Left ventricular myocardial deformation assessment in asymptomatic patients with recently diagnosed sarcoidosis of the respiratory tract and/or extrapulmonary sarcoidosis
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34587975
PubMed Central
PMC8482629
DOI
10.1186/s13023-021-02038-2
PII: 10.1186/s13023-021-02038-2
Knihovny.cz E-zdroje
- Klíčová slova
- Cardiac magnetic resonance, Feature tracking, Sarcoidosis, Strain analysis,
- MeSH
- dýchací soustava MeSH
- funkce levé komory srdeční MeSH
- lidé MeSH
- magnetická rezonance kinematografická MeSH
- sarkoidóza * diagnostické zobrazování MeSH
- srdeční komory * diagnostické zobrazování MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Sarcoidosis is a systemic granulomatous disease affecting different organs including the heart. Myocardial strain analysis could potentially detect the early stages of cardiac dysfunction in sarcoidosis patients. The present study aims to assess the use of cardiac magnetic resonance (CMR) strain analysis using feature tracking (FT) in the detection of early cardiac involvement in asymptomatic patients with sarcoidosis. METHODS: One hundred and thirteen CMR studies of patients with sarcoidosis of the respiratory tract and/or extrapulmonary sarcoidosis without pre-existing known cardiovascular disease were included in the study and analysed using FT and compared to 22 age and gender-matched controls. Global longitudinal strain (GLS), global circumferential strain (GCS) and global radial strain (GRS) of the left ventricle (LV) were measured. RESULTS: The sarcoidosis patients did not significantly differ from the controls in basic demographic data and had normal global and regional systolic LV function-LV ejection fraction (EF) 66 ± 7% vs 65 ± 5% in the controls (p = NS). No statistically significant differences were found in all strain parameters between patients and controls: GLS (- 13.9 ± 3.1 vs. - 14.2 ± 2.5), GCS (- 23.4 ± 4.0 vs. - 22.2 ± 2.9) and GRS (53.4 ± 13.5 vs. 51.2 ± 13.6%) (p = NS). CONCLUSION: Patients with sarcoidosis of the respiratory tract and/or extrapulmonary sarcoidosis had normal myocardial deformation measured by CMR-FT derived global strain.
Department of Medical Imaging St Anne's Faculty Hospital Brno Czech Republic
Department of Pathophysiology Faculty of Medicine Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Belperio JA, Shaikh F, Abtin F, Fishbein MC, Saggar R, Tsui E, Lynch JP 3rd. Extrapulmonary sarcoidosis with a focus on cardiac, nervous system, and ocular involvement. EClin Med 2021;37:100966. PubMed PMC
Zhou Y, Lower EE, Li HP, Costea A, Attari M, Baughman RP. Cardiac Sarcoidosis: the impact of age and implanted devices on survival. Chest. 2017;151(1):139–148. doi: 10.1016/j.chest.2016.08.1457. PubMed DOI
Dubrey S, Shah S, Hardman T, Sharma R. Sarcoidosis: the links between epidemiology and aetiology. Postgrad Med J. 2014;90(1068):582–589. doi: 10.1136/postgradmedj-2014-132584. PubMed DOI
Kandolin R, Lehtonen J, Airaksinen J, Vihinen T, Miettinen H, Ylitalo K, Kaikkonen K, Tuohinen S, Haataja P, Kerola T, et al. Cardiac sarcoidosis: epidemiology, characteristics, and outcome over 25 years in a nationwide study. Circulation. 2015;131:624–632. doi: 10.1161/CIRCULATIONAHA.114.011522. PubMed DOI
Birnie DH, Sauer WH, Bogun F, Cooper JM, Culver DA, Duvernoy CS, Judson MA, Kron J, Mehta D, Cosedis Nielsen J, et al. HRS expert consensus statement on the diagnosis and management of arrhythmias associated with cardiac sarcoidosis. Heart Rhythm. 2014;11(7):1305–1323. doi: 10.1016/j.hrthm.2014.03.043. PubMed DOI
Mohsen A, Jimenez A, Hood RE, Dickfeld T, Saliaris A, Shorofsky S, Saba MM. Cardiac sarcoidosis: electrophysiological outcomes on long-term follow-up and the role of the implantable cardioverter-defibrillator. J Cardiovasc Electrophysiol. 2014;25(2):171–176. doi: 10.1111/jce.12302. PubMed DOI
Boglioli LR, Taff ML, Funke S, Mihalakis I. Sudden death due to sarcoid heart disease. J Forensic Sci. 1998;43:1072–1073. doi: 10.1520/JFS14360J. PubMed DOI
Smedema JP, Snoep G, van Kroonenburgh MP, van Geuns RJ, Cheriex EC, Gorgels AP, Crijns HJ. The additional value of gadolinium-enhanced MRI to standard assessment for cardiac involvement in patients with pulmonary sarcoidosis. Chest. 2005;128:1629–1637. doi: 10.1378/chest.128.3.1629. PubMed DOI
Nadel J, Lancefield T, Voskoboinik A, Taylor AJ. Late gadolinium enhancement identified with cardiac magnetic resonance imaging in sarcoidosis patients is associated with long-term ventricular arrhythmia and sudden cardiac death. Eur Heart J Cardiovasc Imaging. 2015;16:634–641. PubMed
Doubkova M, Panovsky R. How to diagnose cardiac sarcoidosis. Vnitr Lek. 2018;64(7–8):729–733. doi: 10.36290/vnl.2018.100. PubMed DOI
Burris NS, Lima APS, Hope MD, Ordovas KG. Feature tracking cardiac MRI reveals abnormalities in ventricular function in patients with bicuspid aortic valve and preserved ejection fraction. Tomography. 2018;4(1):26–32. doi: 10.18383/j.tom.2018.00005. PubMed DOI PMC
Taylor RJ, Moody WE, Umar F, Edwards NC, Taylor TJ, Stegemann B, Townend JN, Hor KN, Steeds RP, Mazur W, et al. Myocardial strain measurement with feature-tracking cardiovascular magnetic resonance: normal values. Eur Heart J Cardiovasc Imaging. 2015;16(8):871–881. doi: 10.1093/ehjci/jev006. PubMed DOI
Aurich M, Keller M, Greiner S, Steen H, Aus dem Siepen F, Riffel J, Katus HA, Buss SJ, Mereles D. Left ventricular mechanics assessed by two-dimensional echocardiography and cardiac magnetic resonance imaging: comparison of high-resolution speckle tracking and feature tracking. Eur Heart J Cardiovasc Imaging 2016;17:1370–1378. PubMed
Andre F, Steen H, Matheis P, Westkott M, Breuninger K, Sander Y, Kammerer R, Galuschky C, Giannitsis E, Korosoglou G, et al. Age- and gender-related normal left ventricular deformation assessed by cardiovascular magnetic resonance feature tracking. J Cardiovasc Magn Reson. 2015;17:25. doi: 10.1186/s12968-015-0123-3. PubMed DOI PMC
Peng J, Zhao X, Zhao L, Fan Z, Wang Z, Chen H, Leng S, Allen J, Tan RS, Koh AS, et al. Normal values of myocardial deformation assessed by cardiovascular magnetic resonance feature tracking in a healthy Chinese population: a multicenter study. Front Physiol. 2018;9:1181. doi: 10.3389/fphys.2018.01181. PubMed DOI PMC
Wu L, Germans T, Güçlü A, Heymans MW, Allaart CP, Van Rossum AC. Feature tracking compared with tissue tagging measurements of segmental strain by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2014;16:1. doi: 10.1186/1532-429X-16-1. PubMed DOI PMC
Buss SJ, K Breuninger, S Lehrke, Voss A, Galuschky C, Lossnitzer D, Andre F, Ehlermann P, Franke J, Taeger T, et al. Assessment of myocardial deformation with cardiac magnetic resonance strain imaging improves risk stratification in patients with dilated cardiomyopathy. Eur Heart J Cardiovasc Imaging 2014;16(3): 307–315. PubMed
Padiyath A, Gribben P, Abraham JR, Li L, Rangamani S, Schuster A, Danford DA, Pedrizzetti G, Kutty S. Echocardiography and cardiac magnetic resonance-based feature tracking in the assessment of myocardial mechanics in tetralogy of fallot: an intermodality comparison. Echocardiography. 2013;30(2):203–210. doi: 10.1111/echo.12016. PubMed DOI
Pedrizzetti G, Claus P, Kilner PJ, Nagel E. Principles of cardiovascular magnetic resonance feature tracking and echocardiographic speckle tracking for informed clinical use. J Cardiovasc Magn Reson. 2016;18(1):51. doi: 10.1186/s12968-016-0269-7. PubMed DOI PMC
Dabir D, Meyer D, Kuetting D, Luetkens J, Homsi R, Pizarro C, Nadal J, Thomas D. Diagnostic value of cardiac magnetic resonance strain analysis for detection of cardiac sarcoidosis. Rofo. 2018;190(8):712–721. doi: 10.1055/a-0598-5099. PubMed DOI
Panovský R, Doubková M, Holeček T, Máchal J, Feitová V, Masárová L, Opatřil L, Mojica-Pisciotti ML, Kincl V. Myocardial T1 mapping using SMART1Map and MOLLI mapping in asymptomatic patients with recent extracardiac sarcoidosis. NMR Biomed. 2020;33(11):e4388. doi: 10.1002/nbm.4388. PubMed DOI
Panovský R, Pešl M, Máchal J, Holeček T, Feitová V, Juříková L, Masárová L, Pešlová E, Opatřil L, Mojica-Pisciotti ML, et al. Quantitative assessment of left ventricular longitudinal function and myocardial deformation in Duchenne muscular dystrophy patients. Orphanet J Rare Dis 2021 (in press). PubMed PMC
Masarová L, Pisciotti ML, Panovský R, Kincl V, Pešl M, Opatřil L, Máchal J, Novák J, Holeček T, Juříková L, et al. Decreased global strains of LV in asymptomatic female Duchenne muscular dystrophy gene carriers using CMR-FT. JACC Cardiovasc Imaging. 2020:S1936-878X(20)30889-5. 10.1016/j.jcmg.2020.09.016 PubMed
Watanabe Y, Nishii T, Shimoyama S, Ito T, Mori S, Kono AK, Takahashi S, Hirata KI, Sugimura K. Focal myocardial damage in cardiac sarcoidosis characterized by strain analysis on magnetic resonance tagged imaging in comparison with fluorodeoxyglucose positron emission tomography accumulation and magnetic resonance late gadolinium enhancement. J Comput Assist Tomogr. 2018;42(4):607–613. doi: 10.1097/RCT.0000000000000733. PubMed DOI
Di Stefano C, Bruno G, Arciniegas Calle MC, Acharya GA, Fussner LM, Ungprasert P, Cooper LT, Jr, Blauwet LA, Ryu JH, et al. Diagnostic and predictive value of speckle tracking echocardiography in cardiac sarcoidosis. BMC Cardiovasc Disord. 2020;20(1):21. doi: 10.1186/s12872-019-01323-0. PubMed DOI PMC
Murtagh G, Laffin LJ, Patel KV, Patel AV, Bonham CA, Yu Z, Addetia K, El-Hangouche N, Maffesanti F, Mor-Avi V, et al. Improved detection of myocardial damage in sarcoidosis using longitudinal strain in patients with preserved left ventricular ejection fraction. Echocardiography. 2016;33(9):1344–1352. doi: 10.1111/echo.13281. PubMed DOI PMC
Değirmenci H, Demirelli S, Arısoy A, Ermiş E, Araz Ö, Bakırcı EM, Hamur H, Büyüklü M, Topal E. Myocardial deformation and total atrial conduction time in the prediction of cardiac involvement in patients with pulmonary sarcoidosis. Clin Respir J. 2017;11(1):68–77. doi: 10.1111/crj.12307. PubMed DOI
Bayat F, Fahimi A, Tavana S, Tabary M, Khaheshi I. Subclinical involvement of the heart and its associated factors in patients with sarcoidosis with normal systolic function using 2D speckle tracking. Echocardiography. 2020;37(1):41–46. doi: 10.1111/echo.14572. PubMed DOI
Tsuji T, Tanaka H, Matsumoto K, Miyoshi T, Hiraishi M, Kaneko A, Ryo K, Fukuda Y, Tatsumi K, Onishi T, et al. Capability of three-dimensional speckle tracking radial strain for identification of patients with cardiac sarcoidosis. Int J Cardiovasc Imaging. 2013;29(2):317–324. doi: 10.1007/s10554-012-0104-7. PubMed DOI
Kul S, Ozcelik HK, Uyarel H, Karakus G, Guvenc TS, Yalcınsoy M, Asoglu E, Kemik AS, Tasal A, Gungor S, et al. Diagnostic value of strain echocardiography, galectin-3, and tenascin-C levels for the identification of patients with pulmonary and cardiac sarcoidosis. Lung. 2014;192(4):533–542. doi: 10.1007/s00408-014-9586-5. PubMed DOI
Kusunose K, Fujiwara M, Yamada H, Nishio S, Saijo Y, Yamada N, Hirata Y, Torii Y, Ise T, Yamaguchi K, et al. Deterioration of biventricular strain is an early marker of cardiac involvement in confirmed sarcoidosis. Eur Heart J Cardiovasc Imaging. 2020;21(7):796–804. doi: 10.1093/ehjci/jez235. PubMed DOI
Sperry BW, Ibrahim A, Negishi K, Negishi T, Patel P, Popović ZB, Culver D, Brunken R, Marwick TH, Tamarappoo B. Incremental prognostic value of global longitudinal strain and 18F-fludeoxyglucose positron emission tomography in patients with systemic sarcoidosis. Am J Cardiol. 2017;119(10):1663–1669. doi: 10.1016/j.amjcard.2017.02.010. PubMed DOI
Schouver ED, Moceri P, Doyen D, Tieulie N, Queyrel V, Baudouy D, Cerboni P, Gibelin P, Leroy S, Fuzibet JG, et al. Early detection of cardiac involvement in sarcoidosis with 2-dimensional speckle-tracking echocardiography. Int J Cardiol. 2017;227:711–716. doi: 10.1016/j.ijcard.2016.10.073. PubMed DOI
Joyce E, Ninaber MK, Katsanos S, Debonnaire P, Kamperidis V, Bax JJ, Taube C, Delgado V, Ajmone MN. Subclinical left ventricular dysfunction by echocardiographic speckle-tracking strain analysis relates to outcome in sarcoidosis. Eur J Heart Fail. 2015;17(1):51–62. doi: 10.1002/ejhf.205. PubMed DOI
Felekos I, Aggeli C, Gialafos E, Kouranos V, Rapti A, Sfikakis P, Koulouris N, Tousoulis D. Global longitudinal strain and long-term outcomes in asymptomatic extracardiac sarcoid patients with no apparent cardiovascular disease. Echocardiography. 2018;35(6):804–808. doi: 10.1111/echo.13846. PubMed DOI
Chen J, Lei J, Scalzetti E, McGrath M, Feiglin D, Voelker R, Wang J, Iannuzzi MC, Liu K. Myocardial contractile patterns predict future cardiac events in sarcoidosis. Int J Cardiovasc Imaging. 2018;34(2):251–262. doi: 10.1007/s10554-017-1233-9. PubMed DOI
Schuster A, Stahnke VC, Unterberg-Buchwald C, Kowallick JT, Lamata P, Steinmetz M, Kutty S, Fasshauer M, Staab W, Sohns JM, et al. Cardiovascular magnetic resonance feature-tracking assessment of myocardial mechanics: intervendor agreement and considerations regarding reproducibility. Clin Radiol. 2015;70(9):989–998. doi: 10.1016/j.crad.2015.05.006. PubMed DOI PMC
Morton G, Schuster A, Jogiya R, Kutty S, Beerbaum P, Nagel E. Inter-study reproducibility of cardiovascular magnetic resonance myocardial feature tracking. J Cardiovasc Magn Reson. 2012;14(1):43. doi: 10.1186/1532-429X-14-43. PubMed DOI PMC
Voigt JU, Pedrizzetti G, Lysyansky P, Marwick TH, Houle H, Baumann R, Pedri S, Ito Y, Abe Y, Metz S, et al. Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur Heart J Cardiovasc Imaging. 2015;16(1):1–11. doi: 10.1093/ehjci/jeu184. PubMed DOI
Greulich S, Kitterer D, Latus J, Aguor E, Steubing H, Kaesemann P, Patrascu A, Greiser A, Groeninger S, Mayr A, et al. Comprehensive cardiovascular magnetic resonance assessment in patients with sarcoidosis and preserved left ventricular ejection fraction. Circ Cardiovasc Imaging 2016;9:e005022. PubMed
Puntmann VO, Isted A, Hinojar R, Foote L, Carr-White G, Nagel E. T1 and T2 mapping in recognition of early cardiac involvement in systemic sarcoidosis. Radiology. 2017;285(1):63–72. doi: 10.1148/radiol.2017162732. PubMed DOI
Nakano S, Kimura F, Osman N, Sugi K, Tanno J, Uchida Y, Shiono A, Senbonmatsu T, Nishimura S. Improved myocardial strain measured by strain-encoded magnetic resonance imaging in a patient with cardiac sarcoidosis. Can J Cardiol. 2013;29(11):1531.e9–11. doi: 10.1016/j.cjca.2013.02.023. PubMed DOI
Wang SY, OuYang RZ, Hu LW, Xie WH, Peng YF, Wang L, Gao FB, Zhong YM. Right and left ventricular interactions, strain, and remodeling in repaired pulmonary stenosis patients with preserved right ventricular ejection fraction: a cardiac magnetic resonance study. J Magn Reson Imaging. 2020;52(1):129–138. doi: 10.1002/jmri.27034. PubMed DOI
Auti OB, Bandekar K, Kamat N, Raj V. Cardiac magnetic resonance techniques: our experience on wide bore 3 tesla magnetic resonance system. Indian J Radiol Imaging. 2017;27(4):404–412. doi: 10.4103/ijri.IJRI_503_16. PubMed DOI PMC
Voit D, Zhang S, Unterberg-Buchwald C, Sohns JM, Lotz J, Frahm J. Real-time cardiovascular magnetic resonance at 1.5 T using balanced SSFP and 40 ms resolution. J Cardiovasc Magn Reson. 2013;15(1):79. doi: 10.1186/1532-429X-15-79. PubMed DOI PMC
Amzulescu MS, De Craene M, Langet H, Pasquet A, Vancraeynest D, Pouleur AC, Vanoverschelde JL, Gerber BL. Myocardial strain imaging: review of general principles, validation, and sources of discrepancies. Eur Heart J Cardiovasc Imaging. 2019;20(6):605–619. doi: 10.1093/ehjci/jez041. PubMed DOI PMC