Russo D., Ruda G.F., Micoli A., Ferraro M., Di Martino R.M.C., Ottonello G., Summa M., Armirotti A., Bandiera T., et al. Design, Synthesis, Structure–Activity Relationship Studies, and Three-Dimensional Quantitative Structure–Activity Relationship (3D-QSAR) Modeling of a Series of O-Biphenyl Carbamates as Dual Modulators of Dopamine D3 Receptor and Fatty Acid Amide Hydrolase. J. Med. Chem. 2017;60:2287–2304. doi: 10.1021/acs.jmedchem.6b01578. PubMed DOI
Żmudzki P., Satała G., Bojarski A., Chłoń-Rzepa G., Popik P., Zajdel P. N-(4-Arylpiperazinoalkyl)Acetamide Derivatives of 1,3- and 3,7-Dimethyl-1H-Purine-2,6(3H,7H)- Diones and Their 5-HT6, 5-HT7, and D2 Receptors Affinity. Heterocycl. Commun. 2015;21:13–18. doi: 10.1515/hc-2014-0200. DOI
Banala A.K., Levy B.A., Khatri S.S., Furman C.A., Roof R.A., Mishra Y., Griffin S.A., Sibley D.R., Luedtke R.R., Newman A.H. N-(3-Fluoro-4-(4-(2-Methoxy or 2,3-Dichlorophenyl) Piperazine-1-Yl)-Butyl)-Aryl Carboxamides as Selective Dopamine D3 Receptor Ligands: Critical Role of the Carboxamide Linker for D3 Receptor Selectivity. J. Med. Chem. 2011;54:3581–3594. doi: 10.1021/jm200288r. PubMed DOI PMC
Chen X., Sassano M.F., Zheng L., Setola V., Chen M., Bai X., Frye S.V., Wetsel W.C., Roth B.L., Jin J. Structure-Functional Selectivity Relationship Studies of β-Arrestin-Biased Dopamine D2 Receptor Agonists. J. Med. Chem. 2012;55:7141–7153. doi: 10.1021/jm300603y. PubMed DOI PMC
Chen X., McCorvy J.D., Fischer M.G., Butler K.V., Shen Y., Roth B.L., Jin J. Discovery of G Protein-Biased D2 Dopamine Receptor Partial Agonists. J. Med. Chem. 2016;59:10601–10618. doi: 10.1021/acs.jmedchem.6b01208. PubMed DOI PMC
Simone A.D., Ruda G.F., Albani C., Tarozzo G., Bandiera T., Piomelli D., Cavalli A., Bottegoni G. Applying a Multitarget Rational Drug Design Strategy: The First Set of Modulators with Potent and Balanced Activity toward Dopamine D3 Receptor and Fatty Acid Amide Hydrolase. Chem. Commun. 2014;50:4904–4907. doi: 10.1039/C4CC00967C. PubMed DOI PMC
Vangveravong S., Zhang Z., Taylor M., Bearden M., Xu J., Cui J., Wang W., Luedtke R.R., Mach R.H. Synthesis and Characterization of Selective Dopamine D2 Receptor Ligands Using Aripiprazole as the Lead Compound. Bioorg. Med. Chem. 2011;19:3502–3511. doi: 10.1016/j.bmc.2011.04.021. PubMed DOI PMC
Männel B., Dengler D., Shonberg J., Hübner H., Möller D., Gmeiner P. Hydroxy-Substituted Heteroarylpiperazines: Novel Scaffolds for β-Arrestin-Biased D2R Agonists. J. Med. Chem. 2017;60:4693–4713. doi: 10.1021/acs.jmedchem.7b00363. PubMed DOI
Del Bello F., Bonifazi A., Giorgioni G., Cifani C., Micioni Di Bonaventura M.V., Petrelli R., Piergentili A., Fontana S., Mammoli V., Yano H., et al. 1-[3-(4-Butylpiperidin-1-Yl)Propyl]-1,2,3,4-Tetrahydroquinolin-2-One (77-LH-28-1) as a Model for the Rational Design of a Novel Class of Brain Penetrant Ligands with High Affinity and Selectivity for Dopamine D4 Receptor. J. Med. Chem. 2018;61:3712–3725. doi: 10.1021/acs.jmedchem.8b00265. PubMed DOI
Martelle J.L., Nader M.A. A Review of the Discovery, Pharmacological Characterization, and Behavioral Effects of the Dopamine D2-Like Receptor Antagonist Eticlopride. CNS Neurosci. 2008;14:248–262. doi: 10.1111/j.1755-5949.2008.00047.x. PubMed DOI PMC
Farde L., Wiesel F.-A., Halldin C., Sedvall G. Central D2-Dopamine Receptor Occupancy in Schizophrenic Patients Treated With Antipsychotic Drugs. Arch. Gen. Psychiatry. 1988;45:71–76. doi: 10.1001/archpsyc.1988.01800250087012. PubMed DOI
Farde L., Nordström A.-L., Wiesel F.-A., Pauli S., Halldin C., Sedvall G. Positron Emission Tomographic Analysis of Central D1 and D2 Dopamine Receptor Occupancy in Patients Treated With Classical Neuroleptics and Clozapine: Relation to Extrapyramidal Side Effects. Arch. Gen. Psychiatry. 1992;49:538–544. doi: 10.1001/archpsyc.1992.01820070032005. PubMed DOI
Kapur S., Zipursky R., Roy P., Jones C., Remington G., Reed K., Houle S. The Relationship between D2 Receptor Occupancy and Plasma Levels on Low Dose Oral Haloperidol: A PET Study. Psychopharmacology. 1997;131:148–152. doi: 10.1007/s002130050277. PubMed DOI
Kapur S., Zipursky R.B., Remington G. Clinical and Theoretical Implications of 5-HT2 and D2 Receptor Occupancy of Clozapine, Risperidone, and Olanzapine in Schizophrenia. AJP. 1999;156:286–293. doi: 10.1176/ajp.156.2.286. PubMed DOI
Pilowsky L.S., Costa D.C., Ell P.J., Murray R.M., Verhoeff N.P.L.G., Kerwin R.W. Antipsychotic Medication, D2 Dopamine Receptor Blockade and Clinical Response: A 123I IBZM SPET (Single Photon Emission Tomography) Study. Psychol. Med. 1993;23:791–797. doi: 10.1017/S0033291700025575. PubMed DOI
Stone J.M., Davis J.M., Leucht S., Pilowsky L.S. Cortical Dopamine D2/D3 Receptors Are a Common Site of Action for Antipsychotic Drugs—An Original Patient Data Meta-Analysis of the SPECT and PET In Vivo Receptor Imaging Literature. Schizophr Bull. 2009;35:789–797. doi: 10.1093/schbul/sbn009. PubMed DOI PMC
Shokrzadeh M., Mohammadpour A., Modanloo M., Hassani M., Barghi N.G., Niroomand P. Cytotoxic effects of aripiprazole on mkn45 and nih3t3 cell lines and genotoxic effects on human peripheral blood lymphocytes. Arq. Gastroenterol. 2019;56:155–159. doi: 10.1590/s0004-2803.201900000-31. PubMed DOI
Lemes L.F.N., Ramos G.D.A., Oliveira A., da Silva F.M.R., Couto G.D.C., Boni M.D.S., Guimarães M.J.R., Souza I.N.D.O., Bartolini M., Andrisano V., et al. Cardanol-derived AChE inhibitors: Towards the development of dual binding derivatives for Alzheimer’s disease. Eur. J. Med. Chem. 2016;108:687–700. doi: 10.1016/j.ejmech.2015.12.024. PubMed DOI
Limapichat W., Yu W.Y., Branigan E., Lester H.A., Dougherty D.A. Key Binding Interactions for Memantine in the NMDA Receptor. ACS Chem. Neurosci. 2012;4:255–260. doi: 10.1021/cn300180a. PubMed DOI PMC
Farlow M.R., Graham S.M., Alva G. Memantine for the Treatment of Alzheimer’s Disease. Drug Saf. 2008;31:577–585. doi: 10.2165/00002018-200831070-00003. PubMed DOI
Stahl S.M. Dopamine System Stabilizers, Aripiprazole, and the Next Generation of Antipsychotics, Part 2: Illustrating Their Mechanism of Action. J. Clin. Psychiatry. 2001;62:923–924. doi: 10.4088/JCP.v62n1201. PubMed DOI