Development and Characterization of Fenugreek Protein-Based Edible Film

. 2021 Aug 24 ; 10 (9) : . [epub] 20210824

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34574085

The present investigation studied the physicochemical, mechanical, structural, thermal, and morphological attributes of a novel edible film formed from fenugreek protein concentrate. Films were produced at different pH-9, 10, 11, and 12-and the effect of the pH on the films was studied. As the pH increased, tensile strength increased while water vapor absorption decreased, which is interrelated to the surface morphological properties; as the pH increased, the surface became smoother and compact without any cavities. The films produced were darker in color. Fenugreek protein films exhibited good thermal stability. Fourier transform infrared spectroscopy (FTIR) revealed the presence of strong bonding for the films made at alkaline pH. X-ray diffraction analysis (XRD) indicated the major structure of the film was amorphous. The study demonstrated that the fenugreek protein concentrate film has influential characteristics and can be used as an edible packaging film.

Zobrazit více v PubMed

Liu C., Huang J., Zheng X., Liu S., Lu K., Tang K., Liu J. Heat sealable soluble soybean polysaccha-ride/gelatin blend edible films for food packaging applications. Food Pack. Shelf Life. 2020;24:100485. doi: 10.1016/j.fpsl.2020.100485. DOI

Hahladakis J.N., Velis C.A., Weber R., Iacovidou E., Purnell P. An overview of chemical additives pre-sent in plastics: Migration, release, fate and environmental impact during their use, disposal, and recycling. J. Hazard. Mater. 2018;344:179–199. doi: 10.1016/j.jhazmat.2017.10.014. PubMed DOI

Lambert S., Wagner M. Environmental performance of bio-based and biodegradable plastics: The road ahead. Chem. Soc. Rev. 2017;46:6855–6871. doi: 10.1039/C7CS00149E. PubMed DOI

Han J.-W., Ruiz-Garcia L., Qian J.-P., Yang X.-T. Food Packaging: A Comprehensive Review and Future Trends. Compr. Rev. Food Sci. Food Saf. 2018;17:860–877. doi: 10.1111/1541-4337.12343. PubMed DOI

Montes E.D., Muñoz R.C. Edible films and coatings as food-quality preservers: An overview. Foods. 2021;10:249. doi: 10.3390/foods10020249. PubMed DOI PMC

Mohamed S.A., El-Sakhawy M. Polysaccharides, Protein and Lipid -Based Natural Edible Films in Food Packaging: A Review. Carbohydr. Polym. 2020;238:116178. doi: 10.1016/j.carbpol.2020.116178. PubMed DOI

Mlalila N., Hilonga A., Swai H., Devlieghere F., Ragaert P. Antimicrobial packaging based on starch, poly(3-hydroxybutyrate) and poly(lactic-co-glycolide) materials and application challenges. Trends Food Sci. Technol. 2018;74:1–11. doi: 10.1016/j.tifs.2018.01.015. DOI

Park J., Nam J., Yun H., Jin H.J., Kwak H.W. Aquatic polymer-based edible films of fish gelatin cross-linked with alginate dialdehyde having enhanced physicochemical properties. Carbo. Polym. 2021;254:117317. doi: 10.1016/j.carbpol.2020.117317. PubMed DOI

Arfat Y.A., Benjakul S., Prodpran T., Osako K. Development and characterisation of blend films based on fish protein isolate and fish skin gelatin. Food Hydrocoll. 2014;39:58–67. doi: 10.1016/j.foodhyd.2013.12.028. DOI

Dinika I., Verma D.K., Balia R., Utama G.L., Patel A.R. Potential of cheese whey bioactive proteins and peptides in the development of antimicrobial edible film composite: A review of recent trends. Trends Food Sci. Technol. 2020;103:57–67. doi: 10.1016/j.tifs.2020.06.017. DOI

Corrado I., Abdalrazeq M., Pezzella C., Di Girolamo R., Porta R., Sannia G., Giosafatto C.V.L. Design and characterization of poly (3-hydroxybutyrate-co-hydroxyhexanoate) nanoparticles and their grafting in whey protein-based nanocomposites. Food Hydrocoll. 2021;110:106167. doi: 10.1016/j.foodhyd.2020.106167. DOI

Prodpran T., Benjakul S., Artharn A. Properties and microstructure of protein-based film from round scad (Decapterusmaruadsi) muscle as affected by palm oil and chitosan incorporation. Inter. J. Biol. Macromol. 2007;41:605–614. doi: 10.1016/j.ijbiomac.2007.07.020. PubMed DOI

Gennadios A., Weller C., Testin R. Temperature Effect on Oxygen Permeability of Edible Protein-based Films. J. Food Sci. 1993;58:212–214. doi: 10.1111/j.1365-2621.1993.tb03247.x. DOI

Bourtoom T. Factors affecting the properties of edible film prepared from mung bean proteins. Int. Food Res. J. 2008;15:167–180.

Saglam D., Venema P., de Vries R., Shi J., van der Linden E. Concentrated whey protein particle dispersions: Heat stability and rheological properties. Food Hydrocoll. 2013;30:100–109. doi: 10.1016/j.foodhyd.2012.05.005. DOI

Feyzi S., Varidi M., Zare F., Varidi M.J. Fenugreek (Trigonella foenum graecum) seed protein isolate: Extraction optimization, amino acid composition, thermo and functional properties. J. Sci. Food Agric. 2015;95:3165–3176. doi: 10.1002/jsfa.7056. PubMed DOI

Sauvaire Y., Girardon P., Baccou J., Ristérucci A. Changes in growth, proteins and free amino acids of developing seed and pod of fenugreek. Phytochemistry. 1984;23:479–486. doi: 10.1016/S0031-9422(00)80363-5. DOI

Kaviarasan S., Vijayalakshmi K., Anuradha C. Polyphenol-Rich Extract of Fenugreek Seeds Protect Erythrocytes from Oxidative Damage. Plant Foods Hum. Nutr. 2004;59:143–147. doi: 10.1007/s11130-004-0025-2. PubMed DOI

Srinivasan K. Fenugreek (Trigonella foenum-graecum): A review of health beneficial physiological effects. Food Rev. Int. 2006;22:203–224. doi: 10.1080/87559120600586315. DOI

Naidu M.M., Shyamala B.N., Naik J.P., Sulochanamma G., Srinivas P. Chemical composition and anti-oxidant activity of the husk and endosperm of fenugreek seeds. LWT Food Sci. Technol. 2011;44:451–456. doi: 10.1016/j.lwt.2010.08.013. DOI

Mir N.A., Riar C.S., Singh S. Physicochemical, molecular and thermal properties of high-intensity ultra-sound (HIUS) treated protein isolates from album (Chenopodium album) seed. Food Hydrocoll. 2019;96:433–441. doi: 10.1016/j.foodhyd.2019.05.052. DOI

Paglione I.S., Galindo M.V., de Souza K.C., Yamashita F., Grosso C.R.F., Sakanaka L.S., Shirai M.A. Optimization of the conditions for producing soy protein isolate films. Emirates J. Food Agric. 2019;31:297–303. doi: 10.9755/ejfa.2019.v31.i4.1933. DOI

Sukhija S., Singh S., Riar C.S. Analyzing the effect of whey protein concentrate and psyllium husk on var-ious characteristics of biodegradable film from lotus (Nelumbo nucifera) rhizome starch. Food Hydrocoll. 2016;60:128–137. doi: 10.1016/j.foodhyd.2016.03.023. DOI

Sharma L., Singh C. Sesame protein based edible films: Development and characterization. Food Hydrocoll. 2016;61:139–147. doi: 10.1016/j.foodhyd.2016.05.007. DOI

Han J.H., Floros J.D. Casting Antimicrobial Packaging Films and Measuring Their Physical Properties and Antimicrobial Activity. J. Plast. Film Sheeting. 1997;13:287–298. doi: 10.1177/875608799701300405. DOI

Romero-Bastida C.A., Bello-Pérez L.A., García M.A., Martino M.N., Solorza-Feria J., Zaritzky N.E. Physicochemical and microstructural characterization of films prepared by thermal and cold gelatinization from non-conventional sources of starches. Carbohydr. Polym. 2005;60:235–244. doi: 10.1016/j.carbpol.2005.01.004. DOI

Scartazzini L., Tosati J.V., Cortez D.H.C., Rossi M.J., Flôres S.H., Hubinger M.D., Monteiro A.R. Gela-tin edible coatings with mint essential oil (Mentha arvensis): Film characterization and antifungal proper-ties. J. Food Sci. Technol. 2019;56:4045–4056. doi: 10.1007/s13197-019-03873-9. PubMed DOI PMC

Acquah C., Zhang Y., Dubé M.A., Udenigwe C.C. Formation and characterization of protein-based films from yellow pea (Pisum sativum) protein isolate and concentrate for edible applications. Curr. Res. Food Sci. 2020;2:61–69. doi: 10.1016/j.crfs.2019.11.008. PubMed DOI PMC

Zhao X., Xing T., Xu X., Zhou G. Influence of extreme alkaline pH induced unfolding and aggregation on PSE-like chicken protein edible film formation. Food Chem. 2020;319:126574. doi: 10.1016/j.foodchem.2020.126574. PubMed DOI

Cho S.Y., Park J.-W., Batt H.P., Thomas R.L. Edible films made from membrane processed soy protein concentrates. LWT. 2007;40:418–423. doi: 10.1016/j.lwt.2006.02.003. DOI

Nandane A.S., Jain R. Study of mechanical properties of soy protein based edible film as affected by its composition and process parameters by using RSM. J. Food Sci. Technol. 2014;52:1–6. doi: 10.1007/s13197-014-1417-4. PubMed DOI PMC

Rhim J.W., Gennadios A., Handa A., Weller C.L., Hanna M.A. Solubility, Tensile, and Color Properties of Modified Soy Protein Isolate Films†. J. Agric. Food Chem. 2000;48:4937–4941. doi: 10.1021/jf0005418. PubMed DOI

Bertuzzi M., Vidaurre E.C., Armada M., Gottifredi J. Water vapor permeability of edible starch based films. J. Food Eng. 2007;80:972–978. doi: 10.1016/j.jfoodeng.2006.07.016. DOI

Bamdad F., Goli A.H., Kadivar M. Preparation and characterization of proteinous film from lentil (Lens culinaris): Edible film from lentil (Lens culinaris) Food Res. Int. 2006;39:106–111. doi: 10.1016/j.foodres.2005.06.006. DOI

Soliman E.A., Tawfik M., El-Sayed H., Moharram Y.G. Preparation and Characterization of Soy Protein Based Edible/Biodegradable Films. Am. J. Food Technol. 2007;2:462–476. doi: 10.3923/ajft.2007.462.476. DOI

Shimada K., Cheftel J.C. Texture characteristics, protein solubility, and sulfhydryl group/disulfide bond contents of heat-induced gels of whey protein isolate. J. Agric. Food Chem. 1988;36:1018–1025. doi: 10.1021/jf00083a029. DOI

Kester J.J., Fennema O.R. Edible films and coatings: A review. Food Tech. 1986;40:47–59.

Saricaoglu F.T., Tural S., Gul O., Turhan S. High pressure homogenization of mechanically deboned chicken meat protein suspensions to improve mechanical and barrier properties of edible films. Food Hydrocoll. 2018;84:135–145. doi: 10.1016/j.foodhyd.2018.05.058. DOI

Saremnezhad S., Azizi M.H., Barzegar M., Abbasi S., Ahmadi E. Properties of a new edible film made of faba bean protein isolate. J. Agri. Sci. Tech. 2011;13:181–192.

Dey A., Neogi S. Oxygen scavengers for food packaging applications: A review. Trends Food Sci. Technol. 2019;90:26–34. doi: 10.1016/j.tifs.2019.05.013. DOI

Stuchell Y.M., Krochta J.M. Enzymatic Treatments and Thermal Effects on Edible Soy Protein Films. J. Food Sci. 1994;59:1332–1337. doi: 10.1111/j.1365-2621.1994.tb14709.x. DOI

Chen C.-H., Kuo W.-S., Lai L.-S. Water barrier and physical properties of starch/decolorized hsian-tsao leaf gum films: Impact of surfactant lamination. Food Hydrocoll. 2010;24:200–207. doi: 10.1016/j.foodhyd.2009.09.006. DOI

Mali S., Grossmann M.V.E., García M.A., Martino M.N., Zaritzky N.E. Barrier, mechanical and optical properties of plasticized yam starch films. Carbohydr. Polym. 2004;56:129–135. doi: 10.1016/j.carbpol.2004.01.004. DOI

Han Y., Yu M., Wang L. Preparation and characterization of antioxidant soy protein isolate films incor-porating licorice residue extract. Food Hydrocoll. 2018;75:13–21. doi: 10.1016/j.foodhyd.2017.09.020. DOI

Nerín C., Tovar L., Salafranca J. Behaviour of a new antioxidant active film versus oxidizable model compounds. J. Food Eng. 2008;84:313–320. doi: 10.1016/j.jfoodeng.2007.05.027. DOI

Ramos Ó.L., Reinas I., Silva S.I., Fernandes J.C., Cerqueira M.A., Pereira R.N., Vicente A.A., Pocas M.F., Pintado M.E., Malcata F.X. Effect of whey protein purity and glycerol content upon physical properties of edible films manufactured therefrom. Food Hydrocoll. 2013;30:110–122. doi: 10.1016/j.foodhyd.2012.05.001. DOI

Lee J.-H., Song N.-B., Jo W.-S., Bin Song K. Effects of nano-clay type and content on the physical properties of sesame seed meal protein composite films. Int. J. Food Sci. Technol. 2014;49:1869–1875. doi: 10.1111/ijfs.12496. DOI

Choi W.-S., Han J.H. Physical and Mechanical Properties of Pea-Protein-based Edible Films. J. Food Sci. 2001;66:319–322. doi: 10.1111/j.1365-2621.2001.tb11339.x. DOI

Asdagh A., Sani I.K., Pirsa S., Amiri S., Shariatifar N., Eghbaljoo-Gharehgheshlaghi H., Shabahang Z., Taniyan A. Production and Characterization of Nanocomposite Film Based on Whey Protein Isolated/Copper Oxide Nanoparticles Containing Coconut Essential Oil and Paprika Extract. J. Polym. Environ. 2021;29:335–349. doi: 10.1007/s10924-020-01882-w. DOI

Lodha P., Netravali A.N. Thermal and mechanical properties of environment-friendly ‘green’ plastics from stearic acid modified-soy protein isolate. Ind. Crop. Prod. 2005;21:49–64. doi: 10.1016/j.indcrop.2003.12.006. DOI

Karnnet S., Potiyaraj P., Pimpan V. Preparation and properties of biodegradable stearic acid-modified gel-atin films. Polym. Degra. Stab. 2005;90:106–110. doi: 10.1016/j.polymdegradstab.2005.02.016. DOI

Schmidt V., Giacomelli C., Soldi V. Thermal stability of films formed by soy protein isolate–sodium do-decyl sulfate. Polym. Degra. Stab. 2005;87:25–31. doi: 10.1016/j.polymdegradstab.2004.07.003. DOI

Barth A., Zscherp C. What vibrations tell about proteins. Q. Rev. Biophys. 2002;35:369–430. doi: 10.1017/S0033583502003815. PubMed DOI

Martins J.T., Cerqueira M.A., Bourbon A.I., Pinheiro A.C., Souza B.W., Vicente A.A. Synergistic effects between k-carrageenan and locust bean gum on physicochemical properties of edible films made there-of. Food Hydrocoll. 2012;29:280–289. doi: 10.1016/j.foodhyd.2012.03.004. DOI

Ghamari M.A., Amiri S., Rezazadeh-Bari M., Rezazad-Bari L. Physical, mechanical, and antimicrobial properties of active edible film based on milk proteins incorporated with Nigella sativa essential oil. Polym. Bull. 2021:1–21. doi: 10.1007/s00289-021-03550-y. DOI

Youssef A.M., El-Sayed S.M. Bionanocomposites materials for food packaging applications: Concepts and future outlook. Carbohydr. Polym. 2018;193:19–27. doi: 10.1016/j.carbpol.2018.03.088. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...