Preparation of a Hydrogel Nanofiber Wound Dressing
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
CZ.02.1.01/0.0/0.0/16_019/0000843
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
34578494
PubMed Central
PMC8465883
DOI
10.3390/nano11092178
PII: nano11092178
Knihovny.cz E-resources
- Keywords
- alginate, hydrogel, nanofibers, polyvinyl alcohol, skin cover,
- Publication type
- Journal Article MeSH
The study addressed the production of a hydrogel nanofiber skin cover and included the fabrication of hydrogel nanofibers from a blend of polyvinyl alcohol and alginate. The resulting fibrous layer was then crosslinked with glutaraldehyde, and, after 4 h of crosslinking, although the gelling component, i.e., the alginate, crosslinked, the polyvinyl alcohol failed to do so. The experiment included the comparison of the strength and ductility of the layers before and after crosslinking. It was determined that the fibrous layer following crosslinking evinced enhanced mechanical properties, which acted to facilitate the handling of the material during its application. The subsequent testing procedure proved that the fibrous layer was not cytotoxic. The study further led to the production of a modified hydrogel nanofiber layer that combined polyvinyl alcohol with alginate and albumin. The investigation of the fibrous layers produced determined that following contact with water the polyvinyl alcohol dissolved leading to the release of the albumin accompanied by the swelling of the alginate and the formation of a hydrogel.
See more in PubMed
Ghomi E.R., Khalili S., Khorasani S.N., Neisiany R.E., Ramakrishna S. Wound dressings: Current advances and future directions. J. Appl. Polym. Sci. 2019;136:47738. doi: 10.1002/app.47738. DOI
Dhivya S., Padma V.V., Santhini E. Wound dressings-a review. BioMedicine. 2015;5:1–5. doi: 10.7603/s40681-015-0022-9. PubMed DOI PMC
Kirwan H., Pignataro R. Chapter 2-The Skin and Wound Healing. In: Magee D.J., Zachazewski J.E., Quillen W.S., Manske R.C., editors. Pathology and Intervention in Musculoskeletal Re-Habilitation. 2nd ed. W.B. Saunders; Philadelphia, PA, USA: 2016. pp. 25–62.
Mayandi V., Choong A.C.W., Dhand C., Lim F.P., Aung T.T., Sriram H., Dwivedi N., Periayah M.H., Sridhar S., Fazil M.H.U.T., et al. Multifunctional Antimicrobial Nanofiber Dressings Containing ε-Polylysine for the Eradication of Bacterial Bioburden and Promotion of Wound Healing in Critically Colonized Wounds. ACS Appl. Mater. Interfaces. 2020;12:15989–16005. doi: 10.1021/acsami.9b21683. PubMed DOI
Schoukens G. 5-Bioactive dressings to promote wound healing. In: Rajendran S., editor. Advanced Textiles for Wound Care. Woodhead Publishing; Sawston, UK: 2009. pp. 114–152. (Woodhead Publishing Series in Textiles).
Tavakoli S., Klar A.S. Advanced Hydrogels as Wound Dressings. Biomolecules. 2020;10:1169. doi: 10.3390/biom10081169. PubMed DOI PMC
Samadian H., Zamiri S., Ehterami A., Farzamfar S., Vaez A., Khastar H., Alam M., Ai A., Derakhshankhah H., Allahyari Z., et al. Electrospun cellulose acetate/gelatin nanofibrous wound dressing containing berberine for diabetic foot ulcer healing: In vitro and in vivo studies. Sci. Rep. 2020;10:8312. doi: 10.1038/s41598-020-65268-7. PubMed DOI PMC
Fatahian R., Mirjalili M., Khajavi R., Rahimi M.K., Nasirizadeh N. Fabrication of antibacterial and hemostatic electrospun PVA nanofibers for wound healing. SN Appl. Sci. 2020;2:1288. doi: 10.1007/s42452-020-3084-6. DOI
Shin D., Kim M.S., Yang C.E., Lee W.J., Roh T.S., Baek W. Radially patterned polycaprolactone nanofibers as an active wound dressing agent. Arch. Plast. Surg. 2019;46:399–404. doi: 10.5999/aps.2019.00626. PubMed DOI PMC
Azimi B., Maleki H., Zavagna L., De La Ossa J.G., Linari S., Lazzeri A., Danti S. Bio-Based Electrospun Fibers for Wound Healing. J. Funct. Biomater. 2020;11:67. doi: 10.3390/jfb11030067. PubMed DOI PMC
Lukáš D., Sarkar A., Martinová L., Vodsed’álková K., Lubasová D., Chaloupek J., Pokorný P., Mikeš P., Chvojka J., Komárek M. Physical principles of electrospinning (Electrospinning as a nano-scale technology of the twenty-first century) Text. Prog. 2009;41:59–140. doi: 10.1080/00405160902904641. DOI
Jirkovec R., Erben J., Sajdl P., Chaloupek J., Chvojka J. The effect of material and process parameters on the surface energy of polycaprolactone fibre layers. Mater. Des. 2021;205:109748. doi: 10.1016/j.matdes.2021.109748. DOI
Pokorny P., Kostakova E.K., Sanetrnik F., Mikes P., Chvojka J., Kalous T., Bilek M., Pejchar K., Valtera J., Lukas D. Effective AC needleless and collectorless electrospinning for yarn production. Phys. Chem. Chem. Phys. 2014;16:26816–26822. doi: 10.1039/C4CP04346D. PubMed DOI
Jirkovec R., Holec P., Hauzerova S., Samkova A., Kalous T., Chvojka J. Preparation of a Composite Scaffold from Polycaprolactone and Hydroxyapatite Particles by Means of Alternating Current Electrospinning. ACS Omega. 2021;6:9234–9242. doi: 10.1021/acsomega.1c00644. PubMed DOI PMC
Batista R.A., Otoni C.G., Espitia P.J.P. Chapter 3-Fundamentals of chitosan-based hydrogels: Elaboration and characterization techniques. In: Holban A.-M., Grumezescu A.M., editors. Materials for Biomedical Engineering. Elsevier; Amsterdam, The Netherlands: 2019. pp. 61–81.
Ahmed E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015;6:105–121. doi: 10.1016/j.jare.2013.07.006. PubMed DOI PMC
Siepmann J., Siegel R.A., Rathbone M.J., editors. Fundamentals and Applications of Controlled Release Drug Delivery, Advances in Delivery Science and Technology. Springer; Berlin/Heidelberg, Germany: 2012.
Hesse E., Hefferan T.E., Tarara J.E., Haasper C., Meller R., Krettek C., Lu L., Yaszemski M.J. Collagen Type I Hydrogel Allows Migration, Proliferation and Osteogenic Differentiation of Rat Bone Marrow Stromal Cells. J. Biomed. Mater. Res. Part. A. 2010;94:442–449. doi: 10.1002/jbm.a.32696. PubMed DOI PMC
Koetting M.C., Peters J.T., Steichen S.D., Peppas N.A. Stimulus-responsive hydrogels: Theory, modern advances, and applications. Mater. Sci. Eng. R Rep. 2015;93:1–49. doi: 10.1016/j.mser.2015.04.001. PubMed DOI PMC
Zheng Y., Liang Y., Zhang D., Sun X., Liang L., Li J., Liu Y.-N. Gelatin-Based Hydrogels Blended with Gellan as an Injectable Wound Dressing. ACS Omega. 2018;3:4766–4775. doi: 10.1021/acsomega.8b00308. PubMed DOI PMC
Aderibigbe B.A., Buyana B. Alginate in Wound Dressings. Pharmaceutics. 2018;10:42. doi: 10.3390/pharmaceutics10020042. PubMed DOI PMC
Ong S.-Y., Wu J., Moochhala S.M., Tan M.-H., Lu J. Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials. 2008;29:4323–4332. doi: 10.1016/j.biomaterials.2008.07.034. PubMed DOI
Massarelli E., Silva D., Pimenta A., Fernandes A., Mata J., Armês H., Salema-Oom M., Saramago B., Serro A. Polyvinyl alcohol/chitosan wound dressings loaded with antiseptics. Int. J. Pharm. 2021;593:120110. doi: 10.1016/j.ijpharm.2020.120110. PubMed DOI
Haryanto K.S., Kim S., Kim J., Kim J.O., Ku S., Cho H., Han D.H., Huh P. Fabrication of poly(ethylene oxide) hydrogels for wound dressing application using E-beam. Macromol. Res. 2013;22:131–138. doi: 10.1007/s13233-014-2023-z. DOI
El-Mohdy H.L.A., Hegazy E.-S.A. Preparation of Polyvinyl Pyrrolidone-Based Hydrogels by Radiation-Induced Crosslinking with Potential Application as Wound Dressing. J. Macromol. Sci. Part. A. 2008;45:995–1002. doi: 10.1080/10601320802454128. DOI
Vowden K., Vowden P. Wound dressings: Principles and practice. Surgery. 2017;35:489–494. doi: 10.1016/j.mpsur.2017.06.005. DOI
Teixeira M., Antunes J., Felgueiras H. Recent Advances in Fiber–Hydrogel Composites for Wound Healing and Drug Delivery Systems. Antibiotics. 2021;10:248. doi: 10.3390/antibiotics10030248. PubMed DOI PMC
Song J., Chen S., Sun L., Guo Y., Zhang L., Wang S., Xuan H., Guan Q., You Z. Mechanically and Electronically Robust Transparent Organohydrogel Fibers. Adv. Mater. 2020;32:e1906994. doi: 10.1002/adma.201906994. PubMed DOI
Yu Y., Chen G., Guo J., Liu Y., Ren J., Kong T., Zhao Y. Vitamin metal–organic framework-laden microfibers from microfluidics for wound healing. Mater. Horizons. 2018;5:1137–1142. doi: 10.1039/C8MH00647D. DOI
Narayanan L.K., Huebner P., Fisher M.B., Spang J.T., Starly B., Shirwaiker R. 3D-Bioprinting of Polylactic Acid (PLA) Nanofiber–Alginate Hydrogel Bioink Containing Human Adipose-Derived Stem Cells. ACS Biomater. Sci. Eng. 2016;2:1732–1742. doi: 10.1021/acsbiomaterials.6b00196. PubMed DOI
Li Y., Wang J., Wang Y., Cui W. Advanced electrospun hydrogel fibers for wound healing. Compos. Part. B Eng. 2021;223:109101. doi: 10.1016/j.compositesb.2021.109101. DOI
Bainbridge P. Wound healing and the role of fibroblasts. J. Wound Care. 2013;22:407–412. doi: 10.12968/jowc.2013.22.8.407. PubMed DOI
ISO 10993-5:2009. [(accessed on 23 October 2020)]. Available online: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/03/64/36406.html.
Zhou M., Gong J., Ma J. Continuous fabrication of near-infrared light responsive bilayer hydrogel fibers based on microfluidic spinning. e-Polymers. 2019;19:215–224. doi: 10.1515/epoly-2019-0022. DOI
Shuai L., Guo Z.H., Zhang P., Wan J., Pu X., Wang Z.L. Stretchable, self-healing, conductive hydrogel fibers for strain sensing and triboelectric energy-harvesting smart textiles. Nano Energy. 2020;78:105389. doi: 10.1016/j.nanoen.2020.105389. DOI
Zhao X., Chen F., Li Y., Lu H., Zhang N., Ma M. Bioinspired ultra-stretchable and anti-freezing conductive hydrogel fibers with ordered and reversible polymer chain alignment. Nat. Commun. 2018;9:1–8. doi: 10.1038/s41467-018-05904-z. PubMed DOI PMC
Esentürk I., Balkan T., Güngör S., Saraç S., Erdal M.S. Preparation and characterization of naftifine-loaded poly(vinyl alcohol)/sodium alginate electrospun nanofibers. Braz. J. Pharm. Sci. 2020;56 doi: 10.1590/s2175-97902019000318440. DOI
Yang J.M., Yang J.H., Tsou S.C., Ding C.H., Hsu C.C., Yang K.C., Yang C.C., Chen K.S., Chen S.-W., Wang J.S. Cell proliferation on PVA/sodium alginate and PVA/poly(γ-glutamic acid) electrospun fiber. Mater. Sci. Eng. C. 2016;66:170–177. doi: 10.1016/j.msec.2016.04.068. PubMed DOI
Ibrahim N.A., Nada A.A., Eid B.M. Polysaccharide-Based Polymer Gels and Their Potential Applications. In: Thakur V.K., Thakur M.K., editors. Polymer Gels: Synthesis and Characterization. Springer; Singapore: 2018. pp. 97–126. Gels Horizons: From Science to Smart Materials.
Huang S., Xiao Z., Zhai S., Zhai B., Zhang F., An Q., Zuoyi X. Fabrication of highly-stable Ag/CA@GTA hydrogel beads and their catalytic application. RSC Adv. 2014;4:60460–60466. doi: 10.1039/C4RA08801H. DOI
Elsner J.J., Kraitzer A., Grinberg O., Zilberman M. Highly porous drug-eluting structures. Biomatter. 2012;2:239–270. doi: 10.4161/biom.22838. PubMed DOI PMC
Rameshbabu A.P., Datta S., Bankoti K., Subramani E., Chaudhury K., Lalzawmliana V., Nandi S.K., Dhara S. Polycaprolactone nanofibers functionalized with placental derived extracellular matrix for stimulating wound healing activity. J. Mater. Chem. B. 2018;6:6767–6780. doi: 10.1039/C8TB01373J. PubMed DOI
Rezaei M., Nikkhah M., Mohammadi S., Bahrami S.H., Sadeghizadeh M. Nano-curcumin/graphene platelets loaded on sodium alginate/polyvinyl alcohol fibers as potential wound dressing. J. Appl. Polym. Sci. 2021;138:50884. doi: 10.1002/app.50884. DOI