Silver Nanoparticle's Toxicological Effects and Phytoremediation

. 2021 Aug 24 ; 11 (9) : . [epub] 20210824

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34578480

The advancement in nanotechnology has brought numerous benefits for humans in diverse areas including industry, medicine, and agriculture. The demand in the application of nanomaterials can result in the release of these anthropogenic materials into soil and water that can potentially harm the environment by affecting water and soil properties (e.g., soil texture, pH, organic matter, and water content), plants, animals, and subsequently human health. The properties of nanoparticles including their size, surface area, and reactivity affect their fate in the environment and can potentially result in their toxicological effects in the ecosystem and on living organisms. There is extensive research on the application of nano-based materials and the consequences of their release into the environment. However, there is little information about environmentally friendly approaches for removing nanomaterials from the environment. This article provides insight into the application of silver nanoparticles (AgNPs), as one of the most commonly used nanomaterials, their toxicological effects, their impacts on plants and microorganisms, and briefly reviews the possibility of remediation of these metabolites using phytotechnology approaches. This article provides invaluable information to better understand the fate of nanomaterials in the environment and strategies in removing them from the environment.

Zobrazit více v PubMed

Hochella M.F., Lower S.K., Maurice P.A., Penn R.L., Sahai N., Sparks D.L., Twining B.S. Nanominerals, mineral nanoparticles, and earth systems. Science. 2008;319:1631–1635. doi: 10.1126/science.1141134. PubMed DOI

Keerthana P., Vijayakumar S., Vidhya E., Punitha V., Nilavukkarasi M., Praseetha P. Biogenesis of ZnO nanoparticles for revolutionizing agriculture: A step towards anti-infection and growth promotion in plants. Ind. Crop. Prod. 2021;170:113762.

Dhawan A., Shanker R., Das M., Gupta K.C. Guidance for safe handling of nanomaterials. J. Biomed. Nanotechnol. 2011;7:218–224. doi: 10.1166/jbn.2011.1276. PubMed DOI

Rastogi A., Zivcak M., Sytar O., Kalaji H.M., He X., Mbarki S., Brestic M. Impact of metal and metal oxide nanoparticles on plant: A critical review. Front. Chem. 2017;5:78. doi: 10.3389/fchem.2017.00078. PubMed DOI PMC

Dillon A.D., Ghidiu M.J., Krick A.L., Griggs J., May S.J., Gogotsi Y., Barsoum M.W., Fafarman A.T. Highly conductive optical quality solution-processed films of 2D titanium carbide. Adv. Funct. Mater. 2016;26:4162–4168. doi: 10.1002/adfm.201600357. DOI

Chandra H., Patel D., Kumari P., Jangwan J., Yadav S. Phyto-mediated synthesis of zinc oxide nanoparticles of Berberis aristata: Characterization, antioxidant activity and antibacterial activity with special reference to urinary tract pathogens. Mater. Sci. Eng. C. 2019;102:212–220. doi: 10.1016/j.msec.2019.04.035. PubMed DOI

Chandra H., Kumari P., Bontempi E., Yadav S. Medicinal plants: Treasure trove for green synthesis of metallic nanoparticles and their biomedical applications. Biocatal. Agric. Biotechnol. 2020;24:101518. doi: 10.1016/j.bcab.2020.101518. DOI

Chinnamuthu C., Boopathi P.M. Nanotechnology and agroecosystem. Madras Agric. J. 2009;96:17–31.

Servin A., Elmer W., Mukherjee A., De la Torre-Roche R., Hamdi H., White J.C., Bindraban P., Dimkpa C. A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J. Nanopart. Res. 2015;17:92. doi: 10.1007/s11051-015-2907-7. DOI

Kah M., Kookana R.S., Gogos A., Bucheli T.D. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat. Nanotechnol. 2018;13:677–684. doi: 10.1038/s41565-018-0131-1. PubMed DOI

Gogos A., Knauer K., Bucheli T.D. Nanomaterials in plant protection and fertilization: Current state, foreseen applications, and research priorities. J. Agric. Food Chem. 2012;60:9781–9792. doi: 10.1021/jf302154y. PubMed DOI

Servin A.D., De la Torre-Roche R., Castillo-Michel H., Pagano L., Hawthorne J., Musante C., Pignatello J., Uchimiya M., White J.C. Exposure of agricultural crops to nanoparticle CeO2 in biochar-amended soil. Plant Physiol. Biochem. 2017;110:147–157. doi: 10.1016/j.plaphy.2016.06.003. PubMed DOI

Singh R.P., Handa R., Manchanda G. Nanoparticles in sustainable agriculture: An emerging opportunity. J. Control. Release. 2020;329:1234–1248. doi: 10.1016/j.jconrel.2020.10.051. PubMed DOI

Samal A.K., Polavarapu L., Rodal-Cedeira S., Liz-Marzaán L.M., Peérez-Juste J., Pastoriza-Santos I. Size Tunable Au@ Ag core–shell nanoparticles: Synthesis and surface-enhanced raman scattering properties. Langmuir. 2013;29:15076–15082. doi: 10.1021/la403707j. PubMed DOI

Simonin M., Martins J.M., Uzu G., Spadini L., Navel A., Richaume A. Low mobility of CuO and TiO2 nanoparticles in agricultural soils of contrasting texture and organic matter content. Sci. Total Environ. 2021;783:146952. doi: 10.1016/j.scitotenv.2021.146952. PubMed DOI

Fang J., Zhang K., Sun P., Lin D., Shen B., Luo Y. Co-transport of Pb2+ and TiO2 nanoparticles in repacked homogeneous soil columns under saturation condition: Effect of ionic strength and fulvic acid. Sci. Total Environ. 2016;571:471–478. doi: 10.1016/j.scitotenv.2016.07.013. PubMed DOI

Courtois P., de Vaufleury A., Grosser A., Lors C., Vandenbulcke F. Transfer of sulfidized silver from silver nanoparticles, in sewage sludge, to plants and primary consumers in agricultural soil environment. Sci. Total Environ. 2021;777:145900. doi: 10.1016/j.scitotenv.2021.145900. PubMed DOI

Torrent L., Marguí E., Queralt I., Hidalgo M., Iglesias M. Interaction of silver nanoparticles with mediterranean agricultural soils: Lab-controlled adsorption and desorption studies. J. Environ. Sci. 2019;83:205–216. doi: 10.1016/j.jes.2019.03.018. PubMed DOI

De Leersnyder I., Rijckaert H., De Gelder L., Van Driessche I., Vermeir P. High variability in silver particle characteristics, silver concentrations, and production batches of commercially available products indicates the need for a more rigorous approach. Nanomaterials. 2020;10:1394. doi: 10.3390/nano10071394. PubMed DOI PMC

Market Watch. [(accessed on 20 October 2019)]. Available online: https://www.marketwatch.com/press-release/silvernanoparticles-market-future-scope-demands-and-projectedindustry-growths-to-2024-2019-05-09.

Noori A., Ngo A., Gutierrez P., Theberge S., White J.C. Silver nanoparticle detection and accumulation in tomato. J. Nanopart. Res. 2020;22:131. doi: 10.1007/s11051-020-04866-y. DOI

Wahab M.A., Li L., Li H., Abdala A. Silver Nanoparticle-Based Nanocomposites for Combating Infectious Pathogens: Recent Advances and Future Prospects. Nanomaterials. 2021;11:581. doi: 10.3390/nano11030581. PubMed DOI PMC

Peharec Štefanić P., Košpić K., Lyons D.M., Jurković L., Balen B., Tkalec M. Phytotoxicity of silver nanoparticles on tobacco plants: Evaluation of coating effects on photosynthetic performance and chloroplast ultrastructure. Nanomaterials. 2021;11:744. doi: 10.3390/nano11030744. PubMed DOI PMC

Noori A., Donnelly T., Colbert J., Cai W., Newman L.A., White J.C. Exposure of tomato (Lycopersicon esculentum) to silver nanoparticles and silver nitrate: Physiological and molecular response. Int. J. Phytoremediat. 2020;22:40–51. doi: 10.1080/15226514.2019.1634000. PubMed DOI

Noori A., White J.C., Newman L.A. Mycorrhizal fungi influence on silver uptake and membrane protein gene expression following silver nanoparticle exposure. J. Nanopart. Res. 2017;19:66. doi: 10.1007/s11051-016-3650-4. DOI

Rajput V.D., Minkina T., Sushkova S., Tsitsuashvili V., Mandzhieva S., Gorovtsov A., Nevidomskyaya D., Gromakova N. Effect of nanoparticles on crops and soil microbial communities. J. Soils Sediments. 2018;18:2179–2187. doi: 10.1007/s11368-017-1793-2. DOI

Courtois P., Rorat A., Lemiere S., Guyoneaud R., Attard E., Levard C., Vandenbulcke F. Ecotoxicology of silver nanoparticles and their derivatives introduced in soil with or without sewage sludge: A review of effects on microorganisms, plants and animals. Environ. Pollut. 2019;253:578–598. doi: 10.1016/j.envpol.2019.07.053. PubMed DOI

Ali S.M., Yousef N.M., Nafady N.A. Application of biosynthesized silver nanoparticles for the control of land snail Eobania vermiculata and some plant pathogenic fungi. J. Nanomater. 2015;2015:218904. doi: 10.1155/2015/218904. DOI

Capek I. Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Adv. Colloid Interface Sci. 2004;110:49–74. doi: 10.1016/j.cis.2004.02.003. PubMed DOI

Reidy B., Haase A., Luch A., Dawson K.A., Lynch I. Mechanisms of silver nanoparticle release, transformation and toxicity: A critical review of current knowledge and recommendations for future studies and applications. Materials. 2013;6:2295–2350. doi: 10.3390/ma6062295. PubMed DOI PMC

Dobias J., Bernier-Latmani R. Silver release from silver nanoparticles in natural waters. Environ. Sci. Technol. 2013;47:4140–4146. doi: 10.1021/es304023p. PubMed DOI

Burić P., Jakšić Ž., Štajner L., Sikirić M.D., Jurašin D., Cascio C., Calzolai L., Lyons D.M. Effect of silver nanoparticles on Mediterranean sea urchin embryonal development is species specific and depends on moment of first exposure. Mar. Environ. Res. 2015;111:50–59. doi: 10.1016/j.marenvres.2015.06.015. PubMed DOI

Miao A.-J., Luo Z., Chen C.-S., Chin W.-C., Santschi P.H., Quigg A. Intracellular uptake: A possible mechanism for silver engineered nanoparticle toxicity to a freshwater alga Ochromonas danica. PLoS ONE. 2010;5:e15196. doi: 10.1371/journal.pone.0015196. PubMed DOI PMC

Siripattanakul-Ratpukdi S., Ploychankul C., Limpiyakorn T., Vangnai A.S., Rongsayamanont C., Khan E. Mitigation of nitrification inhibition by silver nanoparticles using cell entrapment technique. J. Nanopart. Res. 2014;16:2218. doi: 10.1007/s11051-013-2218-9. DOI

Vance M.E., Kuiken T., Vejerano E.P., McGinnis S.P., Hochella M.F., Jr., Rejeski D., Hull M.S. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J. Nanotechnol. 2015;6:1769–1780. doi: 10.3762/bjnano.6.181. PubMed DOI PMC

Ivask A., Kurvet I., Kasemets K., Blinova I., Aruoja V., Suppi S., Vija H., Käkinen A., Titma T., Heinlaan M. Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro. PLoS ONE. 2014;9:e102108. doi: 10.1371/journal.pone.0102108. PubMed DOI PMC

Fabrega J., Luoma S.N., Tyler C.R., Galloway T.S., Lead J.R. Silver nanoparticles: Behaviour and effects in the aquatic environment. Environ. Int. 2011;37:517–531. doi: 10.1016/j.envint.2010.10.012. PubMed DOI

Baker T.J., Tyler C.R., Galloway T.S. Impacts of metal and metal oxide nanoparticles on marine organisms. Environ. Pollut. 2014;186:257–271. doi: 10.1016/j.envpol.2013.11.014. PubMed DOI

Klitzke S., Metreveli G., Peters A., Schaumann G.E., Lang F. The fate of silver nanoparticles in soil solution—Sorption of solutes and aggregation. Sci. Total Environ. 2015;535:54–60. doi: 10.1016/j.scitotenv.2014.10.108. PubMed DOI

Nam D.-H., Lee B.-C., Eom I.-C., Kim P., Yeo M.-K. Uptake and bioaccumulation of titanium-and silver-nanoparticles in aquatic ecosystems. Mol. Cell. Toxicol. 2014;10:9–17. doi: 10.1007/s13273-014-0002-2. DOI

Howe P.D., Dobson S. Silver and Silver Compounds: Environmental Aspects. World Health Organization; Geneva, Switzerland: 2002.

Galazzi R.M., Júnior C.A.L., de Lima T.B., Gozzo F.C., Arruda M.A.Z. Evaluation of some effects on plant metabolism through proteins and enzymes in transgenic and non-transgenic soybeans after cultivation with silver nanoparticles. J. Proteom. 2019;191:88–106. doi: 10.1016/j.jprot.2018.03.024. PubMed DOI

Benn T.M., Westerhoff P. Nanoparticle silver released into water from commercially available sock fabrics. Environ. Sci. Technol. 2008;42:4133–4139. doi: 10.1021/es7032718. PubMed DOI

Lazim Z.M., Salmiati, Samaluddin A.R., Salim M.R., Arman N.Z. Toxicity of Silver Nanoparticles and Their Removal Applying Phytoremediation System to Water Environment: An Overview. J. Environ. Treat. Tech. 2020;8:978–984.

Handy R.D., Shaw B.J. Toxic effects of nanoparticles and nanomaterials: Implications for public health, risk assessment and the public perception of nanotechnology. Health Risk Soc. 2007;9:125–144. doi: 10.1080/13698570701306807. DOI

Owen R., Handy R. Formulating the Problems for Environmental Risk Assessment of Nanomaterials. ACS Publications; Washington, DC, USA: 2007. pp. 5582–5588. PubMed

Pérez-de-Luque A., Rubiales D. Nanotechnology for parasitic plant control. Pest Manag. Sci. Former. Pestic. Sci. 2009;65:540–545. doi: 10.1002/ps.1732. PubMed DOI

Saharan V. Advances in nanobiotechnology for agriculture. In: Dhingra H.K., Nath Jha P., Bajpai P., editors. Current Topics in Biotechnology & Microbiology. Lap Lambert Academic Publishing; Dudweller Landstr, Germany: 2011. pp. 156–167.

Fernandes J.P., Mucha A.P., Francisco T., Gomes C.R., Almeida C.M.R. Silver nanoparticles uptake by salt marsh plants–Implications for phytoremediation processes and effects in microbial community dynamics. Mar. Pollut. Bull. 2017;119:176–183. doi: 10.1016/j.marpolbul.2017.03.052. PubMed DOI

Shafer M.M., Overdier J.T., Armstong D.E. Removal, partitioning, and fate of silver and other metals in wastewater treatment plants and effluent-receiving streams. Environ. Toxicol. Chem. Int. J. 1998;17:630–641. doi: 10.1002/etc.5620170416. DOI

Hanks N.A., Caruso J.A., Zhang P. Assessing Pistia stratiotes for phytoremediation of silver nanoparticles and Ag (I) contaminated waters. J. Environ. Manag. 2015;164:41–45. doi: 10.1016/j.jenvman.2015.08.026. PubMed DOI

Purcell T.W., Peters J.J. Historical impacts of environmental regulation of silver. Environ. Toxicol. Chem. Int. J. 1999;18:3–8. doi: 10.1002/etc.5620180102. DOI

U.S. Environmnetal Proection Agency (EPA) National Primary Drinking Water Regulation Table, EPA 816-F-09-0004. [(accessed on 5 August 2021)];2009 Available online: https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulation-table.

World Health Organization (WHO) Guidelines for Drinking-Water Quality. 4th ed. World Health Organization (WHO); Geneva, Switzerland: 2011. [(accessed on 5 August 2021)]. p. 415. Available online: http://apps.who.int/iris/bitstream/handle/10665/44584/9789241548151_eng.pdf;jsessionid=7602427D0558C27BC51742431A74F67E?sequence=1.

Varner K., El-Badawy A., Feldhake D., Venkatapathy R. State-of-the-Science Review: Everything Nanosilver and More. US Environmental Protection Agency; Washington, DC, USA: 2010.

Bernas L., Winkelmann K., Palmer A. Phytoremediation of silver species by waterweed (Egeria densa) Chemist. 2017;90:7–13.

Valenti L.E., Giacomelli C.E. Stability of silver nanoparticles: Agglomeration and oxidation in biological relevant conditions. J. Nanopart. Res. 2017;19:156. doi: 10.1007/s11051-017-3860-4. DOI

Moreno-Garrido I., Pérez S., Blasco J. Toxicity of silver and gold nanoparticles on marine microalgae. Mar. Environ. Res. 2015;111:60–73. doi: 10.1016/j.marenvres.2015.05.008. PubMed DOI

Lapresta-Fernández A., Fernández A., Blasco J. Nanoecotoxicity effects of engineered silver and gold nanoparticles in aquatic organisms. TrAC Trends Anal. Chem. 2012;32:40–59. doi: 10.1016/j.trac.2011.09.007. DOI

Navarro E., Baun A., Behra R., Hartmann N.B., Filser J., Miao A.-J., Quigg A., Santschi P.H., Sigg L. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology. 2008;17:372–386. doi: 10.1007/s10646-008-0214-0. PubMed DOI

Ratte H.T. Bioaccumulation and toxicity of silver compounds: A review. Environ. Toxicol. Chem. Int. J. 1999;18:89–108. doi: 10.1002/etc.5620180112. DOI

Geisler-Lee J., Brooks M., Gerfen J.R., Wang Q., Fotis C., Sparer A., Ma X., Berg R.H., Geisler M. Reproductive toxicity and life history study of silver nanoparticle effect, uptake and transport in Arabidopsis thaliana. Nanomaterials. 2014;4:301–318. doi: 10.3390/nano4020301. PubMed DOI PMC

Çekiç F.Ö., Ekinci S., İnal M.S., Özakça D. Silver nanoparticles induced genotoxicity and oxidative stress in tomato plants. Turk. J. Biol. 2017;41:700–707. doi: 10.3906/biy-1608-36. DOI

Cox A., Venkatachalam P., Sahi S., Sharma N. Reprint of: Silver and titanium dioxide nanoparticle toxicity in plants: A review of current research. Plant Physiol. Biochem. 2017;110:33–49. doi: 10.1016/j.plaphy.2016.08.007. PubMed DOI

Gupta I.R., Anderson A.J., Rai M. Toxicity of fungal-generated silver nanoparticles to soil-inhabiting Pseudomonas putida KT2440, a rhizospheric bacterium responsible for plant protection and bioremediation. J. Hazard. Mater. 2015;286:48–54. doi: 10.1016/j.jhazmat.2014.11.044. PubMed DOI

Yan A., Chen Z. Impacts of silver nanoparticles on plants: A focus on the phytotoxicity and underlying mechanism. Int. J. Mol. Sci. 2019;20:1003. doi: 10.3390/ijms20051003. PubMed DOI PMC

Abbas Q., Yousaf B., Ullah H., Ali M.U., Zia-ur-Rehman M., Rizwan M., Rinklebe J. Biochar-induced immobilization and transformation of silver-nanoparticles affect growth, intracellular-radicles generation and nutrients assimilation by reducing oxidative stress in maize. J. Hazard. Mater. 2020;390:121976. doi: 10.1016/j.jhazmat.2019.121976. PubMed DOI

Qian H., Peng X., Han X., Ren J., Sun L., Fu Z. Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. J. Environ. Sci. 2013;25:1947–1956. doi: 10.1016/S1001-0742(12)60301-5. PubMed DOI

Nair P.M.G., Chung I.M. Physiological and molecular level effects of silver nanoparticles exposure in rice (Oryza sativa L.) seedlings. Chemosphere. 2014;112:105–113. doi: 10.1016/j.chemosphere.2014.03.056. PubMed DOI

Das P., Barua S., Sarkar S., Chatterjee S.K., Mukherjee S., Goswami L., Das S., Bhattacharya S., Karak N., Bhattacharya S.S. Mechanism of toxicity and transformation of silver nanoparticles: Inclusive assessment in earthworm-microbe-soil-plant system. Geoderma. 2018;314:73–84. doi: 10.1016/j.geoderma.2017.11.008. DOI

Kaveh R., Li Y.-S., Ranjbar S., Tehrani R., Brueck C.L., Van Aken B. Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environ. Sci. Technol. 2013;47:10637–10644. doi: 10.1021/es402209w. PubMed DOI

Mirzajani F., Askari H., Hamzelou S., Schober Y., Römpp A., Ghassempour A., Spengler B. Proteomics study of silver nanoparticles toxicity on Oryza sativa L. Ecotoxicol. Environ. Saf. 2014;108:335–339. doi: 10.1016/j.ecoenv.2014.07.013. PubMed DOI

Peharec Štefanić P., Jarnević M., Cvjetko P., Biba R., Šikić S., Tkalec M., Cindrić M., Letofsky-Papst I., Balen B. Comparative proteomic study of phytotoxic effects of silver nanoparticles and silver ions on tobacco plants. Environ. Sci. Pollut. Res. 2019;26:22529–22550. doi: 10.1007/s11356-019-05552-w. PubMed DOI

Homaee M.B., Ehsanpour A.A. Silver nanoparticles and silver ions: Oxidative stress responses and toxicity in potato (Solanum tuberosum L.) grown in vitro. Hortic. Environ. Biotechnol. 2016;57:544–553. doi: 10.1007/s13580-016-0083-z. DOI

Zou X., Li P., Huang Q., Zhang H. The different response mechanisms of Wolffia globosa: Light-induced silver nanoparticle toxicity. Aquat. Toxicol. 2016;176:97–105. doi: 10.1016/j.aquatox.2016.04.019. PubMed DOI

Song U., Jun H., Waldman B., Roh J., Kim Y., Yi J., Lee E.J. Functional analyses of nanoparticle toxicity: A comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum) Ecotoxicol. Environ. Saf. 2013;93:60–67. doi: 10.1016/j.ecoenv.2013.03.033. PubMed DOI

Sun J., Wang L., Li S., Yin L., Huang J., Chen C. Toxicity of silver nanoparticles to Arabidopsis: Inhibition of root gravitropism by interfering with auxin pathway. Environ. Toxicol. Chem. 2017;36:2773–2780. doi: 10.1002/etc.3833. PubMed DOI

Wang J., Koo Y., Alexander A., Yang Y., Westerhof S., Zhang Q., Schnoor J.L., Colvin V.L., Braam J., Alvarez P.J. Phytostimulation of poplars and Arabidopsis exposed to silver nanoparticles and Ag+ at sublethal concentrations. Environ. Sci. Technol. 2013;47:5442–5449. doi: 10.1021/es4004334. PubMed DOI

Ke M., Li Y., Qu Q., Ye Y., Peijnenburg W., Zhang Z., Xu N., Lu T., Sun L., Qian H. Offspring toxicity of silver nanoparticles to Arabidopsis thaliana flowering and floral development. J. Hazard. Mater. 2020;386:121975. doi: 10.1016/j.jhazmat.2019.121975. PubMed DOI

Minogiannis P., Valenti M., Kati V., Kalantzi O.-I., Biskos G. Toxicity of pure silver nanoparticles produced by spark ablation on the aquatic plant Lemna minor. J. Aerosol Sci. 2019;128:17–21. doi: 10.1016/j.jaerosci.2018.11.003. DOI

Mylona Z., Panteris E., Moustakas M., Kevrekidis T., Malea P. Physiological, structural and ultrastructural impacts of silver nanoparticles on the seagrass Cymodocea nodosa. Chemosphere. 2020;248:126066. doi: 10.1016/j.chemosphere.2020.126066. PubMed DOI

Yilmaz M., Yilmaz A., Karaman A., Aysin F., Aksakal O. Monitoring chemically and green-synthesized silver nanoparticles in maize seedlings via surface-enhanced Raman spectroscopy (SERS) and their phytotoxicity evaluation. Talanta. 2021;225:121952. doi: 10.1016/j.talanta.2020.121952. PubMed DOI

Falco W.F., Scherer M.D., Oliveira S.L., Wender H., Colbeck I., Lawson T., Caires A.R. Phytotoxicity of silver nanoparticles on Vicia faba: Evaluation of particle size effects on photosynthetic performance and leaf gas exchange. Sci. Total Environ. 2020;701:134816. doi: 10.1016/j.scitotenv.2019.134816. PubMed DOI

Ma C., White J.C., Dhankher O.P., Xing B. Metal-based nanotoxicity and detoxification pathways in higher plants. Environ. Sci. Technol. 2015;49:7109–7122. doi: 10.1021/acs.est.5b00685. PubMed DOI

Apel K., Hirt H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 2004;55:373–399. doi: 10.1146/annurev.arplant.55.031903.141701. PubMed DOI

Yadav S., Kushwaha H.R., Kumar K., Verma P.K. Comparative structural modeling of a monothiol GRX from chickpea: Insight in iron–sulfur cluster assembly. Int. J. Biol. Macromol. 2012;51:266–273. doi: 10.1016/j.ijbiomac.2012.05.014. PubMed DOI

Kumari P., Gupta A., Yadav S. Plant-Pest Interactions: From Molecular Mechanisms to Chemical Ecology. Springer; Berlin/Heidelberg, Germany: 2021. [(accessed on 20 July 2021)]. Thioredoxins as Molecular Players in Plants, Pests, and Pathogens; pp. 107–125. Available online: DOI

Abdel-Aziz H.M., Rizwan M. Chemically synthesized silver nanoparticles induced physio-chemical and chloroplast ultrastructural changes in broad bean seedlings. Chemosphere. 2019;235:1066–1072. doi: 10.1016/j.chemosphere.2019.07.035. PubMed DOI

Mahakham W., Sarmah A.K., Maensiri S., Theerakulpisut P. Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Sci. Rep. 2017;7:1–21. doi: 10.1038/s41598-017-08669-5. PubMed DOI PMC

Wojtyla Ł., Lechowska K., Kubala S., Garnczarska M. Molecular processes induced in primed seeds—increasing the potential to stabilize crop yields under drought conditions. J. Plant Physiol. 2016;203:116–126. doi: 10.1016/j.jplph.2016.04.008. PubMed DOI

Clément L., Hurel C., Marmier N. Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants–effects of size and crystalline structure. Chemosphere. 2013;90:1083–1090. doi: 10.1016/j.chemosphere.2012.09.013. PubMed DOI

Kruszka D., Sawikowska A., Selvakesavan R.K., Krajewski P., Kachlicki P., Franklin G. Silver nanoparticles affect phenolic and phytoalexin composition of Arabidopsis thaliana. Sci. Total Environ. 2020;716:135361. doi: 10.1016/j.scitotenv.2019.135361. PubMed DOI

Khan I., Raza M.A., Awan S.A., Shah G.A., Rizwan M., Ali B., Tariq R., Hassan M.J., Alyemeni M.N., Brestic M. Amelioration of salt induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): The oxidative damage, antioxidant enzymes and ions uptake are major determinants of salt tolerant capacity. Plant Physiol. Biochem. 2020;156:221–232. doi: 10.1016/j.plaphy.2020.09.018. PubMed DOI

Park S., Park H.H., Ko Y.-S., Lee S.J., Le T.S., Woo K., Ko G. Disinfection of various bacterial pathogens using novel silver nanoparticle-decorated magnetic hybrid colloids. Sci. Total Environ. 2017;609:289–296. doi: 10.1016/j.scitotenv.2017.07.071. PubMed DOI

Uddin I., Ahmad K., Khan A.A., Kazmi M.A. Synthesis of silver nanoparticles using Matricaria recutita (Babunah) plant extract and its study as mercury ions sensor. Sens. Bio-Sens. Res. 2017;16:62–67. doi: 10.1016/j.sbsr.2017.11.005. DOI

Samarajeewa A., Velicogna J., Princz J., Subasinghe R., Scroggins R., Beaudette L. Effect of silver nano-particles on soil microbial growth, activity and community diversity in a sandy loam soil. Environ. Pollut. 2017;220:504–513. doi: 10.1016/j.envpol.2016.09.094. PubMed DOI

Grün A.-L., Straskraba S., Schulz S., Schloter M., Emmerling C. Long-term effects of environmentally relevant concentrations of silver nanoparticles on microbial biomass, enzyme activity, and functional genes involved in the nitrogen cycle of loamy soil. J. Environ. Sci. 2018;69:12–22. doi: 10.1016/j.jes.2018.04.013. PubMed DOI

Zhang Z., Gao P., Li M., Cheng J., Liu W., Feng Y. Influence of Silver nanoparticles on nutrient removal and microbial communities in SBR process after long-term exposure. Sci. Total Environ. 2016;569:234–243. doi: 10.1016/j.scitotenv.2016.06.115. PubMed DOI

Shin Y.-J., Kwak J.I., An Y.-J. Evidence for the inhibitory effects of silver nanoparticles on the activities of soil exoenzymes. Chemosphere. 2012;88:524–529. doi: 10.1016/j.chemosphere.2012.03.010. PubMed DOI

Abdulsada Z., Kibbee R., Örmeci B., DeRosa M., Princz J. Impact of anaerobically digested silver and copper oxide nanoparticles in biosolids on soil characteristics and bacterial community. Chemosphere. 2021;263:128173. doi: 10.1016/j.chemosphere.2020.128173. PubMed DOI

Zhai Y., Hunting E.R., Wouters M., Peijnenburg W.J., Vijver M.G. Silver nanoparticles, ions, and shape governing soil microbial functional diversity: Nano shapes micro. Front. Microbiol. 2016;7:1123. doi: 10.3389/fmicb.2016.01123. PubMed DOI PMC

Jain A., Kumar S., Seena S. Can low concentrations of metal oxide and Ag loaded metal oxide nanoparticles pose a risk to stream plant litter microbial decomposers? Sci. Total Environ. 2019;653:930–937. doi: 10.1016/j.scitotenv.2018.10.376. PubMed DOI

Tripathi D.K., Tripathi A., Singh S., Singh Y., Vishwakarma K., Yadav G., Sharma S., Singh V.K., Mishra R.K., Upadhyay R. Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: A concentric review. Front. Microbiol. 2017;8:7. doi: 10.3389/fmicb.2017.00007. PubMed DOI PMC

Bondarenko O.M., Sihtmäe M., Kuzmičiova J., Ragelienė L., Kahru A., Daugelavičius R. Plasma membrane is the target of rapid antibacterial action of silver nanoparticles in Escherichia coli and Pseudomonas aeruginosa. Int. J. Nanomed. 2018;13:6779. doi: 10.2147/IJN.S177163. PubMed DOI PMC

Dong Y., Zhu H., Shen Y., Zhang W., Zhang L. Antibacterial activity of silver nanoparticles of different particle size against Vibrio Natriegens. PLoS ONE. 2019;14:e0222322. doi: 10.1371/journal.pone.0222322. PubMed DOI PMC

Judy J.D., Kirby J.K., Creamer C., McLaughlin M.J., Fiebiger C., Wright C., Cavagnaro T.R., Bertsch P.M. Effects of silver sulfide nanomaterials on mycorrhizal colonization of tomato plants and soil microbial communities in biosolid-amended soil. Environ. Pollut. 2015;206:256–263. doi: 10.1016/j.envpol.2015.07.002. PubMed DOI

Sosnowska M.E., Jankiewicz U., Kutwin M., Chwalibog A., Gałązka A. Influence of salts and metal nanoparticles on the activity and thermal stability of a recombinant chitinase from Stenotrophomonas maltophilia N4. Enzym. Microb. Technol. 2018;116:6–15. doi: 10.1016/j.enzmictec.2018.05.003. PubMed DOI

Batista D., Pascoal C., Cássio F. How do physicochemical properties influence the toxicity of silver nanoparticles on freshwater decomposers of plant litter in streams? Ecotoxicol. Environ. Saf. 2017;140:148–155. doi: 10.1016/j.ecoenv.2017.02.039. PubMed DOI

Choi O., Hu Z. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ. Sci. Technol. 2008;42:4583–4588. doi: 10.1021/es703238h. PubMed DOI

Beddow J., Stolpe B., Cole P., Lead J.R., Sapp M., Lyons B.P., Colbeck I., Whitby C. Effects of engineered silver nanoparticles on the growth and activity of ecologically important microbes. Environ. Microbiol. Rep. 2014;6:448–458. doi: 10.1111/1758-2229.12147. PubMed DOI

Michels C., Yang Y., Moreira Soares H., Alvarez P.J. Silver nanoparticles temporarily retard NO2− production without significantly affecting N2O release by Nitrosomonas europaea. Environ. Toxicol. Chem. 2015;34:2231–2235. doi: 10.1002/etc.3071. PubMed DOI

Barker L., Giska J., Radniecki T., Semprini L. Effects of short-and long-term exposure of silver nanoparticles and silver ions to Nitrosomonas europaea biofilms and planktonic cells. Chemosphere. 2018;206:606–614. doi: 10.1016/j.chemosphere.2018.05.017. PubMed DOI

Grün A.-L., Emmerling C. Long-term effects of environmentally relevant concentrations of silver nanoparticles on major soil bacterial phyla of a loamy soil. Environ. Sci. Eur. 2018;30:1–13. doi: 10.1186/s12302-018-0160-2. PubMed DOI PMC

Kumar N., Palmer G.R., Shah V., Walker V.K. The effect of silver nanoparticles on seasonal change in arctic tundra bacterial and fungal assemblages. PLoS ONE. 2014;9:e99953. doi: 10.1371/journal.pone.0099953. PubMed DOI PMC

Schlich K., Beule L., Hund-Rinke K. Single versus repeated applications of CuO and Ag nanomaterials and their effect on soil microflora. Environ. Pollut. 2016;215:322–330. doi: 10.1016/j.envpol.2016.05.028. PubMed DOI

Zhang L., Wu L., Si Y., Shu K. Size-dependent cytotoxicity of silver nanoparticles to Azotobacter vinelandii: Growth inhibition, cell injury, oxidative stress and internalization. PLoS ONE. 2018;13:e0209020. doi: 10.1371/journal.pone.0209020. PubMed DOI PMC

Yuan Z., Li J., Cui L., Xu B., Zhang H., Yu C.-P. Interaction of silver nanoparticles with pure nitrifying bacteria. Chemosphere. 2013;90:1404–1411. doi: 10.1016/j.chemosphere.2012.08.032. PubMed DOI

Huang J., Chong C., Runqing L., Wenzhu G. Effects of silver nanoparticles on soil ammonia-oxidizing microorganisms under temperatures of 25 and 5 °C. Pedosphere. 2018;28:607–616. doi: 10.1016/S1002-0160(18)60036-0. DOI

He S., Feng Y., Ni J., Sun Y., Xue L., Feng Y., Yu Y., Lin X., Yang L. Different responses of soil microbial metabolic activity to silver and iron oxide nanoparticles. Chemosphere. 2016;147:195–202. doi: 10.1016/j.chemosphere.2015.12.055. PubMed DOI

Feng Y., Cui X., He S., Dong G., Chen M., Wang J., Lin X. The role of metal nanoparticles in influencing arbuscular mycorrhizal fungi effects on plant growth. Environ. Sci. Technol. 2013;47:9496–9504. doi: 10.1021/es402109n. PubMed DOI

Abd-Alla M.H., Nafady N.A., Khalaf D.M. Assessment of silver nanoparticles contamination on faba bean-Rhizobium leguminosarum bv. viciae-Glomus aggregatum symbiosis: Implications for induction of autophagy process in root nodule. Agric. Ecosyst. Environ. 2016;218:163–177. doi: 10.1016/j.agee.2015.11.022. DOI

McGee C., Storey S., Clipson N., Doyle E. Soil microbial community responses to contamination with silver, aluminium oxide and silicon dioxide nanoparticles. Ecotoxicology. 2017;26:449–458. doi: 10.1007/s10646-017-1776-5. PubMed DOI

Shah V., Collins D., Walker V.K., Shah S. The impact of engineered cobalt, iron, nickel and silver nanoparticles on soil bacterial diversity under field conditions. Environ. Res. Lett. 2014;9:024001. doi: 10.1088/1748-9326/9/2/024001. DOI

Kumar N., Shah V., Walker V.K. Influence of a nanoparticle mixture on an arctic soil community. Environ. Toxicol. Chem. 2012;31:131–135. doi: 10.1002/etc.721. PubMed DOI

Colman B.P., Arnaout C.L., Anciaux S., Gunsch C.K., Hochella Jr M.F., Kim B., Lowry G.V., McGill B.M., Reinsch B.C., Richardson C.J. Low concentrations of silver nanoparticles in biosolids cause adverse ecosystem responses under realistic field scenario. PLoS ONE. 2013;8:e57189. doi: 10.1371/journal.pone.0057189. PubMed DOI PMC

Peyrot C., Wilkinson K.J., Desrosiers M., Sauvé S. Effects of silver nanoparticles on soil enzyme activities with and without added organic matter. Environ. Toxicol. Chem. 2014;33:115–125. doi: 10.1002/etc.2398. PubMed DOI

Chen M., Xu P., Zeng G., Yang C., Huang D., Zhang J. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs. Biotechnol. Adv. 2015;33:745–755. doi: 10.1016/j.biotechadv.2015.05.003. PubMed DOI

Song B., Zeng G., Gong J., Liang J., Xu P., Liu Z., Zhang Y., Zhang C., Cheng M., Liu Y. Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals. Environ. Int. 2017;105:43–55. doi: 10.1016/j.envint.2017.05.001. PubMed DOI

Kumari P., Rastogi A., Shukla A., Srivastava S., Yadav S. Prospects of genetic engineering utilizing potential genes for regulating arsenic accumulation in plants. Chemosphere. 2018;211:397–406. doi: 10.1016/j.chemosphere.2018.07.152. PubMed DOI

Monica R.C., Cremonini R. Nanoparticles and higher plants. Caryologia. 2009;62:161–165. doi: 10.1080/00087114.2004.10589681. DOI

Jin Y., Liu W., Li X.-L., Shen S.-G., Liang S.-X., Liu C., Shan L. Nano-hydroxyapatite immobilized lead and enhanced plant growth of ryegrass in a contaminated soil. Ecol. Eng. 2016;95:25–29. doi: 10.1016/j.ecoleng.2016.06.071. DOI

Fulekar M. Bioremediation Technology: Recent Advances. Springer Science & Business Media; Berlin/Heidelberg, Germany: 2012.

Evangelou M.W., Papazoglou E.G., Robinson B.H., Schulin R. Phytoremediation. Springer; Berlin/Heidelberg, Germany: 2015. [(accessed on 22 April 2020)]. Phytomanagement: Phytoremediation and the Production of Biomass for Economic Revenue on Contaminated Land; pp. 115–132. Available online: DOI

Khan N., Bano A. Role of plant growth promoting rhizobacteria and Ag-nano particle in the bioremediation of heavy metals and maize growth under municipal wastewater irrigation. Int. J. Phytoremediat. 2016;18:211–221. doi: 10.1080/15226514.2015.1064352. PubMed DOI

Padmapriya S., Murugan N., Ragavendran C., Thangabalu R., Natarajan D. Phytoremediation potential of some agricultural plants on heavy metal contaminated mine waste soils, salem district, tamilnadu. Int. J. Phytoremediat. 2016;18:288–294. doi: 10.1080/15226514.2015.1085832. PubMed DOI

Yan A., Wang Y., Tan S.N., Mohd Yusof M.L., Ghosh S., Chen Z. Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Front. Plant Sci. 2020;11:359. doi: 10.3389/fpls.2020.00359. PubMed DOI PMC

Bennicelli R., Stępniewska Z., Banach A., Szajnocha K., Ostrowski J. The ability of Azolla caroliniana to remove heavy metals (Hg(II), Cr(III), Cr(VI)) from municipal waste water. Chemosphere. 2004;55:141–146. doi: 10.1016/j.chemosphere.2003.11.015. PubMed DOI

Elmachliy S., Chefetz B., Tel-Or E., Vidal L., Canals A., Gedanken A. Removal of silver and lead ions from water wastes using Azolla filiculoides, an aquatic plant, which adsorbs and reduces the ions into the corresponding metallic nanoparticles under microwave radiation in 5 min. Water Air Soil Pollut. 2011;218:365–370. doi: 10.1007/s11270-010-0650-3. DOI

Macek T., Macková M., Káš J. Exploitation of plants for the removal of organics in environmental remediation. Biotechnol. Adv. 2000;18:23–34. doi: 10.1016/S0734-9750(99)00034-8. PubMed DOI

Glick B.R. Phytoremediation: Synergistic use of plants and bacteria to clean up the environment. Biotechnol. Adv. 2003;21:383–393. doi: 10.1016/S0734-9750(03)00055-7. PubMed DOI

Gong X., Huang D., Liu Y., Zeng G., Wang R., Wei J., Huang C., Xu P., Wan J., Zhang C. Pyrolysis and reutilization of plant residues after phytoremediation of heavy metals contaminated sediments: For heavy metals stabilization and dye adsorption. Bioresour. Technol. 2018;253:64–71. doi: 10.1016/j.biortech.2018.01.018. PubMed DOI

Dubchak S., Bondar O. Bioremediation and Phytoremediation: Best Approach for Rehabilitation of Soils for Future Use. In: Gupta D., Voronina A., editors. Remediation Measures for Radioactively Contaminated Areas. Springer; Berlin/Heidelberg, Germany: 2019. [(accessed on 20 April 2020)]. pp. 201–221. Available online: DOI

Sharma P., Pandey S. Status of phytoremediation in world scenario. Int. J. Environ. Bioremediat. Biodegrad. 2014;2:178–191.

Huang Z., Zeng Z., Chen A., Zeng G., Xiao R., Xu P., He K., Song Z., Hu L., Peng M. Differential behaviors of silver nanoparticles and silver ions towards cysteine: Bioremediation and toxicity to Phanerochaete chrysosporium. Chemosphere. 2018;203:199–208. doi: 10.1016/j.chemosphere.2018.03.144. PubMed DOI

Romeh A.A.A. Green silver nanoparticles for enhancing the phytoremediation of soil and water contaminated by fipronil and degradation products. Water Air Soil Pollut. 2018;229:1–13. doi: 10.1007/s11270-018-3792-3. DOI

Saraswathi V.S., Kamarudheen N., BhaskaraRao K., Santhakumar K. Phytoremediation of dyes using Lagerstroemia speciosa mediated silver nanoparticles and its biofilm activity against clinical strains Pseudomonas aeruginosa. J. Photochem. Photobiol. B Biol. 2017;168:107–116. doi: 10.1016/j.jphotobiol.2017.02.004. PubMed DOI

Abbas S., Nasreen S., Haroon A., Ashraf M.A. Synhesis of silver and copper nanoparticles from plants and application as adsorbents for naphthalene decontamination. Saudi J. Biol. Sci. 2020;27:1016–1023. doi: 10.1016/j.sjbs.2020.02.011. PubMed DOI PMC

Omer A.M. Energy, environment and sustainable development. Renew. Sustain. Energy Rev. 2008;12:2265–2300. doi: 10.1016/j.rser.2007.05.001. DOI

Shrivastava P. The role of corporations in achieving ecological sustainability. Acad. Manag. Rev. 1995;20:936–960. doi: 10.5465/amr.1995.9512280026. DOI

Wigger K.A., Shepherd D.A. We’re All in the Same Boat: A Collective Model of Preserving and Accessing Nature-Based Opportunities. Entrep. Theory Pract. 2020;44:587–617. doi: 10.1177/1042258719834014. DOI

Laguir I., Stekelorum R., El Baz J. Going green? Investigating the relationships between proactive environmental strategy, GSCM practices and performances of third-party logistics providers (TPLs) Prod. Plan. Control. 2020:1–14. doi: 10.1080/09537287.2020.1784483. DOI

Reeves R.D., Baker A.J., Jaffré T., Erskine P.D., Echevarria G., van der Ent A. A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol. 2018;218:407–411. doi: 10.1111/nph.14907. PubMed DOI

Milner M.J., Kochian L.V. Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Ann. Bot. 2008;102:3–13. doi: 10.1093/aob/mcn063. PubMed DOI PMC

Frérot H., Faucon M.P., Willems G., Godé C., Courseaux A., Darracq A., Verbruggen N., Saumitou-Laprade P. Genetic architecture of zinc hyperaccumulation in Arabidopsis halleri: The essential role of QTL × environment interactions. New Phytol. 2010;187:355–367. doi: 10.1111/j.1469-8137.2010.03295.x. PubMed DOI

Caille N., Zhao F., McGrath S. Comparison of root absorption, translocation and tolerance of arsenic in the hyperaccumulator Pteris vittata and the nonhyperaccumulator Pteris tremula. New Phytol. 2005;165:755–761. doi: 10.1111/j.1469-8137.2004.01239.x. PubMed DOI

Krämer U., Cotter-Howells J.D., Charnock J.M., Baker A.J., Smith J.A.C. Free histidine as a metal chelator in plants that accumulate nickel. Nature. 1996;379:635–638. doi: 10.1038/379635a0. DOI

Krivoruchko A., Kuyukina M., Ivshina I. Advanced Rhodococcus biocatalysts for environmental biotechnologies. Catalysts. 2019;9:236. doi: 10.3390/catal9030236. DOI

Ma X., Geiser-Lee J., Deng Y., Kolmakov A. Interactions between engineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation. Sci. Total Environ. 2010;408:3053–3061. doi: 10.1016/j.scitotenv.2010.03.031. PubMed DOI

Rai P.K., Kim K.-H., Lee S.S., Lee J.-H. Molecular mechanisms in phytoremediation of environmental contaminants and prospects of engineered transgenic plants/microbes. Sci. Total Environ. 2020;705:135858. doi: 10.1016/j.scitotenv.2019.135858. PubMed DOI

Pilon-Smits E. Phytoremediation. Annu. Rev. Plant Biol. 2005;56:15–39. doi: 10.1146/annurev.arplant.56.032604.144214. PubMed DOI

Cota-Ruiz K., Delgado-Rios M., Martínez-Martínez A., Núñez-Gastelum J.A., Peralta-Videa J.R., Gardea-Torresdey J.L. Current findings on terrestrial plants—Engineered nanomaterial interactions: Are plants capable of phytoremediating nanomaterials from soil? Curr. Opin. Environ. Sci. Health. 2018;6:9–15. doi: 10.1016/j.coesh.2018.06.005. DOI

Rico C.M., Majumdar S., Duarte-Gardea M., Peralta-Videa J.R., Gardea-Torresdey J.L. Interaction of nanoparticles with edible plants and their possible implications in the food chain. J. Agric. Food Chem. 2011;59:3485–3498. doi: 10.1021/jf104517j. PubMed DOI PMC

Yang Q., Xu W., Liu G., Song M., Tan Z., Mao Y., Yin Y., Cai Y., Liu J., Jiang G. Transformation and uptake of silver nanoparticles and silver ions in rice plant (Oryza sativa L.): The effect of iron plaque and dissolved iron. Environ. Sci. Nano. 2020;7:599–609. doi: 10.1039/C9EN01297D. DOI

Oukarroum A., Barhoumi L., Pirastru L., Dewez D. Silver nanoparticle toxicity effect on growth and cellular viability of the aquatic plant Lemna gibba. Environ. Toxicol. Chem. 2013;32:902–907. doi: 10.1002/etc.2131. PubMed DOI

Prabakaran K., Li J., Anandkumar A., Leng Z., Zou C.B., Du D. Managing environmental contamination through phytoremediation by invasive plants: A review. Ecol. Eng. 2019;138:28–37. doi: 10.1016/j.ecoleng.2019.07.002. DOI

Hashem A., Tabassum B., Abd_Allah E.F. Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J. Biol. Sci. 2019;26:1291–1297. doi: 10.1016/j.sjbs.2019.05.004. PubMed DOI PMC

Kaegi R., Voegelin A., Ort C., Sinnet B., Thalmann B., Krismer J., Hagendorfer H., Elumelu M., Mueller E. Fate and transformation of silver nanoparticles in urban wastewater systems. Water Res. 2013;47:3866–3877. doi: 10.1016/j.watres.2012.11.060. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...