• This record comes from PubMed

Carrageenan as an Ecological Alternative of Polyvinylidene Difluoride Binder for Li-S Batteries

. 2021 Sep 26 ; 14 (19) : . [epub] 20210926

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
NATO SPS 985148 North Atlantic Treaty Organization
LTT19001 Ministerstvo Školství, Mládeže a Tělovýchovy
FEKT-S-20-6206 Vysoké Učení Technické v Brně

Lithium-sulfur batteries are one of the most promising battery systems nowadays. However, this system is still not suitable for practical application because of the number of shortcomings that limit its cycle life. One of the main problems related to this system is the volumetric change during cycling. This deficiency can be compensated by using the appropriate binder. In this article, we present the influence of a water-soluble binder carrageenan on the electrochemical properties of the Li-S battery. The electrode with a carrageenan binder provides good stability during cycling and at high C-rates. Electrochemical testing was also carried out with a small prototype pouch cell with a capacity of 16 mAh. This prototype pouch cell with the water-based carrageenan binder showed lower self-discharge and low capacity drop. Capacity decreased by 7% after 70 cycles.

See more in PubMed

Reddy T.B. In: Linden’s Handbook of Batteries. 4th ed. Linden D., editor. McGraw-Hill; New York, NY, USA: 2011.

Kokam_Cell_Brochure_V.4, in Kokam, Kokam, Korea. 2015. [(accessed on 16 August 2019)]. Available online: http://kokam.com/data/Kokam_Cell_Brochure_V.4.pdf.

Nitta N., Wu F., Lee J., Yushin G. Li-ion battery materials: Present and future. Mater. Today. 2015;18:252–264. doi: 10.1016/j.mattod.2014.10.040. DOI

Yoo H., Markevich E., Salitra G., Sharon D., Aurbach D. On the challenge of developing advanced technologies for electrochemical energy storage and conversion. Mater. Today. 2014;17:110–121. doi: 10.1016/j.mattod.2014.02.014. DOI

Li C., Zhang H., Otaegui L., Singh G., Armand M., Rodriguez-Martinez L. Estimation of energy density of Li-S batteries with liquid and solid electrolytes. J. Power Sources. 2016;326:1–5. doi: 10.1016/j.jpowsour.2016.06.109. DOI

Yin Y., Xin S., Guo Y., Wan L. Lithium-Sulfur Batteries: Electrochemistry, Materials, and Prospects. Angew. Chem. 2013;50:13186–13200. doi: 10.1002/anie.201304762. PubMed DOI

Manthiram A., Fu Y., Chung S., Zu C., Su Y. Rechargeable Lithium–Sulfur Batteries. Chem. Rev. 2014;114:11751–11787. doi: 10.1021/cr500062v. PubMed DOI

Wang Y., Huang X., Zhang S., Hou Y. Sulfur Hosts against the Shuttle Effect. Small Methods. 2018;2:1700345. doi: 10.1002/smtd.201700345. DOI

Juhl A., Schneider A., Ufer B., Brezesinski T., Janek J., Fröba M. Mesoporous hollow carbon spheres for lithium–sulfur batteries: Distribution of sulfur and electrochemical performance. Beilstein J. Nanotechnol. 2016;7:1229–1240. doi: 10.3762/bjnano.7.114. PubMed DOI PMC

Li J., Niu Z., Guo C., Li M., Bao W. Catalyzing the polysulfide conversion for promoting lithium sulfur battery performances: A review. J. Energy Chem. 2021;54:434–451. doi: 10.1016/j.jechem.2020.06.009. DOI

Yao H., Yan K., Li W., Zheng G., Kong D., Seh Z., Narasimhan V., Liang Z., Cui Y. Improved lithium–sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode–separator interface. Energy Environ. Sci. 2014;7:3381–3390. doi: 10.1039/C4EE01377H. DOI

Wu F., Zhao S., Chen L., Lu Y., Su Y., Jia Y., Bao L., Wang J., Chen S., Chen R. Metal-organic frameworks composites threaded on the CNT knitted separator for suppressing the shuttle effect of lithium sulfur batteries. Energy Storage Mater. 2018;14:383–391. doi: 10.1016/j.ensm.2018.06.009. DOI

Wang H., Zhang W., Xu J., Guo Z. Advances in Polar Materials for Lithium-Sulfur Batteries. Adv. Funct. Mater. 2018;28:1707520. doi: 10.1002/adfm.201707520. DOI

Assadi M., Fronzi M., Ford M., Shigeta Y. High-performance Na ion cathodes based on the ubiquitous and reversible O redox reaction. J. Mater. Chem. A. 2018;6:24120–24127. doi: 10.1039/C8TA05961F. DOI

Zhang H., Eshetu G., Judez X., Li C., Rodriguez-Martínez L., Armand M. Electrolyte Additives for Lithium Metal Anodes and Rechargeable Lithium Metal Batteries: Progress and Perspectives. Angew. Chem. 2018;130:15220–15246. doi: 10.1002/ange.201712702. PubMed DOI

Pan H., Cheng Z., He P., Zhou H. A Review of Solid-State Lithium–Sulfur Battery: Ion Transport and Polysulfide Chemistry. Energy Fuels. 2020;34:11942–11961. doi: 10.1021/acs.energyfuels.0c02647. DOI

Zhao F., Li Y., Feng W. Recent Advances in Applying Vulcanization/Inverse Vulcanization Methods to Achieve High-Performance Sulfur-Containing Polymer Cathode Materials for Li-S Batteries. Small Methods. 2018;2:6. doi: 10.1002/smtd.201800156. DOI

Lacey M., Jeschull F., Edström K., Brandell D. Porosity Blocking in Highly Porous Carbon Black by PVdF Binder and Its Implications for the Li–S System. J. Phys. Chem. C. 2014;118:25890–25898. doi: 10.1021/jp508137m. DOI

Zhu J., Zhu P., Yan C., Dong X., Zhang X. Recent progress in polymer materials for advanced lithium-sulfur batteries. Prog. Polym. Sci. 2019;90:118–163. doi: 10.1016/j.progpolymsci.2018.12.002. DOI

Cheon S., Cho J., Ko K., Kwon C., Chang D., Kim H., Kim S. Structural Factors of Sulfur Cathodes with Poly(ethylene oxide) Binder for Performance of Rechargeable Lithium Sulfur Batteries. J. Electrochem. Soc. 2002;149:A1437–A1441. doi: 10.1149/1.1511187. DOI

Lacey M., Jeschull F., Edström K., Brandell D. Why PEO as a binder or polymer coating increases capacity in the Li–S system. Chem. Commun. 2013;49:8531–8533. doi: 10.1039/c3cc44772c. PubMed DOI

Nakazawa T., Ikoma A., Kido R., Ueno K., Dokko K., Watanabe M. Effects of compatibility of polymer binders with solvate ionic liquid electrolytes on discharge and charge reactions of lithium-sulfur batteries. J. Power Sources. 2016;307:746–752. doi: 10.1016/j.jpowsour.2016.01.045. DOI

Li Y., Zeng Q., Gentle I., Wang D. Carboxymethyl cellulose binders enable high-rate capability of sulfurized polyacrylonitrile cathodes for Li–S batteries. J. Mater. Chem. A. 2017;5:5460–5465. doi: 10.1039/C7TA00040E. DOI

Al-Baarri A., Legowo A., Rizqiati H., Widayat , Septianingrum A., Sabrina H., Arganis L., Saraswati R., Mochtar R. Application of iota and kappa carrageenans to traditional several food using modified cassava flour. IOP Conf. Ser. Earth Environ. Sci. 2018;102:012056. doi: 10.1088/1755-1315/102/1/012056. DOI

Ling M., Zhang L., Zheng T., Feng J., Guo J., Mai L., Liu G. Nucleophilic substitution between polysulfides and binders unexpectedly stabilizing lithium sulfur battery. Nano Energy. 2017;38:82–90. doi: 10.1016/j.nanoen.2017.05.020. DOI

Chitra R., Sathya P., Selvasekarapandian S., Monisha S., Moniha V., Meyvel S. Synthesis and characterization of iota-carrageenan solid biopolymer electrolytes for electrochemical applications. Ionics. 2019;25:2147–2157. doi: 10.1007/s11581-018-2687-z. DOI

Gao H., Lu Q., Yao Y., Wang X., Wang F. Significantly Raising the Cell Performance of Lithium Sulfur Battery via the Multifunctional Polyaniline Binder. Electrochim. Acta. 2017;232:414–421. doi: 10.1016/j.electacta.2017.02.160. DOI

Cheng M., Liu Y., Guo X., Wu Z., Chen Y., Li J., Li L., Zhong B. A novel binder-sulfonated polystyrene for the sulfur cathode of Li-S batteries. Ionics. 2017;23:2251–2258. doi: 10.1007/s11581-017-2087-9. DOI

Hernández G., Lago N., Shanmukaraj D., Armand M., Mecerreyes D. Polyimide-polyether binders–diminishing the carbon content in lithium sulfur batteries. Mater. Today Energy. 2017;6:264–270. doi: 10.1016/j.mtener.2017.11.001. DOI

Wang H., Sencadas V., Gao G., Gao H., Du A., Liu H., Guo Z. Strong affinity of polysulfide intermediates to multi-functional binder for practical application in lithium–sulfur batteries. Nano Energy. 2016;26:722–728. doi: 10.1016/j.nanoen.2016.06.036. DOI

Godoi F., Wang D., Zeng Q., Wu K., Gentle I. Dependence of LiNO3 decomposition on cathode binders in Li–S batteries. J. Power Sources. 2015;288:13–19. doi: 10.1016/j.jpowsour.2015.04.064. DOI

Lu Y., Li J., Peng X., Zhang T., Deng Y., Wu Z., Deng L., Huang L., Zhou X., Sun S. Achieving high capacity retention in lithium-sulfur batteries with an aqueous binder. Electrochem. Commun. 2016;72:79–82. doi: 10.1016/j.elecom.2016.09.004. DOI

Yang Z., Li R., Deng Z. Polyelectrolyte Binder for Sulfur Cathode To Improve the Cycle Performance and Discharge Property of Lithium–Sulfur Battery. ACS Appl. Mater. Interfaces. 2018;10:13519–13527. doi: 10.1021/acsami.8b01163. PubMed DOI

Chen Y., Liu N., Shao H., Wang W., Gao M., Li C., Zhang H., Wang A., Huang Y. Chitosan as a functional additive for high-performance lithium–sulfur batteries. J. Mater. Chem. A. 2015;3:15235–15240. doi: 10.1039/C5TA03032C. DOI

Zu C., Su Y., Fu Y., Manthiram A. Improved lithium–sulfur cells with a treated carbon paper interlayer. Phys. Chem. Chem. Phys. 2013;15:2291–2297. doi: 10.1039/c2cp43394j. PubMed DOI

Salihoglu O., Demir-Cakan R. Factors Affecting the Proper Functioning of a 3Ah Li-S Pouch Cell. J. Electrochem. Soc. 2017;164:A2948–A2955. doi: 10.1149/2.0271713jes. DOI

Huang X., Xue J., Xiao M., Wang S., Li Y., Zhang S., Meng Y. Comprehensive evaluation of safety performance and failure mechanism analysis for lithium sulfur pouch cells. Energy Storage Mater. 2020;30:87–97. doi: 10.1016/j.ensm.2020.04.035. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...