• This record comes from PubMed

Impact of Newborn Screening and Early Dietary Management on Clinical Outcome of Patients with Long Chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiency and Medium Chain Acyl-CoA Dehydrogenase Deficiency-A Retrospective Nationwide Study

. 2021 Aug 24 ; 13 (9) : . [epub] 20210824

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
RVO-VFN 64165 Ministerstvo Zdravotnictví Ceské Republiky
NU20-08-00367 Agentura Pro Zdravotnický Výzkum České Republiky

Long chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD/MTPD) and medium chain acyl-CoA dehydrogenase deficiency (MCADD) were included in the expanded neonatal screening program (ENBS) in Czechia in 2009, allowing for the presymptomatic diagnosis and nutritional management of these patients. The aim of our study was to assess the nationwide impact of ENBS on clinical outcome. This retrospective study analysed acute events and chronic complications and their severity in pre-ENBS and post-ENBS cohorts. In total, 28 children (12 before, 16 after ENBS) were diagnosed with LCHADD/MTPD (incidence 0.8/100,000 before and 1.2/100,000 after ENBS). In the subgroup detected by ENBS, a significantly longer interval from birth to first acute encephalopathy was observed. In addition, improvement in neuropathy and cardiomyopathy (although statistically non-significant) was demonstrated in the post-ENBS subgroup. In the MCADD cohort, we included 69 patients (15 before, 54 after ENBS). The estimated incidence rose from 0.7/100,000 before to 4.3/100,000 after ENBS. We confirmed a significant decrease in the number of episodes of acute encephalopathy and lower proportion of intellectual disability after ENBS (p < 0.0001). The genotype-phenotype correlations suggest a new association between homozygosity for the c.1528C > G variant and more severe heart involvement in LCHADD patients.

See more in PubMed

Merritt J.L., Norris M., Kanungo S. Fatty acid oxidation disorders. Ann. Transl. Med. 2018;6:473. doi: 10.21037/atm.2018.10.57. PubMed DOI PMC

Wajner M., Amaral A.U. Mitochondrial dysfunction in fatty acid oxidation disorders: Insights from human and animal studies. Biosci. Rep. 2015;36:e00281. doi: 10.1042/BSR20150240. PubMed DOI PMC

Hickmann F.H., Cecatto C., Kleemann D., Monteiro W.O., Castilho R.F., Amaral A.U., Wajner M. Uncoupling, metabolic inhibition and induction of mitochondrial permeability transition in rat liver mitochondria caused by the major long-chain hydroxyl monocarboxylic fatty acids accumulating in LCHAD deficiency. Biochim. Biophys. Acta. 2015;1847:620–628. doi: 10.1016/j.bbabio.2015.04.003. PubMed DOI

Derks T.G., Reijngoud D.J., Waterham H.R., Gerver W.J., van den Berg M.P., Sauer P.J., Smit G.P. The natural history of medium-chain acyl CoA dehydrogenase deficiency in the Netherlands: Clinical presentation and outcome. J. Pediatr. 2006;148:665–670. doi: 10.1016/j.jpeds.2005.12.028. PubMed DOI

Sperk A., Mueller M., Spiekerkoetter U. Outcome in six patients with mitochondrial trifunctional protein disorders identified by newborn screening. Mol. Genet. Metab. 2010;101:205–207. doi: 10.1016/j.ymgme.2010.07.003. PubMed DOI

Spiekerkoetter U. Mitochondrial fatty acid oxidation disorders: Clinical presentation of long-chain fatty acid oxidation defects before and after newborn screening. J. Inherit. Metab. Dis. 2010;33:527–532. doi: 10.1007/s10545-010-9090-x. PubMed DOI

Tyni T., Kivelä T., Lappi M., Summanen P., Nikoskelainen E., Pihko H. Ophthalmologic findings in long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency caused by the G1528C mutation: A new type of hereditary metabolic chorioretinopathy. Ophthalmology. 1998;105:810–824. doi: 10.1016/S0161-6420(98)95019-9. PubMed DOI

Immonen T., Turanlahti M., Paganus A., Keskinen P., Tyni T., Lapatto R. Earlier diagnosis and strict diets improve the survival rate and clinical course of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Acta Paediatr. 2016;105:549–554. doi: 10.1111/apa.13313. PubMed DOI

Spiekerkoetter U., Lindner M., Santer R., Grotzke M., Baumgartner M.R., Boehles H., Das A., Haase C., Hennermann J.B., Karall D., et al. Treatment recommendations in long-chain fatty acid oxidation defects: Consensus from a workshop. J. Inherit. Metab. Dis. 2009;32:498–505. doi: 10.1007/s10545-009-1126-8. PubMed DOI

Wilcken B., Haas M., Joy P., Wiley V., Chaplin M., Black C., Fletcher J., McGill J., Boneh A. Outcome of neonatal screening for medium-chain acyl-CoA dehydrogenase deficiency in Australia: A cohort study. Lancet. 2007;369:37–42. doi: 10.1016/S0140-6736(07)60029-4. PubMed DOI

Wilcken B., Haas M., Joy P., Wiley V., Bowling F., Carpenter K., Christodoulou J., Cowley D., Ellaway C., Fletcher J., et al. Expanded newborn screening: Outcome in screened and unscreened patients at age 6 years. Pediatrics. 2009;124:e241–e248. doi: 10.1542/peds.2008-0586. PubMed DOI

Janeiro P., Jotta R., Ramos R., Florindo C., Ventura F.V., Vilarinho L., Tavares de Almeida I., Gaspar A. Follow-up of fatty acid β-oxidation disorders in expanded newborn screening era. Eur. J. Pediatr. 2019;178:387–394. doi: 10.1007/s00431-018-03315-2. PubMed DOI

Landau Y.E., Waisbren S.E., Chan L.M., Levy H.L. Long-term outcome of expanded newborn screening at Boston children’s hospital: Benefits and challenges in defining true disease. J. Inherit. Metab. Dis. 2017;40:209–218. doi: 10.1007/s10545-016-0004-4. PubMed DOI

Fraser H., Geppert J., Johnson R., Johnson S., Connock M., Clarke A., Taylor-Phillips S., Stinton C. Evaluation of earlier versus later dietary management in long-chain 3-hydroxyacyl-CoA dehydrogenase or mitochondrial trifunctional protein deficiency: A systematic review. Orphanet. J. Rare Dis. 2019;14:258. doi: 10.1186/s13023-019-1226-y. PubMed DOI PMC

Adzhubei I.A., Schmidt S., Peshkin L., Ramensky V.E., Gerasimova A., Bork P., Kondrashov A.S., Sunyaev S.R. A method and server for predicting damaging missense mutations. Nat. Methods. 2010;7:248–249. doi: 10.1038/nmeth0410-248. PubMed DOI PMC

Schwarz J.M., Rödelsperger C., Schuelke M., Seelow D. MutationTaster evaluates disease-causing potential of sequence alterations. Nat. Methods. 2010;7:575–576. doi: 10.1038/nmeth0810-575. PubMed DOI

Kopanos C., Tsiolkas V., Kouris A., Chapple C.E., Albarca Aguilera M., Meyer R., Massouras A. VarSome: The human genomic variant search engine. Bioinformatics. 2019;35:1978–1980. doi: 10.1093/bioinformatics/bty897. PubMed DOI PMC

Vockley J., Burton B., Berry G.T., Longo N., Phillips J., Sanchez-Valle A., Tanpaiboon P., Grunewald S., Murphy E., Bowden A., et al. Results from a 78-week, single-arm, open-label phase 2 study to evaluate UX007 in pediatric and adult patients with severe long-chain fatty acid oxidation disorders (LC-FAOD) J. Inherit. Metab. Dis. 2019;42:169–177. doi: 10.1002/jimd.12038. PubMed DOI PMC

Vockley J., Charrow J., Ganesh J., Eswara M., Diaz G.A., McCracken E., Conway R., Enns G.M., Starr J., Wang R., et al. Triheptanoin treatment in patients with pediatric cardiomyopathy associated with long chain-fatty acid oxidation disorders. Mol. Genet. Metab. 2016;119:223–231. doi: 10.1016/j.ymgme.2016.08.008. PubMed DOI PMC

Vockley J., Marsden D., McCracken E., DeWard S., Barone A., Hsu K., Kakkis E. Long-term major clinical outcomes in patients with long chain fatty acid oxidation disorders before and after transition to triheptanoin treatment--A retrospective chart review. Mol. Genet. Metab. 2015;116:53–60. doi: 10.1016/j.ymgme.2015.06.006. PubMed DOI PMC

Gillingham M.B., Heitner S.B., Martin J., Rose S., Goldstein A., El-Gharbawy A.H., Deward S., Lasarev M.R., Pollaro J., DeLany J.P., et al. Triheptanoin versus trioctanoin for long-chain fatty acid oxidation disorders: A double blinded, randomized controlled trial. J. Inherit. Metab. Dis. 2017;40:831–843. doi: 10.1007/s10545-017-0085-8. PubMed DOI PMC

Kobzova J., Vignerova J., Blaha P., Krejcovsky L., Riedlova J. The 6th nationwide anthropological survey of children and adolescents in the Czech Republic in 2001. Cent. Eur. J. Public Health. 2004;12:126–130. PubMed

Stahl K., Rastelli E., Schoser B. A systematic review on the definition of rhabdomyolysis. J. Neurol. 2020;267:877–882. doi: 10.1007/s00415-019-09185-4. PubMed DOI

Elliott P., Andersson B., Arbustini E., Bilinska Z., Cecchi F., Charron P., Dubourg O., Kühl U., Maisch B., McKenna W.J., et al. Classification of the cardiomyopathies: A position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 2008;29:270–276. doi: 10.1093/eurheartj/ehm342. PubMed DOI

Cantinotti M., Scalese M., Murzi B., Assanta N., Spadoni I., Festa P., De Lucia V., Crocetti M., Marotta M., Molinaro S., et al. Echocardiographic nomograms for ventricular, valvular and arterial dimensions in caucasian children with a special focus on neonates, infants and toddlers. J. Am. Soc. Echocardiogr. 2014;27:179–191.e2. doi: 10.1016/j.echo.2013.10.001. PubMed DOI

Michot C., Hubert L., Romero N.B., Gouda A., Mamoune A., Mathew S., Kirk E., Viollet L., Rahman S., Bekri S., et al. Study of LPIN1, LPIN2 and LPIN3 in rhabdomyolysis and exercise-induced myalgia. J. Inherit. Metab. Dis. 2012;35:1119–1128. doi: 10.1007/s10545-012-9461-6. PubMed DOI

Janković S.R., Stosić J.J., Vucinić S., Vukcević N.P., Ercegović G.V. Causes of rhabdomyolysis in acute poisonings. Vojnosanit. Pregl. 2013;70:1039–1045. doi: 10.2298/VSP1311039J. PubMed DOI

McMahon G.M., Zeng X., Waikar S.S. A risk prediction score for kidney failure or mortality in rhabdomyolysis. JAMA Intern. Med. 2013;173:1821–1828. doi: 10.1001/jamainternmed.2013.9774. PubMed DOI PMC

Haglind C.B., Stenlid M.H., Ask S., Alm J., Nemeth A., Döbeln U., Nordenström A. Growth in Long-Chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiency. JIMD Rep. 2013;8:81–90. doi: 10.1007/8904_2012_164. PubMed DOI PMC

Maguolo A., Rodella G., Dianin A., Nurti R., Monge I., Rigotti E., Cantalupo G., Salviati L., Tucci S., Pellegrini F., et al. Diagnosis, genetic characterization and clinical follow up of mitochondrial fatty acid oxidation disorders in the new era of expanded newborn screening: A single centre experience. Mol. Genet. Metab. Rep. 2020;24:100632. doi: 10.1016/j.ymgmr.2020.100632. PubMed DOI PMC

Sturm M., Herebian D., Mueller M., Laryea M.D., Spiekerkoetter U. Functional Effects of Different Medium-Chain Acyl-CoA Dehydrogenase Genotypes and Identification of Asymptomatic Variants. PLoS ONE. 2012;7:e45110. doi: 10.1371/journal.pone.0045110. PubMed DOI PMC

Gramer G., Haege G., Fang-Hoffmann J. Medium-Chain Acyl-CoA Dehydrogenase Deficiency: Evaluation of Genotype-Phenotype Correlation in Patients Detected by Newborn Screening. JIMD Rep. 2015;23:101–112. doi: 10.1007/8904_2015_439. PubMed DOI PMC

Sykut-Cegielska J., Gradowska W., Piekutowska-Abramczuk D., Andresen B.S., Olsen R.K., Ołtarzewski M., Pronicki M., Pajdowska M., Bogdańska A., Jabłońska E., et al. Urgent metabolic service improves survival in long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency detected by symptomatic identification and pilot newborn screening. J. Inherit. Metab. Dis. 2011;34:185–195. doi: 10.1007/s10545-010-9244-x. PubMed DOI

Kang E., Kim Y.M., Kang M., Heo S.H., Kim G.H., Choi I.H., Choi J.H., Yoo H.W., Lee B.H. Clinical and genetic characteristics of patients with fatty acid oxidation disorders identified by newborn screening. BMC Pediatr. 2018;18:103. doi: 10.1186/s12887-018-1069-z. PubMed DOI PMC

Fahnehjelm K.T., Liu Y., Olsson D., Amrén U., Haglind C.B., Holmström G., Halldin M., Andreasson S., Nordenström A. Most patients with long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency develop pathological or subnormal retinal function. Acta Paediatr. 2016;105:1451–1460. doi: 10.1111/apa.13536. PubMed DOI

Baruteau J., Sachs P., Broué P., Brivet M., Abdoul H., Vianey-Saban C., de Baulny O.H. Clinical and biological features at diagnosis in mitochondrial fatty acid beta-oxidation defects: A French pediatric study from 187 patients. Complementary data. J. Inherit. Metab. Dis. 2014;37:137–139. doi: 10.1007/s10545-013-9628-9. PubMed DOI

Boese E.A., Jain N., Jia Y., Schlechter C.L., Harding C.O., Gao S.S., Patel R.C., Huang D., Weleber R.G., Gillingham M.B., et al. Characterization of Chorioretinopathy Associated with Mitochondrial Trifunctional Protein Disorders: Long-Term Follow-up of 21 Cases. Ophthalmology. 2016;123:2183–2195. doi: 10.1016/j.ophtha.2016.06.048. PubMed DOI PMC

Karall D., Brunner-Krainz M., Kogelnig K., Konstantopoulou V., Maier E.M., Möslinger D., Plecko B., Sperl W., Volkmar B., Scholl-Bürgi S. Clinical outcome, biochemical and therapeutic follow-up in 14 Austrian patients with Long-Chain 3-Hydroxy Acyl CoA Dehydrogenase Deficiency (LCHADD) Orphanet. J. Rare Dis. 2015;10:21. doi: 10.1186/s13023-015-0236-7. PubMed DOI PMC

De Biase I., Viau K.S., Liu A., Yuzyuk T., Botto L.D., Pasquali M., Longo N. Diagnosis, Treatment, and Clinical Outcome of Patients with Mitochondrial Trifunctional Protein/Long-Chain 3-Hydroxy Acyl-CoA Dehydrogenase Deficiency. JIMD Rep. 2017;31:63–71. doi: 10.1007/8904_2016_558. PubMed DOI PMC

Dulz S., Atiskova Y., Engel P., Wildner J., Tsiakas K., Santer R. Retained visual function in a subset of patients with long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) Ophthalmic Genet. 2021;42:23–27. doi: 10.1080/13816810.2020.1836658. PubMed DOI

Immonen T., Ahola E., Toppila J., Lapatto R., Tyni T., Lauronen L. Peripheral neuropathy in patients with long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency—A follow-up EMG study of 12 patients. Eur. J. Paediatr. Neurol. 2016;20:38–44. doi: 10.1016/j.ejpn.2015.10.009. PubMed DOI

Loeber J.G., Platis D., Zetterström R.H., Almashanu S., Boemer F., Bonham J.R., Borde P., Brincat I., Cheillan D., Dekkers E., et al. Neonatal Screening in Europe Revisited: An ISNS Perspective on the Current State and Developments Since 2010. Int. J. Neonatal. Screen. 2021;7:15. doi: 10.3390/ijns7010015. PubMed DOI PMC

Guffon N., Mochel F., Schiff M., De Lonlay P., Douillard C., Vianey-Saban C. Clinical outcomes in a series of 18 patients with long chain fatty acids oxidation disorders treated with triheptanoin for a median duration of 22 months. Mol. Genet. Metab. 2021;132:227–233. doi: 10.1016/j.ymgme.2021.02.003. PubMed DOI

Nennstiel-Ratzel U., Arenz S., Maier E.M., Knerr I., Baumkötter J., Röschinger W., Liebl B., Hadorn H.B., Roscher A.A., von Kries R. Reduced incidence of severe metabolic crisis or death in children with medium chain acyl-CoA dehydrogenase deficiency homozygous for c.985A > G identified by neonatal screening. Mol. Genet. Metab. 2005;85:157–159. doi: 10.1016/j.ymgme.2004.12.010. PubMed DOI

Iafolla A.K., Thompson R.J., Jr., Roe C.R. Medium-chain acyl-coenzyme A dehydrogenase deficiency: Clinical course in 120 affected children. J. Pediatr. 1994;124:409–415. doi: 10.1016/S0022-3476(94)70363-9. PubMed DOI

Schatz U.A., Ensenauer R. The clinical manifestation of MCAD deficiency: Challenges towards adulthood in the screened population. J. Inherit. Metab. Dis. 2010;33:513–520. doi: 10.1007/s10545-010-9115-5. PubMed DOI

Fletcher A.L., Pennesi M.E., Harding C.O., Weleber R.G., Gillingham M.B. Observations regarding retinopathy in mitochondrial trifunctional protein deficiencies. Mol. Genet. Metab. 2012;106:18–24. doi: 10.1016/j.ymgme.2012.02.015. PubMed DOI PMC

Bentler K., Zhai S., Elsbecker S.A., Arnold G.L., Burton B.K., Vockley J., Cameron C.A., Hiner S.J., Edick M.J., Berry S.A. Inborn Errors of Metabolism Collaborative. 221 newborn-screened neonates with medium-chain acyl-coenzyme A dehydrogenase deficiency: Findings from the Inborn Errors of Metabolism Collaborative. Mol. Genet. Metab. 2016;119:75–82. doi: 10.1016/j.ymgme.2016.07.002. PubMed DOI PMC

Couce M.L., Sánchez-Pintos P., Diogo L., Leão-Teles E., Martins E., Santos H., Bueno M.A., Delgado-Pecellín C., Castiñeiras D.E., Cocho J.A., et al. Newborn screening for medium-chain acyl-CoA dehydrogenase deficiency: Regional experience and high incidence of carnitine deficiency. Orphanet. J. Rare Dis. 2013;8:102. doi: 10.1186/1750-1172-8-102. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...