Genetic Testing in Patients with Hypertrophic Cardiomyopathy
Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
grant No. 00064203
Conceptual Development of Research Organization, Motol University Hospital, Prague
grant No. 15-34904A
Ministry of Health of the Czech Republic
PubMed
34638741
PubMed Central
PMC8509044
DOI
10.3390/ijms221910401
PII: ijms221910401
Knihovny.cz E-resources
- Keywords
- genetics, hypertrophic cardiomyopathy, molecular genetic testing, next-generation sequencing, pathogenic mutations, variants of uncertain significance,
- MeSH
- Genetic Testing * MeSH
- Cardiomyopathy, Hypertrophic diagnosis genetics MeSH
- Humans MeSH
- Mutation * MeSH
- Sarcomeres genetics MeSH
- Muscle Proteins genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Muscle Proteins MeSH
Hypertrophic cardiomyopathy (HCM) is a common inherited heart disease with an estimated prevalence of up to 1 in 200 individuals. In the majority of cases, HCM is considered a Mendelian disease, with mainly autosomal dominant inheritance. Most pathogenic variants are usually detected in genes for sarcomeric proteins. Nowadays, the genetic basis of HCM is believed to be rather complex. Thousands of mutations in more than 60 genes have been described in association with HCM. Nevertheless, screening large numbers of genes results in the identification of many genetic variants of uncertain significance and makes the interpretation of the results difficult. Patients lacking a pathogenic variant are now believed to have non-Mendelian HCM and probably have a better prognosis than patients with sarcomeric pathogenic mutations. Identifying the genetic basis of HCM creates remarkable opportunities to understand how the disease develops, and by extension, how to disrupt the disease progression in the future. The aim of this review is to discuss the brief history and recent advances in the genetics of HCM and the application of molecular genetic testing into common clinical practice.
See more in PubMed
Elliott P.M., Anastasakis A., Borger M., Borggrefe M., Cecchi F., Charron P., Hagege A., Lafont A., Limongelli G., Mahrholdt H., et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy. Eur. Heart J. 2014;35:2733–2779. doi: 10.5603/KP.2014.0212. PubMed DOI
Veselka J., Anavekar N.S., Charron P. Hypertrophic obstructive cardiomyopathy. Lancet. 2016;389:1253–1267. doi: 10.1016/S0140-6736(16)31321-6. PubMed DOI
Richard P., Charron P., Carrier L., Ledeuil C., Cheav T., Pichereau C., Benaiche A., Isnard R., Dubourg O., Burban M., et al. Hypertrophic Cardiomyopathy. Circulation. 2003;107:2227–2232. doi: 10.1161/01.CIR.0000066323.15244.54. PubMed DOI
Maron B.J., Doerer J.J., Haas T.S., Tierney D., Mueller F.O. Sudden Deaths in Young Competitive Athletes. Circulation. 2009;119:1085–1092. doi: 10.1161/CIRCULATIONAHA.108.804617. PubMed DOI
Semsarian C., Ingles J., Maron M.S., Maron B.J. New Perspectives on the Prevalence of Hypertrophic Cardiomyopathy. J. Am. Coll. Cardiol. 2015;65:1249–1254. doi: 10.1016/j.jacc.2015.01.019. PubMed DOI
Ackerman M., Atkins D.L., Triedman J.K. Sudden Cardiac Death in the Young. Circulation. 2016;133:1006–1026. doi: 10.1161/CIRCULATIONAHA.115.020254. PubMed DOI PMC
Teare D. Asymmetrical Hypertrophy of the Heart in Young Adults. Heart. 1958;20:1–8. doi: 10.1136/hrt.20.1.1. PubMed DOI PMC
Geisterfer-Lowrance A.A., Kass S., Tanigawa G., Vosberg H.-P., McKenna W., Seidman C.E., Seidman J. A molecular basis for familial hypertrophic cardiomyopathy: A β cardiac myosin heavy chain gene missense mutation. Cell. 1990;62:999–1006. doi: 10.1016/0092-8674(90)90274-I. PubMed DOI
Jarcho J.A., McKenna W.J., Pare J.P., Solomon S.D., Holcombe R.F., Dickie S., Levi T., Donis-Keller H., Seidman J., Seidman C.E. Mapping a Gene for Familial Hypertrophic Cardiomyopathy to Chromosome 14q1. N. Engl. J. Med. 1989;321:1372–1378. doi: 10.1056/NEJM198911163212005. PubMed DOI
Ho C.Y., Charron P., Richard P., Girolami F., Van Spaendonck-Zwarts K.Y., Pinto Y. Genetic advances in sarcomeric cardiomyopathies: State of the art. Cardiovasc. Res. 2015;105:397–408. doi: 10.1093/cvr/cvv025. PubMed DOI PMC
Ingles J., Goldstein J., Thaxton C., Caleshu C., Corty E.W., Crowley S.B., Dougherty K., Harrison S.M., McGlaughon J., Milko L.V., et al. Evaluating the Clinical Validity of Hypertrophic Cardiomyopathy Genes. Circ. Genom. Precis. Med. 2019;12:e002460. doi: 10.1161/CIRCGEN.119.002460. PubMed DOI PMC
Lopes L., Syrris P., Guttmann O.P., O’Mahony C., Tang H.C., Dalageorgou C., Jenkins S., Hubank M., Monserrat L., McKenna W.J., et al. Novel genotype–phenotype associations demonstrated by high-throughput sequencing in patients with hypertrophic cardiomyopathy. Heart. 2014;101:294–301. doi: 10.1136/heartjnl-2014-306387. PubMed DOI PMC
Walsh R., Buchan R., Wilk A., John S., Felkin L.E., Thomson K., Chiaw T.H., Loong C.C.W., Pua C.J., Raphael C., et al. Defining the genetic architecture of hypertrophic cardiomyopathy: Re-evaluating the role of non-sarcomeric genes. Eur. Heart J. 2017;38:3461–3468. doi: 10.1093/eurheartj/ehw603. PubMed DOI PMC
Thomson K.L., NIHR BioResource—Rare Diseases Consortium. Ormondroyd E., Harper A.R., Dent T., McGuire K., Baksi J., Blair E., Brennan P., Buchan R., et al. Analysis of 51 proposed hypertrophic cardiomyopathy genes from genome sequencing data in sarcomere negative cases has negligible diagnostic yield. Genet. Med. 2018;21:1576–1584. doi: 10.1038/s41436-018-0375-z. PubMed DOI PMC
Mazzarotto F., Olivotto I., Boschi B., Girolami F., Poggesi C., Barton P., Walsh R. Contemporary Insights Into the Genetics of Hypertrophic Cardiomyopathy: Toward a New Era in Clinical Testing? J. Am. Heart Assoc. 2020;9:e015473. doi: 10.1161/JAHA.119.015473. PubMed DOI PMC
Lopes L.R., Garcia-Hernández S., Lorenzini M., Futema M., Chumakova O., Zateyshchikov D., Isidoro-Garcia M., Villacorta E., Escobar-Lopez L., Garcia-Pavia P., et al. Alpha-protein kinase 3 (ALPK3) truncating variants are a cause of autosomal dominant hypertrophic cardiomyopathy. Eur. Heart J. 2021;42:3063–3073. doi: 10.1093/eurheartj/ehab424. PubMed DOI PMC
Harper A.R., HCMR Investigators. Goel A., Grace C., Thomson K.L., Petersen S.E., Xu X., Waring A., Ormondroyd E., Kramer C.M., et al. Common genetic variants and modifiable risk factors underpin hypertrophic cardiomyopathy susceptibility and expressivity. Nat. Genet. 2021;53:135–142. doi: 10.1038/s41588-020-00764-0. PubMed DOI PMC
Ochoa J.P., Sabater-Molina M., García-Pinilla J.M., Mogensen J., Restrepo-Córdoba A., Palomino-Doza J., Villacorta E., Martinez-Moreno M., Ramos-Maqueda J., Zorio E., et al. Formin Homology 2 Domain Containing 3 (FHOD3) Is a Genetic Basis for Hypertrophic Cardiomyopathy. J. Am. Coll. Cardiol. 2018;72:2457–2467. doi: 10.1016/j.jacc.2018.10.001. PubMed DOI
Walsh R., Offerhaus J.A., Tadros R., Bezzina C.R. Minor hypertrophic cardiomyopathy genes, major insights into the genetics of cardiomyopathies. Nat. Rev. Cardiol. 2021 doi: 10.1038/s41569-021-00608-2. PubMed DOI
Tadros R., Francis C., Xu X., Vermeer A.M.C., Harper A.R., Huurman R., Bisabu K.K., Walsh R., Hoorntje E.T., Rijdt W.P.T., et al. Shared genetic pathways contribute to risk of hypertrophic and dilated cardiomyopathies with opposite directions of effect. Nat. Genet. 2021;53:128–134. doi: 10.1038/s41588-020-00762-2. PubMed DOI PMC
Maron B.J., Maron M.S., Semsarian C. Genetics of Hypertrophic Cardiomyopathy After 20 Years. J. Am. Coll. Cardiol. 2012;60:705–715. doi: 10.1016/j.jacc.2012.02.068. PubMed DOI
Alfares A.A., Kelly M.A., McDermott G., Funke B.H., Lebo M.S., Baxter S.B., Shen J., McLaughlin H.M., Clark E.H., Babb L.J., et al. Results of clinical genetic testing of 2,912 probands with hypertrophic cardiomyopathy: Expanded panels offer limited additional sensitivity. Genet. Med. 2015;17:880–888. doi: 10.1038/gim.2014.205. PubMed DOI
Ingles J., Burns C., Barratt A., Semsarian C. Application of Genetic Testing in Hypertrophic Cardiomyopathy for Preclinical Disease Detection. Circ. Cardiovasc. Genet. 2015;8:852–859. doi: 10.1161/CIRCGENETICS.115.001093. PubMed DOI
Sabater-Molina M., Pérez-Sánchez I., Del Rincón J.H., Gimeno J. Genetics of hypertrophic cardiomyopathy: A review of current state. Clin. Genet. 2017;93:3–14. doi: 10.1111/cge.13027. PubMed DOI
Online Mendelian Inheritance in Man. [(accessed on 28 August 2021)]. Available online: www.omim.org.
McNally E., Dellefave L. Sarcomere Mutations in Cardiogenesis and Ventricular Noncompaction. Trends Cardiovasc. Med. 2009;19:17–21. doi: 10.1016/j.tcm.2009.03.003. PubMed DOI
Mogensen J., Kubo T., Duque M., Uribe W., Shaw A., Murphy R., Gimeno J.R., Elliott P., McKenna W.J. Idiopathic restrictive cardiomyopathy is part of the clinical expression of cardiac troponin I mutations. J. Clin. Investig. 2003;111:209–216. doi: 10.1172/JCI200316336. PubMed DOI PMC
Cimiotti D., Budde H., Hassoun R., Jaquet K. Genetic Restrictive Cardiomyopathy: Causes and Consequences—An Integrative Approach. Int. J. Mol. Sci. 2021;22:558. doi: 10.3390/ijms22020558. PubMed DOI PMC
Bortot B., Athanasakis E., Brun F., Rizzotti D., Mestroni L., Sinagra G., Severini G.M. High-throughput Genotyping Robot-assisted Method for Mutation Detection in Patients With Hypertrophic Cardiomyopathy. Diagn. Mol. Pathol. 2011;20:175–179. doi: 10.1097/PDM.0b013e31820b34fb. PubMed DOI
Fokstuen S., Munoz A., Melacini P., Iliceto S., Perrot A., Ozcelik C., Jeanrenaud X., Rieubland C., Farr M., Faber L., et al. Rapid detection of genetic variants in hypertrophic cardiomyopathy by custom DNA resequencing array in clinical practice. J. Med. Genet. 2011;48:572–576. doi: 10.1136/jmg.2010.083345. PubMed DOI
Meder B., Haas J., Keller A., Heid C., Just S., Borries A., Boisguerin V., Scharfenberger-Schmeer M., Stähler P., Beier M., et al. Targeted Next-Generation Sequencing for the Molecular Genetic Diagnostics of Cardiomyopathies. Circ. Cardiovasc. Genet. 2011;4:110–122. doi: 10.1161/CIRCGENETICS.110.958322. PubMed DOI
Charron P., Villard E., Sébillon P., Laforêt P., Maisonobe T., Duboscq-Bidot L., Romero N., Drouin-Garraud V., Frébourg T., Richard P., et al. Danon’s disease as a cause of hypertrophic cardiomyopathy: A systematic survey. Heart. 2004;90:842–846. doi: 10.1136/hrt.2003.029504. PubMed DOI PMC
Bernstein H.S., Bishop D.F., Astrin K.H., Kornreich R., Eng C.M., Sakuraba H., Desnick R.J. Fabry disease: Six gene rearrangements and an exonic point mutation in the alpha-galactosidase gene. J. Clin. Investig. 1989;83:1390–1399. doi: 10.1172/JCI114027. PubMed DOI PMC
Martiniuk F., Mehler M., Bodkin M., Tzall S., Hirschhorn K., Zhong N., Hirschhorn R. Identification of a Missense Mutation in an Adult-Onset Patient with Glycogenosis Type II Expressing Only One Allele. DNA Cell Biol. 1991;10:681–687. doi: 10.1089/dna.1991.10.681. PubMed DOI
Martiniuk F., Mehler M., Pellicer A., Tzall S., La Badie G., Hobart C., Ellenbogen A., Hirschhorn R. Isolation of a cDNA for human acid alpha-glucosidase and detection of genetic heterogeneity for mRNA in three alpha-glucosidase-deficient patients. Proc. Natl. Acad. Sci. USA. 1986;83:9641–9644. doi: 10.1073/pnas.83.24.9641. PubMed DOI PMC
Van der Ploeg A.T., Hoefsloot L.H., Hoogeveen-Westerveld M., Petersen E.M., Reuser A.J. Glycogenosis type II: Protein and DNA analysis in five South African families from various ethnic origins. Am. J. Hum. Gen. 1989;44:787–793. PubMed PMC
Genomes Project. [(accessed on 28 August 2021)]. Available online: http://www.internationalgenome.org/
Exome Aggregation Consortium. [(accessed on 28 August 2021)]. Available online: http://exac.broadinstitute.org/
Exome Sequencing Project. [(accessed on 28 August 2021)]. Available online: http://evs.gs.washington.edu/EVS/
ClinVar. [(accessed on 28 August 2021)]; Available online: https://www.ncbi.nlm.nih.gov/clinvar.
Human Gene Mutation Database. [(accessed on 28 August 2021)]. Available online: http://www.hgmd.cf.ac.uk/ac/index.php.
Richards S., Aziz N., Bale S., Bick D., Das S., Gastier-Foster J., Grody W.W., Hegde M., Lyon E., Spector E., et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015;17:405–423. doi: 10.1038/gim.2015.30. PubMed DOI PMC
Lahrouchi N., Raju H., Lodder E.M., Papatheodorou E., Miles C., Ware J.S., Papadakis M., Tadros R., Cole D., Skinner J.R., et al. The yield of postmortem genetic testing in sudden death cases with structural findings at autopsy. Eur. J. Hum. Genet. 2019;28:17–22. doi: 10.1038/s41431-019-0500-8. PubMed DOI PMC
Writing Committee Members. Ommen S.R., Mital S., Burke M.A., Day S.M., Deswal A., Elliott P., Evanovich L.L., Hung J., Joglar J.A., et al. 2020 AHA/ACC Guideline for the Diagnosis and Treatment of Patients with Hypertrophic Cardiomyopathy. Circulation. 2020;142 doi: 10.1161/cir.0000000000000937. PubMed DOI
Cardoso B., Gomes I., Loureiro P., Trigo C., Pinto F.F. Diagnóstico clínico e genético de miocardiopatia hipertrófica familiar: Resultados em cardiologia pediátrica. Rev. Port. Cardiol. 2017;36:155–165. doi: 10.1016/j.repc.2016.09.009. PubMed DOI
Jensen M.K., Havndrup O., Christiansen M., Andersen P.S., Diness B., Axelsson A., Skovby F., Køber L., Bundgaard H. Penetrance of Hypertrophic Cardiomyopathy in Children and Adolescents. Circulation. 2013;127:48–54. doi: 10.1161/CIRCULATIONAHA.111.090514. PubMed DOI
Hershberger R.E., Givertz M.M., Ho C.Y., Judge D., Kantor P.F., McBride K.L., Morales A., Taylor M.R., Vatta M., Ware S.M. Genetic Evaluation of Cardiomyopathy—A Heart Failure Society of America Practice Guideline. J. Card. Fail. 2018;24:281–302. doi: 10.1016/j.cardfail.2018.03.004. PubMed DOI PMC
Moore B., Semsarian C., Chan K.H., Sy R.W. Sudden Cardiac Death and Ventricular Arrhythmias in Hypertrophic Cardiomyopathy. Heart Lung Circ. 2018;28:146–154. doi: 10.1016/j.hlc.2018.07.019. PubMed DOI
Priori S.G., Blomström-Lundqvist C., Mazzanti A., Blom N., Borggrefe M., Camm J., Elliott P., Fitzsimons D., Hatala R., Hindricks G., et al. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Europace. 2015;17:1601–1687. doi: 10.1093/europace/euv319. PubMed DOI
Olivotto I., Girolami F., Ackerman M.J., Nistri S., Bos J.M., Zachara E., Ommen S.R., Theis J.L., Vaubel R.A., Re F., et al. Myofilament Protein Gene Mutation Screening and Outcome of Patients With Hypertrophic Cardiomyopathy. Mayo Clin. Proc. 2008;83:630–638. doi: 10.1016/S0025-6196(11)60890-2. PubMed DOI
Varnava A.M., Elliott P.M., Baboonian C., Davison F., Davies M.J., McKenna W.J. Hypertrophic Cardiomyopathy. Circulation. 2001;104:1380–1384. doi: 10.1161/hc3701.095952. PubMed DOI
Maron B.J., Yeates L., Semsarian C. Clinical Challenges of Genotype Positive (+)–Phenotype Negative (−) Family Members in Hypertrophic Cardiomyopathy. Am. J. Cardiol. 2011;107:604–608. doi: 10.1016/j.amjcard.2010.10.022. PubMed DOI
Ho C.Y. Genetics and Clinical Destiny: Improving Care in Hypertrophic Cardiomyopathy. Circulation. 2010;122:2430–2440. doi: 10.1161/CIRCULATIONAHA.110.978924. PubMed DOI PMC
Maurizi N., Michels M., Rowin E.J., Semsarian C., Girolami F., Tomberli B., Cecchi F., Maron M.S., Olivotto I., Maron B.J. Clinical Course and Significance of Hypertrophic Cardiomyopathy Without Left Ventricular Hypertrophy. Circulation. 2019;139:830–833. doi: 10.1161/CIRCULATIONAHA.118.037264. PubMed DOI
Charron P., Carrier L., Dubourg O., Tesson F., Desnos M., Richard P., Bonne G., Guicheney P., Hainque B., Bouhour J.B., et al. Penetrance of familial hypertrophic cardiomyopathy. Genet. Couns. 1997;8:107–114. PubMed
Bos J.M., Will M.L., Gersh B.J., Kruisselbrink T.M., Ommen S.R., Ackerman M.J. Characterization of a Phenotype-Based Genetic Test Prediction Score for Unrelated Patients With Hypertrophic Cardiomyopathy. Mayo Clin. Proc. 2014;89:727–737. doi: 10.1016/j.mayocp.2014.01.025. PubMed DOI PMC
Bonaventura J., Norambuena P., Tomašov P., Jindrová D., Šedivá H., Jr M.M., Veselka J., Macek M. The utility of the Mayo Score for predicting the yield of genetic testing in patients with hypertrophic cardiomyopathy. Arch. Med Sci. 2019;15:641–649. doi: 10.5114/aoms.2018.78767. PubMed DOI PMC
Andersen P.S., Havndrup O., Hougs L., Sørensen K.M., Jensen M.K., Larsen L.A., Hedley P., Thomsen A., Moolman-Smook J., Christiansen M., et al. Diagnostic yield, interpretation, and clinical utility of mutation screening of sarcomere encoding genes in Danish hypertrophic cardiomyopathy patients and relatives. Hum. Mutat. 2008;30:363–370. doi: 10.1002/humu.20862. PubMed DOI
Van Driest S.L., Ommen S.R., Tajik A.J., Gersh B.J., Ackerman M.J. Yield of Genetic Testing in Hypertrophic Cardiomyopathy. Mayo Clin. Proc. 2005;80:739–744. doi: 10.1016/S0025-6196(11)61527-9. PubMed DOI
Murphy S.L., Anderson J., Kapplinger J.D., Kruisselbrink T.M., Gersh B.J., Ommen S.R., Ackerman M.J., Bos J.M. Evaluation of the Mayo Clinic Phenotype-Based Genotype Predictor Score in Patients with Clinically Diagnosed Hypertrophic Cardiomyopathy. J. Cardiovasc. Transl. Res. 2016;9:153–161. doi: 10.1007/s12265-016-9681-5. PubMed DOI PMC
Page S.P., Kounas S., Syrris P., Christiansen M., Frank-Hansen R., Andersen P.S., Elliott P.M., McKenna W.J. Cardiac Myosin Binding Protein-C Mutations in Families with Hypertrophic Cardiomyopathy. Circ. Cardiovasc. Genet. 2012;5:156–166. doi: 10.1161/CIRCGENETICS.111.960831. PubMed DOI
Seidman C.E., Seidman J. Identifying Sarcomere Gene Mutations in Hypertrophic Cardiomyopathy. Circ. Res. 2011;108:743–750. doi: 10.1161/CIRCRESAHA.110.223834. PubMed DOI PMC
Van Velzen H.G., Vriesendorp P.A., Oldenburg R.A., Van Slegtenhorst M.A., Van Der Velden J., Schinkel A.F., Michels M. Value of Genetic Testing for the Prediction of Long-Term Outcome in Patients with Hypertrophic Cardiomyopathy. Am. J. Cardiol. 2016;118:881–887. doi: 10.1016/j.amjcard.2016.06.038. PubMed DOI
Mathew J., Zahavich L., Lafreniere-Roula M., Wilson J., George K., Benson L., Bowdin S., Mital S. Utility of genetics for risk stratification in pediatric hypertrophic cardiomyopathy. Clin. Genet. 2017;93:310–319. doi: 10.1111/cge.13157. PubMed DOI
Lopes L.R., Brito D., Belo A., Cardim N. Genetic characterization and genotype-phenotype associations in a large cohort of patients with hypertrophic cardiomyopathy—An ancillary study of the Portuguese registry of hypertrophic cardiomyopathy. Int. J. Cardiol. 2018;278:173–179. doi: 10.1016/j.ijcard.2018.12.012. PubMed DOI
Ho C.Y., Day S.M., Ashley E.A., Michels M., Pereira A.C., Jacoby D., Cirino A.L., Fox J.C., Lakdawala N.K., Ware J., et al. Genotype and Lifetime Burden of Disease in Hypertrophic Cardiomyopathy. Circulation. 2018;138:1387–1398. doi: 10.1161/CIRCULATIONAHA.117.033200. PubMed DOI PMC
Bonaventura J., Veselka J. Genetic testing in patients with hypertrophic cardiomyopathy. Vnitrni Lek. 2019;65:652–658. doi: 10.36290/vnl.2019.113. PubMed DOI
Ingles J., Doolan A., Chiu C.L., Seidman J., Seidman C., Semsarian C. Compound and double mutations in patients with hypertrophic cardiomyopathy: Implications for genetic testing and counselling. J. Med. Genet. 2005;42:e59. doi: 10.1136/jmg.2005.033886. PubMed DOI PMC
Blankenburg R., Hackert K., Wurster S., Deenen R., Seidman J., Seidman C.E., Lohse M.J., Schmitt J.P. β-Myosin Heavy Chain Variant Val606Met Causes Very Mild Hypertrophic Cardiomyopathy in Mice, but Exacerbates HCM Phenotypes in Mice Carrying Other HCM Mutations. Circ. Res. 2014;115:227–237. doi: 10.1161/CIRCRESAHA.115.303178. PubMed DOI PMC
Dorn G.W., McNally E.M. Two Strikes and You’re Out. Circ. Res. 2014;115:208–210. doi: 10.1161/CIRCRESAHA.114.304383. PubMed DOI PMC
Whiffin N., Minikel E.V., Walsh R., O’Donnell-Luria A., Karczewski K., Ing A.Y., Barton P., Funke B., A Cook S., MacArthur D., et al. Using high-resolution variant frequencies to empower clinical genome interpretation. Genet. Med. 2017;19:1151–1158. doi: 10.1038/gim.2017.26. PubMed DOI PMC
Whiffin N., Walsh R., Govind R., Edwards M., Ahmad M., Zhang X., Tayal U., Buchan R., Midwinter W., E Wilk A., et al. CardioClassifier: Disease- and gene-specific computational decision support for clinical genome interpretation. Genet. Med. 2018;20:1246–1254. doi: 10.1038/gim.2017.258. PubMed DOI PMC
Baulina N.M., Kiselev I.S., Chumakova O.S., Favorova O.O. Hypertrophic Cardiomyopathy as an Oligogenic Disease: Transcriptomic Arguments. Mol. Biol. 2020;54:840–850. doi: 10.1134/S0026893320060023. PubMed DOI
Aurigemma G.P., de Simone G., Fitzgibbons T. Cardiac Remodeling in Obesity. Circ. Cardiovasc. Imaging. 2013;6:142–152. doi: 10.1161/CIRCIMAGING.111.964627. PubMed DOI
Robertson J., Lindgren M., Schaufelberger M., Adiels M., Björck L., Lundberg C.E., Sattar N., Rosengren A., Aberg M. Body Mass Index in Young Women and Risk of Cardiomyopathy. Circulation. 2020;141:520–529. doi: 10.1161/CIRCULATIONAHA.119.044056. PubMed DOI PMC
Fumagalli C., Maurizi N., Day S.M., Ashley E.A., Michels M., Colan S.D., Jacoby D., Marchionni N., Vincent-Tompkins J., Ho C.Y., et al. Association of Obesity With Adverse Long-term Outcomes in Hypertrophic Cardiomyopathy. JAMA Cardiol. 2020;5:65–68. doi: 10.1001/jamacardio.2019.4268. PubMed DOI PMC
Nollet E.E., Westenbrink B.D., de Boer R.A., Kuster D.W.D., van der Velden J. Unraveling the Genotype-Phenotype Relationship in Hypertrophic Cardiomyopathy: Obesity-Related Cardiac Defects as a Major Disease Modifier. J. Am. Heart Assoc. 2020;9:e018641. doi: 10.1161/JAHA.120.018641. PubMed DOI PMC
Tini G., Autore C., Musumeci B. The Many Faces of Arterial Hypertension in Hypertrophic Cardiomyopathy and Its Phenocopies: Bystander, Consequence, Modifier. High Blood Press. Cardiovasc. Prev. 2021;28:327–329. doi: 10.1007/s40292-021-00458-6. PubMed DOI
Siontis K.C., Ommen S.R., Geske J.B. Sex, Survival, and Cardiomyopathy: Differences Between Men and Women With Hypertrophic Cardiomyopathy. J. Am. Heart Assoc. 2019;8:e014448. doi: 10.1161/JAHA.119.014448. PubMed DOI PMC
Michels M., Soliman O.I., Phefferkorn J., Hoedemaekers Y.M., Kofflard M.J., Dooijes D., Majoor-Krakauer D., Cate F.J.T. Disease penetrance and risk stratification for sudden cardiac death in asymptomatic hypertrophic cardiomyopathy mutation carriers. Eur. Heart J. 2009;30:2593–2598. doi: 10.1093/eurheartj/ehp306. PubMed DOI
Lorenzini M., Norrish G., Field E., Ochoa J.P., Cicerchia M., Akhtar M.M., Syrris P., Lopes L.R., Kaski J.P., Elliott P.M. Penetrance of Hypertrophic Cardiomyopathy in Sarcomere Protein Mutation Carriers. J. Am. Coll. Cardiol. 2020;76:550–559. doi: 10.1016/j.jacc.2020.06.011. PubMed DOI PMC
Geske J.B., Ong K.C., Siontis K.C., Hebl V.B., Ackerman M.J., O Hodge D., Miller V.M., A Nishimura R., Oh J.K., Schaff H., et al. Women with hypertrophic cardiomyopathy have worse survival. Eur. Heart J. 2017;38:3434–3440. doi: 10.1093/eurheartj/ehx527. PubMed DOI PMC
Veselka J., Faber L., Liebregts M., Cooper R., Kashtanov M., Hansen P.R., Bonaventura J., Polakova E., Hansvenclova E., Bundgaard H., et al. Sex-Related Differences in Outcomes of Alcohol Septal Ablation for Hypertrophic Obstructive Cardiomyopathy. JACC Cardiovasc. Interv. 2021;14:1390–1392. doi: 10.1016/j.jcin.2021.03.066. PubMed DOI
Fumagalli C., Olivotto I. The Importance of Sex Differences in Patients With Hypertrophic Cardiomyopathy—Tailoring Management and Future Perspectives. Am. J. Med. Sci. 2020;360:433–434. doi: 10.1016/j.amjms.2020.07.004. PubMed DOI
Wang Y., Zhao H.-W., Wang C.-F., Meng Q.-K., Cui C.-S., Zhang X.-J., Zhu Y., Fan C.-Y., Luo D.-F., Chen B.-J., et al. Gender Disparities in Clinical Outcome After Alcohol Septal Ablation for Hypertrophic Obstructive Cardiomyopathy in the Chinese Han Population: A Cohort Study. Heart Lung Circ. 2020;29:1856–1864. doi: 10.1016/j.hlc.2020.04.014. PubMed DOI
Meghji Z., Nguyen A., Fatima B., Geske J.B., Nishimura R.A., Ommen S.R., Lahr B.D., Dearani J.A., Schaff H.V. Survival Differences in Women and Men After Septal Myectomy for Obstructive Hypertrophic Cardiomyopathy. JAMA Cardiol. 2019;4:237–245. doi: 10.1001/jamacardio.2019.0084. PubMed DOI PMC
Rigopoulos A.G., Ali M., Abate E., Torky A.-R., Matiakis M., Mammadov M., Melnyk H., Vogt A., De Vecchis R., Bigalke B., et al. Advances in the diagnosis and treatment of transthyretin amyloidosis with cardiac involvement. Heart Fail. Rev. 2019;24:521–533. doi: 10.1007/s10741-019-09776-3. PubMed DOI
Maurer M.S., Schwartz J.H., Gundapaneni B., Elliott P., Merlini G., Waddington-Cruz M., Kristen A.V., Grogan M., Witteles R., Damy T., et al. Tafamidis Treatment for Patients with Transthyretin Amyloid Cardiomyopathy. N. Engl. J. Med. 2018;379:1007–1016. doi: 10.1056/NEJMoa1805689. PubMed DOI
Chen Y.-J., Chien C.-S., Chiang C.-E., Chen C.-H., Cheng H.-M. From Genetic Mutations to Molecular Basis of Heart Failure Treatment: An Overview of the Mechanism and Implication of the Novel Modulators for Cardiac Myosin. Int. J. Mol. Sci. 2021;22:6617. doi: 10.3390/ijms22126617. PubMed DOI PMC
Prondzynski M., Mearini G., Carrier L. Gene therapy strategies in the treatment of hypertrophic cardiomyopathy. Pflügers Arch. Eur. J. Physiol. 2018;471:807–815. doi: 10.1007/s00424-018-2173-5. PubMed DOI
Fumagalli C., De Gregorio M.G., Zampieri M., Fedele E., Tomberli A., Chiriatti C., Marchi A., Olivotto I. Targeted Medical Therapies for Hypertrophic Cardiomyopathy. Curr. Cardiol. Rep. 2020;22:1–13. doi: 10.1007/s11886-020-1258-x. PubMed DOI
Sewanan L.R., Jacoby D.L. Novel Myosin-Based Therapies in Hypertrophic Cardiomyopathy. Curr. Treat. Options Cardiovasc. Med. 2021;23:1–12. doi: 10.1007/s11936-021-00921-6. DOI
Jiang J., Wakimoto H., Seidman J.G., Seidman C.E. Allele-Specific Silencing of MutantMyh6Transcripts in Mice Suppresses Hypertrophic Cardiomyopathy. Science. 2013;342:111–114. doi: 10.1126/science.1236921. PubMed DOI PMC
Cannon L., Yu Z.-Y., Marciniec T., Waardenberg A.J., Iismaa S.E., Nikolova-Krstevski V., Neist E., Ohanian M., Qiu M.R., Rainer S., et al. Irreversible Triggers for Hypertrophic Cardiomyopathy Are Established in the Early Postnatal Period. J. Am. Coll. Cardiol. 2015;65:560–569. doi: 10.1016/j.jacc.2014.10.069. PubMed DOI
Hsu P., Lander E.S., Zhang F. Development and Applications of CRISPR-Cas9 for Genome Engineering. Cell. 2014;157:1262–1278. doi: 10.1016/j.cell.2014.05.010. PubMed DOI PMC
Ma H., Marti-Gutierrez N., Park S.-W., Wu J., Lee Y., Suzuki K., Koski A., Jianhui G., Hayama T., Ahmed R., et al. Correction of a pathogenic gene mutation in human embryos. Nat. Cell Biol. 2017;548:413–419. doi: 10.1038/nature23305. PubMed DOI
Maron B.J. Clinical Course and Management of Hypertrophic Cardiomyopathy. N. Engl. J. Med. 2018;379:655–668. doi: 10.1056/NEJMra1710575. PubMed DOI
Ko C., Arscott P., Concannon M., Saberi S., Day S.M., Yashar B.M., Helms A. Genetic testing impacts the utility of prospective familial screening in hypertrophic cardiomyopathy through identification of a nonfamilial subgroup. Genet. Med. 2017;20:69–75. doi: 10.1038/gim.2017.79. PubMed DOI
Ingles J., Burns C., Bagnall R.D., Lam L., Yeates L., Sarina T., Puranik R., Briffa T., Atherton J.J., Driscoll T., et al. Nonfamilial Hypertrophic Cardiomyopathy. Circ. Cardiovasc. Genet. 2017;10 doi: 10.1161/CIRCGENETICS.116.001620. PubMed DOI
Bonaventura J., Norambuena P., Votýpka P., Hnátová H., Adlová R., Macek M., Veselka J., Jr M.M. Patients with hypertrophic obstructive cardiomyopathy after alcohol septal ablation have favorable long-term outcome irrespective of their genetic background. Cardiovasc. Diagn. Ther. 2020;10:193–200. doi: 10.21037/cdt.2020.01.12. PubMed DOI PMC
Gruner C., Ivanov J., Care M., Williams L., Moravsky G., Yang H., Laczay B., Siminovitch K., Woo A., Rakowski H. Toronto Hypertrophic Cardiomyopathy Genotype Score for Prediction of a Positive Genotype in Hypertrophic Cardiomyopathy. Circ. Cardiovasc. Genet. 2013;6:19–26. doi: 10.1161/CIRCGENETICS.112.963363. PubMed DOI
Liang L.W., Fifer M.A., Hasegawa K., Maurer M.S., Reilly M.P., Shimada Y.J. Prediction of Genotype Positivity in Patients with Hypertrophic Cardiomyopathy Using Machine Learning. Circ. Genom. Precis. Med. 2021;14 doi: 10.1161/CIRCGEN.120.003259. PubMed DOI PMC
Aziz A., Musiol S.K., Moody W.E., Pickup L., Cooper R., Lip G.Y.H. Clinical prediction of genotypes in hypertrophic cardiomyopathy: A systematic review. Eur. J. Clin. Investig. 2021:e13593. doi: 10.1111/eci.13593. PubMed DOI
Zhou H., Li L., Liu Z., Zhao K., Chen X., Lu M., Yin G., Song L., Zhao S., Zheng H., et al. Deep learning algorithm to improve hypertrophic cardiomyopathy mutation prediction using cardiac cine images. Eur. Radiol. 2020;31:3931–3940. doi: 10.1007/s00330-020-07454-9. PubMed DOI
Relationship Between Genotype Status and Clinical Outcome in Hypertrophic Cardiomyopathy