Development and Characterization of Fenugreek Protein-Based Edible Film
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34574085
PubMed Central
PMC8465570
DOI
10.3390/foods10091976
PII: foods10091976
Knihovny.cz E-zdroje
- Klíčová slova
- Fourier-transform infrared spectroscopy, X-ray diffraction, edible film, fenugreek protein concentrate, tensile strength, water vapor permeability,
- Publikační typ
- časopisecké články MeSH
The present investigation studied the physicochemical, mechanical, structural, thermal, and morphological attributes of a novel edible film formed from fenugreek protein concentrate. Films were produced at different pH-9, 10, 11, and 12-and the effect of the pH on the films was studied. As the pH increased, tensile strength increased while water vapor absorption decreased, which is interrelated to the surface morphological properties; as the pH increased, the surface became smoother and compact without any cavities. The films produced were darker in color. Fenugreek protein films exhibited good thermal stability. Fourier transform infrared spectroscopy (FTIR) revealed the presence of strong bonding for the films made at alkaline pH. X-ray diffraction analysis (XRD) indicated the major structure of the film was amorphous. The study demonstrated that the fenugreek protein concentrate film has influential characteristics and can be used as an edible packaging film.
Department of Food Nutrition and Packaging Sciences Clemson University Clemson SC 29631 USA
Department of Food Technology Mata Gujri College Fatehgarh 140307 India
Zobrazit více v PubMed
Liu C., Huang J., Zheng X., Liu S., Lu K., Tang K., Liu J. Heat sealable soluble soybean polysaccha-ride/gelatin blend edible films for food packaging applications. Food Pack. Shelf Life. 2020;24:100485. doi: 10.1016/j.fpsl.2020.100485. DOI
Hahladakis J.N., Velis C.A., Weber R., Iacovidou E., Purnell P. An overview of chemical additives pre-sent in plastics: Migration, release, fate and environmental impact during their use, disposal, and recycling. J. Hazard. Mater. 2018;344:179–199. doi: 10.1016/j.jhazmat.2017.10.014. PubMed DOI
Lambert S., Wagner M. Environmental performance of bio-based and biodegradable plastics: The road ahead. Chem. Soc. Rev. 2017;46:6855–6871. doi: 10.1039/C7CS00149E. PubMed DOI
Han J.-W., Ruiz-Garcia L., Qian J.-P., Yang X.-T. Food Packaging: A Comprehensive Review and Future Trends. Compr. Rev. Food Sci. Food Saf. 2018;17:860–877. doi: 10.1111/1541-4337.12343. PubMed DOI
Montes E.D., Muñoz R.C. Edible films and coatings as food-quality preservers: An overview. Foods. 2021;10:249. doi: 10.3390/foods10020249. PubMed DOI PMC
Mohamed S.A., El-Sakhawy M. Polysaccharides, Protein and Lipid -Based Natural Edible Films in Food Packaging: A Review. Carbohydr. Polym. 2020;238:116178. doi: 10.1016/j.carbpol.2020.116178. PubMed DOI
Mlalila N., Hilonga A., Swai H., Devlieghere F., Ragaert P. Antimicrobial packaging based on starch, poly(3-hydroxybutyrate) and poly(lactic-co-glycolide) materials and application challenges. Trends Food Sci. Technol. 2018;74:1–11. doi: 10.1016/j.tifs.2018.01.015. DOI
Park J., Nam J., Yun H., Jin H.J., Kwak H.W. Aquatic polymer-based edible films of fish gelatin cross-linked with alginate dialdehyde having enhanced physicochemical properties. Carbo. Polym. 2021;254:117317. doi: 10.1016/j.carbpol.2020.117317. PubMed DOI
Arfat Y.A., Benjakul S., Prodpran T., Osako K. Development and characterisation of blend films based on fish protein isolate and fish skin gelatin. Food Hydrocoll. 2014;39:58–67. doi: 10.1016/j.foodhyd.2013.12.028. DOI
Dinika I., Verma D.K., Balia R., Utama G.L., Patel A.R. Potential of cheese whey bioactive proteins and peptides in the development of antimicrobial edible film composite: A review of recent trends. Trends Food Sci. Technol. 2020;103:57–67. doi: 10.1016/j.tifs.2020.06.017. DOI
Corrado I., Abdalrazeq M., Pezzella C., Di Girolamo R., Porta R., Sannia G., Giosafatto C.V.L. Design and characterization of poly (3-hydroxybutyrate-co-hydroxyhexanoate) nanoparticles and their grafting in whey protein-based nanocomposites. Food Hydrocoll. 2021;110:106167. doi: 10.1016/j.foodhyd.2020.106167. DOI
Prodpran T., Benjakul S., Artharn A. Properties and microstructure of protein-based film from round scad (Decapterusmaruadsi) muscle as affected by palm oil and chitosan incorporation. Inter. J. Biol. Macromol. 2007;41:605–614. doi: 10.1016/j.ijbiomac.2007.07.020. PubMed DOI
Gennadios A., Weller C., Testin R. Temperature Effect on Oxygen Permeability of Edible Protein-based Films. J. Food Sci. 1993;58:212–214. doi: 10.1111/j.1365-2621.1993.tb03247.x. DOI
Bourtoom T. Factors affecting the properties of edible film prepared from mung bean proteins. Int. Food Res. J. 2008;15:167–180.
Saglam D., Venema P., de Vries R., Shi J., van der Linden E. Concentrated whey protein particle dispersions: Heat stability and rheological properties. Food Hydrocoll. 2013;30:100–109. doi: 10.1016/j.foodhyd.2012.05.005. DOI
Feyzi S., Varidi M., Zare F., Varidi M.J. Fenugreek (Trigonella foenum graecum) seed protein isolate: Extraction optimization, amino acid composition, thermo and functional properties. J. Sci. Food Agric. 2015;95:3165–3176. doi: 10.1002/jsfa.7056. PubMed DOI
Sauvaire Y., Girardon P., Baccou J., Ristérucci A. Changes in growth, proteins and free amino acids of developing seed and pod of fenugreek. Phytochemistry. 1984;23:479–486. doi: 10.1016/S0031-9422(00)80363-5. DOI
Kaviarasan S., Vijayalakshmi K., Anuradha C. Polyphenol-Rich Extract of Fenugreek Seeds Protect Erythrocytes from Oxidative Damage. Plant Foods Hum. Nutr. 2004;59:143–147. doi: 10.1007/s11130-004-0025-2. PubMed DOI
Srinivasan K. Fenugreek (Trigonella foenum-graecum): A review of health beneficial physiological effects. Food Rev. Int. 2006;22:203–224. doi: 10.1080/87559120600586315. DOI
Naidu M.M., Shyamala B.N., Naik J.P., Sulochanamma G., Srinivas P. Chemical composition and anti-oxidant activity of the husk and endosperm of fenugreek seeds. LWT Food Sci. Technol. 2011;44:451–456. doi: 10.1016/j.lwt.2010.08.013. DOI
Mir N.A., Riar C.S., Singh S. Physicochemical, molecular and thermal properties of high-intensity ultra-sound (HIUS) treated protein isolates from album (Chenopodium album) seed. Food Hydrocoll. 2019;96:433–441. doi: 10.1016/j.foodhyd.2019.05.052. DOI
Paglione I.S., Galindo M.V., de Souza K.C., Yamashita F., Grosso C.R.F., Sakanaka L.S., Shirai M.A. Optimization of the conditions for producing soy protein isolate films. Emirates J. Food Agric. 2019;31:297–303. doi: 10.9755/ejfa.2019.v31.i4.1933. DOI
Sukhija S., Singh S., Riar C.S. Analyzing the effect of whey protein concentrate and psyllium husk on var-ious characteristics of biodegradable film from lotus (Nelumbo nucifera) rhizome starch. Food Hydrocoll. 2016;60:128–137. doi: 10.1016/j.foodhyd.2016.03.023. DOI
Sharma L., Singh C. Sesame protein based edible films: Development and characterization. Food Hydrocoll. 2016;61:139–147. doi: 10.1016/j.foodhyd.2016.05.007. DOI
Han J.H., Floros J.D. Casting Antimicrobial Packaging Films and Measuring Their Physical Properties and Antimicrobial Activity. J. Plast. Film Sheeting. 1997;13:287–298. doi: 10.1177/875608799701300405. DOI
Romero-Bastida C.A., Bello-Pérez L.A., García M.A., Martino M.N., Solorza-Feria J., Zaritzky N.E. Physicochemical and microstructural characterization of films prepared by thermal and cold gelatinization from non-conventional sources of starches. Carbohydr. Polym. 2005;60:235–244. doi: 10.1016/j.carbpol.2005.01.004. DOI
Scartazzini L., Tosati J.V., Cortez D.H.C., Rossi M.J., Flôres S.H., Hubinger M.D., Monteiro A.R. Gela-tin edible coatings with mint essential oil (Mentha arvensis): Film characterization and antifungal proper-ties. J. Food Sci. Technol. 2019;56:4045–4056. doi: 10.1007/s13197-019-03873-9. PubMed DOI PMC
Acquah C., Zhang Y., Dubé M.A., Udenigwe C.C. Formation and characterization of protein-based films from yellow pea (Pisum sativum) protein isolate and concentrate for edible applications. Curr. Res. Food Sci. 2020;2:61–69. doi: 10.1016/j.crfs.2019.11.008. PubMed DOI PMC
Zhao X., Xing T., Xu X., Zhou G. Influence of extreme alkaline pH induced unfolding and aggregation on PSE-like chicken protein edible film formation. Food Chem. 2020;319:126574. doi: 10.1016/j.foodchem.2020.126574. PubMed DOI
Cho S.Y., Park J.-W., Batt H.P., Thomas R.L. Edible films made from membrane processed soy protein concentrates. LWT. 2007;40:418–423. doi: 10.1016/j.lwt.2006.02.003. DOI
Nandane A.S., Jain R. Study of mechanical properties of soy protein based edible film as affected by its composition and process parameters by using RSM. J. Food Sci. Technol. 2014;52:1–6. doi: 10.1007/s13197-014-1417-4. PubMed DOI PMC
Rhim J.W., Gennadios A., Handa A., Weller C.L., Hanna M.A. Solubility, Tensile, and Color Properties of Modified Soy Protein Isolate Films†. J. Agric. Food Chem. 2000;48:4937–4941. doi: 10.1021/jf0005418. PubMed DOI
Bertuzzi M., Vidaurre E.C., Armada M., Gottifredi J. Water vapor permeability of edible starch based films. J. Food Eng. 2007;80:972–978. doi: 10.1016/j.jfoodeng.2006.07.016. DOI
Bamdad F., Goli A.H., Kadivar M. Preparation and characterization of proteinous film from lentil (Lens culinaris): Edible film from lentil (Lens culinaris) Food Res. Int. 2006;39:106–111. doi: 10.1016/j.foodres.2005.06.006. DOI
Soliman E.A., Tawfik M., El-Sayed H., Moharram Y.G. Preparation and Characterization of Soy Protein Based Edible/Biodegradable Films. Am. J. Food Technol. 2007;2:462–476. doi: 10.3923/ajft.2007.462.476. DOI
Shimada K., Cheftel J.C. Texture characteristics, protein solubility, and sulfhydryl group/disulfide bond contents of heat-induced gels of whey protein isolate. J. Agric. Food Chem. 1988;36:1018–1025. doi: 10.1021/jf00083a029. DOI
Kester J.J., Fennema O.R. Edible films and coatings: A review. Food Tech. 1986;40:47–59.
Saricaoglu F.T., Tural S., Gul O., Turhan S. High pressure homogenization of mechanically deboned chicken meat protein suspensions to improve mechanical and barrier properties of edible films. Food Hydrocoll. 2018;84:135–145. doi: 10.1016/j.foodhyd.2018.05.058. DOI
Saremnezhad S., Azizi M.H., Barzegar M., Abbasi S., Ahmadi E. Properties of a new edible film made of faba bean protein isolate. J. Agri. Sci. Tech. 2011;13:181–192.
Dey A., Neogi S. Oxygen scavengers for food packaging applications: A review. Trends Food Sci. Technol. 2019;90:26–34. doi: 10.1016/j.tifs.2019.05.013. DOI
Stuchell Y.M., Krochta J.M. Enzymatic Treatments and Thermal Effects on Edible Soy Protein Films. J. Food Sci. 1994;59:1332–1337. doi: 10.1111/j.1365-2621.1994.tb14709.x. DOI
Chen C.-H., Kuo W.-S., Lai L.-S. Water barrier and physical properties of starch/decolorized hsian-tsao leaf gum films: Impact of surfactant lamination. Food Hydrocoll. 2010;24:200–207. doi: 10.1016/j.foodhyd.2009.09.006. DOI
Mali S., Grossmann M.V.E., García M.A., Martino M.N., Zaritzky N.E. Barrier, mechanical and optical properties of plasticized yam starch films. Carbohydr. Polym. 2004;56:129–135. doi: 10.1016/j.carbpol.2004.01.004. DOI
Han Y., Yu M., Wang L. Preparation and characterization of antioxidant soy protein isolate films incor-porating licorice residue extract. Food Hydrocoll. 2018;75:13–21. doi: 10.1016/j.foodhyd.2017.09.020. DOI
Nerín C., Tovar L., Salafranca J. Behaviour of a new antioxidant active film versus oxidizable model compounds. J. Food Eng. 2008;84:313–320. doi: 10.1016/j.jfoodeng.2007.05.027. DOI
Ramos Ó.L., Reinas I., Silva S.I., Fernandes J.C., Cerqueira M.A., Pereira R.N., Vicente A.A., Pocas M.F., Pintado M.E., Malcata F.X. Effect of whey protein purity and glycerol content upon physical properties of edible films manufactured therefrom. Food Hydrocoll. 2013;30:110–122. doi: 10.1016/j.foodhyd.2012.05.001. DOI
Lee J.-H., Song N.-B., Jo W.-S., Bin Song K. Effects of nano-clay type and content on the physical properties of sesame seed meal protein composite films. Int. J. Food Sci. Technol. 2014;49:1869–1875. doi: 10.1111/ijfs.12496. DOI
Choi W.-S., Han J.H. Physical and Mechanical Properties of Pea-Protein-based Edible Films. J. Food Sci. 2001;66:319–322. doi: 10.1111/j.1365-2621.2001.tb11339.x. DOI
Asdagh A., Sani I.K., Pirsa S., Amiri S., Shariatifar N., Eghbaljoo-Gharehgheshlaghi H., Shabahang Z., Taniyan A. Production and Characterization of Nanocomposite Film Based on Whey Protein Isolated/Copper Oxide Nanoparticles Containing Coconut Essential Oil and Paprika Extract. J. Polym. Environ. 2021;29:335–349. doi: 10.1007/s10924-020-01882-w. DOI
Lodha P., Netravali A.N. Thermal and mechanical properties of environment-friendly ‘green’ plastics from stearic acid modified-soy protein isolate. Ind. Crop. Prod. 2005;21:49–64. doi: 10.1016/j.indcrop.2003.12.006. DOI
Karnnet S., Potiyaraj P., Pimpan V. Preparation and properties of biodegradable stearic acid-modified gel-atin films. Polym. Degra. Stab. 2005;90:106–110. doi: 10.1016/j.polymdegradstab.2005.02.016. DOI
Schmidt V., Giacomelli C., Soldi V. Thermal stability of films formed by soy protein isolate–sodium do-decyl sulfate. Polym. Degra. Stab. 2005;87:25–31. doi: 10.1016/j.polymdegradstab.2004.07.003. DOI
Barth A., Zscherp C. What vibrations tell about proteins. Q. Rev. Biophys. 2002;35:369–430. doi: 10.1017/S0033583502003815. PubMed DOI
Martins J.T., Cerqueira M.A., Bourbon A.I., Pinheiro A.C., Souza B.W., Vicente A.A. Synergistic effects between k-carrageenan and locust bean gum on physicochemical properties of edible films made there-of. Food Hydrocoll. 2012;29:280–289. doi: 10.1016/j.foodhyd.2012.03.004. DOI
Ghamari M.A., Amiri S., Rezazadeh-Bari M., Rezazad-Bari L. Physical, mechanical, and antimicrobial properties of active edible film based on milk proteins incorporated with Nigella sativa essential oil. Polym. Bull. 2021:1–21. doi: 10.1007/s00289-021-03550-y. DOI
Youssef A.M., El-Sayed S.M. Bionanocomposites materials for food packaging applications: Concepts and future outlook. Carbohydr. Polym. 2018;193:19–27. doi: 10.1016/j.carbpol.2018.03.088. PubMed DOI