Joint effects of climate, tree size, and year on annual tree growth derived from tree-ring records of ten globally distributed forests
Language English Country England, Great Britain Media print-electronic
Document type Journal Article
PubMed
34653296
PubMed Central
PMC9298236
DOI
10.1111/gcb.15934
Knihovny.cz E-resources
- Keywords
- Forest Global Earth Observatory (ForestGEO), climate sensitivity, environmental change, generalized least squares (GLS), nonlinear, tree diameter, tree rings,
- MeSH
- Biomass MeSH
- Climate Change * MeSH
- Forests * MeSH
- Climate MeSH
- Temperature MeSH
- Publication type
- Journal Article MeSH
Tree rings provide an invaluable long-term record for understanding how climate and other drivers shape tree growth and forest productivity. However, conventional tree-ring analysis methods were not designed to simultaneously test effects of climate, tree size, and other drivers on individual growth. This has limited the potential to test ecologically relevant hypotheses on tree growth sensitivity to environmental drivers and their interactions with tree size. Here, we develop and apply a new method to simultaneously model nonlinear effects of primary climate drivers, reconstructed tree diameter at breast height (DBH), and calendar year in generalized least squares models that account for the temporal autocorrelation inherent to each individual tree's growth. We analyze data from 3811 trees representing 40 species at 10 globally distributed sites, showing that precipitation, temperature, DBH, and calendar year have additively, and often interactively, influenced annual growth over the past 120 years. Growth responses were predominantly positive to precipitation (usually over ≥3-month seasonal windows) and negative to temperature (usually maximum temperature, over ≤3-month seasonal windows), with concave-down responses in 63% of relationships. Climate sensitivity commonly varied with DBH (45% of cases tested), with larger trees usually more sensitive. Trends in ring width at small DBH were linked to the light environment under which trees established, but basal area or biomass increments consistently reached maxima at intermediate DBH. Accounting for climate and DBH, growth rate declined over time for 92% of species in secondary or disturbed stands, whereas growth trends were mixed in older forests. These trends were largely attributable to stand dynamics as cohorts and stands age, which remain challenging to disentangle from global change drivers. By providing a parsimonious approach for characterizing multiple interacting drivers of tree growth, our method reveals a more complete picture of the factors influencing growth than has previously been possible.
Canadian Forest Service Northern Forestry Centre Edmonton Alberta Canada
Center for Plant Science Innovation University of Nebraska Lincoln USA
Center for Tree Science The Morton Arboretum Lisle Illinois USA
Conservation Ecology Center Smithsonian Conservation Biology Institute Front Royal Virginia USA
Department of Biology Wilfrid Laurier University Waterloo ON Canada
Department of Forestry and Natural Resources Purdue University West Lafayette Indiana USA
Department of Geography Indiana University Bloomington Indiana USA
Faculty of Forestry University of British Columbia Vancouver British Columbia Canada
Forest Ecology and Forest Management Group Wageningen The Netherlands
Forest Global Earth Observatory Smithsonian Tropical Research Institute Panama Republic of Panama
Harvard University Petersham Massachusetts USA
Midwest Dendro LLC Naperville Illinois USA
National Parks Wildlife and Plant Conservation Department Bangkok Thailand
School of Biological Sciences University of Nebraska Lincoln USA
School of Ecosystem and Forest Sciences University of Melbourne Richmond VIC Australia
School of Natural Resources University of Nebraska Lincoln Lincoln Nebraska USA
Smithsonian Environmental Research Center Edgewater Maryland USA
Swiss Federal Institute for Forest Snow and Landscape Research Birmensdorf Switzerland
See more in PubMed
Alexander, M. R. , Pearl, J. K. , Bishop, D. A. , Cook, E. R. , Anchukaitis, K. J. , & Pederson, N. (2019). The potential to strengthen temperature reconstructions in ecoregions with limited tree line using a multispecies approach. Quaternary Research, 92(2), 583–597. 10.1017/qua.2019.33 DOI
Alfaro‐Sánchez, R. , Muller‐Landau, H. C. , Wright, S. J. , & Camarero, J. J. (2017). Growth and reproduction respond differently to climate in three Neotropical tree species. Oecologia, 184(2), 531–541. 10.1007/s00442-017-3879-3 PubMed DOI
Amoroso, M. M. , Daniels, L. , Baker, P. J. , & Camarero, J. J. (Eds.) (2017). Dendroecology: Tree‐Ring Analyses Applied to Ecological Studies. Springer International Publishing. 10.1007/978-3-319-61669-8 DOI
Anderson‐Teixeira, K. J. , Davies, S. J. , Bennett, A. C. , Gonzalez‐Akre, E. B. , Muller‐Landau, H. C. , Joseph Wright, S. , Abu Salim, K. , Almeyda Zambrano, A. M. , Alonso, A. , Baltzer, J. L. , Basset, Y. , Bourg, N. A. , Broadbent, E. N. , Brockelman, W. Y. , Bunyavejchewin, S. , Burslem, D. F. R. P. , Butt, N. , Cao, M. , Cardenas, D. , … Zimmerman, J. (2015). CTFS‐ForestGEO: A worldwide network monitoring forests in an era of global change. Global Change Biology, 21(2), 528–549. 10.1111/gcb.12712 PubMed DOI
Anderson‐Teixeira, K. J. , McGarvey, J. C. , Muller‐Landau, H. C. , Park, J. Y. , Gonzalez‐Akre, E. B. , Herrmann, V. , Bennett, A. C. , So, C. V. , Bourg, N. A. , Thompson, J. R. , McMahon, S. M. , & McShea, W. J. (2015). Size‐related scaling of tree form and function in a mixed‐age forest. Functional Ecology, 29(12), 1587–1602. 10.1111/1365-2435.12470 DOI
Arora, V. K. , Katavouta, A. , Williams, R. G. , Jones, C. D. , Brovkin, V. , Friedlingstein, P. , Schwinger, J. , Bopp, L. , Boucher, O. , Cadule, P. , Chamberlain, M. A. , Christian, J. R. , Delire, C. , Fisher, R. A. , Hajima, T. , Ilyina, T. , Joetzjer, E. , Kawamiya, M. , Koven, C. D. , … Ziehn, T. (2020). Carbon‐concentration and carbon‐climate feedbacks in CMIP6 models and their comparison to CMIP5 models. Biogeosciences, 17(16), 4173–4222. 10.5194/bg-17-4173-2020 DOI
Aubry‐Kientz, M. , Rossi, V. , Boreux, J.‐J. , & Hérault, B. (2015). A joint individual‐based model coupling growth and mortality reveals that tree vigor is a key component of tropical forest dynamics. Ecology and Evolution, 5(12), 2457–2465. 10.1002/ece3.1532 PubMed DOI PMC
Babst, F. , Bodesheim, P. , Charney, N. , Friend, A. D. , Girardin, M. P. , Klesse, S. , Moore, D. J. P. , Seftigen, K. , Björklund, J. , Bouriaud, O. , Dawson, A. , DeRose, R. J. , Dietze, M. C. , Eckes, A. H. , Enquist, B. , Frank, D. C. , Mahecha, M. D. , Poulter, B. , Record, S. , … Evans, M. E. K. (2018). When tree rings go global: Challenges and opportunities for retro‐ and prospective insight. Quaternary Science Reviews, 197, 1–20. 10.1016/j.quascirev.2018.07.009 DOI
Babst, F. , Bouriaud, O. , Poulter, B. , Trouet, V. , Girardin, M. P. , & Frank, D. C. (2019). Twentieth century redistribution in climatic drivers of global tree growth. Science Advances, 5(1), eaat4313. 10.1126/sciadv.aat4313 PubMed DOI PMC
Baltzer, J. L. , Veness, T. , Chasmer, L. E. , Sniderhan, A. E. , & Quinton, W. L. (2014). Forests on thawing permafrost: Fragmentation, edge effects, and net forest loss. Global Change Biology, 20(3), 824–834. 10.1111/gcb.12349 PubMed DOI
Belmecheri, S. , Maxwell, R. S. , Taylor, A. H. , Davis, K. J. , Guerrieri, R. , Moore, D. J. P. , & Rayback, S. A. (2021). Precipitation alters the CO2 effect on water‐use efficiency of temperate forests. Global Change Biology, 27(8), 1560–1571. 10.1111/gcb.15491 PubMed DOI
Bennett, A. C. , McDowell, N. G. , Allen, C. D. , & Anderson‐Teixeira, K. J. (2015). Larger trees suffer most during drought in forests worldwide. Nature Plants, 1(10), 15139. 10.1038/nplants.2015.139 PubMed DOI
Biondi, F. , & Qeadan, F. (2008). A theory‐driven approach to tree‐ring standardization: Defining the biological trend from expected basal area increment. Tree‐Ring Research, 64(2), 81–96. 10.3959/2008-6.1 DOI
Birch, J. D. , DeRose, R. J. , & Lutz, J. A. (2020a). Birch ‐ Cedar Breaks National Monument ‐ ABBI ‐ ITRDB UT545. NOAA NCDC. https://www.ncdc.noaa.gov/paleo‐search/study/31994
Birch, J. D. , DeRose, R. J. , & Lutz, J. A. (2020b). Birch ‐ Cedar Breaks National Monument ‐ PCEN ‐ ITRDB UT546. NOAA NCDC. https://www.ncdc.noaa.gov/paleo‐search/study/31995
Birch, J. D. , DeRose, R. J. , & Lutz, J. A. (2020c). Birch ‐ Cedar Breaks National Monument ‐ PIFL ‐ ITRDB UT547. NOAA NCDC. https://www.ncdc.noaa.gov/paleo‐search/study/31996
Birch, J. D. , DeRose, R. J. , & Lutz, J. A. (2020d). Birch ‐ Cedar Breaks National Monument ‐ PSME ‐ ITRDB UT548. NOAA NCDC. https://www.ncdc.noaa.gov/paleo‐search/study/31997
Bourg, N. A. , McShea, W. J. , Thompson, J. R. , McGarvey, J. C. , & Shen, X. (2013). Initial census, woody seedling, seed rain, and stand structure data for the SCBI SIGEO Large Forest Dynamics Plot: Ecological Archives E094–195. Ecology, 94(9), 2111–2112. 10.1890/13-0010.1 DOI
Bowman, D. M. J. S. , Brienen, R. J. W. , Gloor, E. , Phillips, O. L. , & Prior, L. D. (2013). Detecting trends in tree growth: Not so simple. Trends in Plant Science, 18(1), 11–17. 10.1016/j.tplants.2012.08.005 PubMed DOI
Bräker, O. U. (2002). Measuring and data processing in tree‐ring research a methodological introduction. Dendrochronologia, 20(1), 203–216. 10.1078/1125-7865-00017 DOI
Brienen, R. J. W. , Gloor, E. , & Zuidema, P. A. (2012). Detecting evidence for CO2 fertilization from tree ring studies: The potential role of sampling biases. Global Biogeochemical Cycles, 26(1), GB1025. 10.1029/2011GB004143 DOI
Brienen, R. J. W. , Gloor, M. , & Ziv, G. (2017). Tree demography dominates long‐term growth trends inferred from tree rings. Global Change Biology, 23(2), 474–484. 10.1111/gcb.13410 PubMed DOI PMC
Bumann, E. , Awada, T. , Wardlow, B. , Hayes, M. , Okalebo, J. , Helzer, C. , Mazis, A. , Hiller, J. , & Cherubini, P. (2019). Assessing responses of Betula Papyrifera to climate variability in a remnant population along the Niobrara River Valley in Nebraska, U.S.A., Through dendroecological and remote‐sensing techniques. Canadian Journal of Forest Research, 49(5), 423–433. 10.1139/cjfr-2018-0206 DOI
Buntgen, U. , Tegel, W. , Nicolussi, K. , McCormick, M. , Frank, D. , Trouet, V. , Kaplan, J. O. , Herzig, F. , Heussner, K.‐U. , Wanner, H. , Luterbacher, J. , & Esper, J. (2011). 2500 years of european climate variability and human susceptibility. Science, 331(6017), 578–582. 10.1126/science.1197175 PubMed DOI
Cailleret, M. , Jansen, S. , Robert, E. M. R. , Desoto, L. , Aakala, T. , Antos, J. A. , Beikircher, B. , Bigler, C. , Bugmann, H. , Caccianiga, M. , Čada, V. , Camarero, J. J. , Cherubini, P. , Cochard, H. , Coyea, M. R. , Čufar, K. , Das, A. J. , Davi, H. , Delzon, S. , … Martínez‐Vilalta, J. (2017). A synthesis of radial growth patterns preceding tree mortality. Global Change Biology, 23(4), 1675–1690. 10.1111/gcb.13535 PubMed DOI
Cherubini, P. , Dobbertin, M. , & Innes, J. L. (1998). Potential sampling bias in long‐term forest growth trends reconstructed from tree rings: A case study from the Italian Alps. Forest Ecology and Management, 109(1), 103–118. 10.1016/S0378-1127(98)00242-4 DOI
Clark, J. S. , Bell, D. M. , Hersh, M. H. , Kwit, M. C. , Moran, E. , Salk, C. , Stine, A. , Valle, D. , & Zhu, K. (2011). Individual‐scale variation, species‐scale differences: Inference needed to understand diversity: Individual‐scale variation, species‐scale differences. Ecology Letters, 14(12), 1273–1287. 10.1111/j.1461-0248.2011.01685.x PubMed DOI
Clark, J. S. , Mohan, J. , Dietze, M. , & Ibanez, I. (2003). Coexistence: How to identify trophic trade‐offs. Ecology, 84(1), 17–31. 10.1890/0012-9658(2003)084[0017:CHTITT]2.0.CO;2 DOI
Collalti, A. , Ibrom, A. , Stockmarr, A. , Cescatti, A. , Alkama, R. , Fernández‐Martínez, M. , Matteucci, G. , Sitch, S. , Friedlingstein, P. , Ciais, P. , Goll, D. S. , Nabel, J. E. M. S. , Pongratz, J. , Arneth, A. , Haverd, V. , & Prentice, I. C. (2020). Forest production efficiency increases with growth temperature. Nature Communications, 11(1), 5322. 10.1038/s41467-020-19187-w PubMed DOI PMC
Cook, E. R. (1985). A Time Series Analysis Approach to Tree Ring Standardization: Vol. PhD [PhD thesis]. University of Arizona.
Cook, E. R. , & Peters, K. (1997). Calculating unbiased tree‐ring indices for the study of climatic and environmental change. The Holocene, 7(3), 361–370. 10.1177/095968369700700314 DOI
Davies, S. J. , Abiem, I. , Abu Salim, K. , Aguilar, S. , Allen, D. , Alonso, A. , Anderson‐Teixeira, K. , Andrade, A. , Arellano, G. , Ashton, P. S. , Baker, P. J. , Baker, M. E. , Baltzer, J. L. , Basset, Y. , Bissiengou, P. , Bohlman, S. , Bourg, N. A. , Brockelman, W. Y. , Bunyavejchewin, S. , … Zuleta, D. (2021). ForestGEO: Understanding forest diversity and dynamics through a global observatory network. Biological Conservation, 253, 108907. 10.1016/j.biocon.2020.108907 DOI
Davis, S. C. , Hessl, A. E. , Scott, C. J. , Adams, M. B. , & Thomas, R. B. (2009). Forest carbon sequestration changes in response to timber harvest. Forest Ecology and Management, 258(9), 2101–2109. 10.1016/j.foreco.2009.08.009 DOI
Dearborn, K. D. , Wallace, C. A. , Patankar, R. , & Baltzer, J. L. (2020). Permafrost thaw in boreal peatlands is rapidly altering forest community composition. Journal of Ecology, 109(3), 1452–1467. 10.1111/1365-2745.13569 DOI
DeLucia, E. H. , Drake, J. , Thomas, R. B. , & Gonzalez‐Meler, M. A. (2007). Forest carbon use efficiency: Is respiration a constant fraction of gross primary production? Global Change Biology, 13, 1157–1167. 10.1111/j.1365-2486.2007.01365.x DOI
DeSoto, L. , Cailleret, M. , Sterck, F. , Jansen, S. , Kramer, K. , Robert, E. M. R. , Aakala, T. , Amoroso, M. M. , Bigler, C. , Camarero, J. J. , Čufar, K. , Gea‐Izquierdo, G. , Gillner, S. , Haavik, L. J. , Hereş, A.‐M. , Kane, J. M. , Kharuk, V. I. , Kitzberger, T. , Klein, T. , … Martínez‐Vilalta, J. (2020). Low growth resilience to drought is related to future mortality risk in trees. Nature Communications, 11(1), 10.1038/s41467-020-14300-5 PubMed DOI PMC
Disney, M. , Burt, A. , Wilkes, P. , Armston, J. , & Duncanson, L. (2020). New 3D measurements of large redwood trees for biomass and structure. Scientific Reports, 10(1), 16721. PubMed PMC
Duchesne, L. , Houle, D. , Ouimet, R. , Caldwell, L. , Gloor, M. , & Brienen, R. (2019). Large apparent growth increases in boreal forests inferred from tree‐rings are an artefact of sampling biases. Scientific Reports, 9(1), 6832. 10.1038/s41598-019-43243-1 PubMed DOI PMC
Dye, A. , Barker Plotkin, A. , Bishop, D. , Pederson, N. , Poulter, B. , & Hessl, A. (2016). Comparing tree‐ring and permanent plot estimates of aboveground net primary production in three eastern U.S. forests. Ecosphere, 7(9), e01454. 10.1002/ecs2.1454 DOI
Elling, W. , Dittmar, C. , Pfaffelmoser, K. , & Rötzer, T. (2009). Dendroecological assessment of the complex causes of decline and recovery of the growth of silver fir (Abies alba Mill.) In Southern Germany. Forest Ecology and Management, 257(4), 1175–1187. 10.1016/j.foreco.2008.10.014 DOI
Evans, M. E. K. , Falk, D. A. , Arizpe, A. , Swetnam, T. L. , Babst, F. , & Holsinger, K. E. (2017). Fusing tree‐ring and forest inventory data to infer influences on tree growth. Ecosphere, 8(7), e01889. 10.1002/ecs2.1889 DOI
Finzi, A. C. , Giasson, M.‐A. , Barker Plotkin, A. A. , Aber, J. D. , Boose, E. R. , Davidson, E. A. , Dietze, M. C. , Ellison, A. M. , Frey, S. D. , Goldman, E. , Keenan, T. F. , Melillo, J. M. , Munger, J. W. , Nadelhoffer, K. J. , Ollinger, S. V. , Orwig, D. A. , Pederson, N. , Richardson, A. D. , Savage, K. , … Foster, D. R. (2020). Carbon budget of the Harvard Forest Long‐Term Ecological Research site: Pattern, process, and response to global change. Ecological Monographs, 90(4), e01423. 10.1002/ecm.1423 DOI
Forrester, D. I. (2021). Does individual‐tree biomass growth increase continuously with tree size? Forest Ecology and Management, 481, 118717. 10.1016/j.foreco.2020.118717 DOI
Foster, J. R. , Finley, A. O. , D’Amato, A. W. , Bradford, J. B. , & Banerjee, S. (2016). Predicting tree biomass growth in the temperate‐ boreal ecotone: Is tree size, age, competition, or climate response most important? Global Change Biology, 22(6), 2138–2151. 10.1111/gcb.13208 PubMed DOI
Fritts, H. C. (1976). Tree rings and climate. Academic Press. https://www.elsevier.com/books/tree‐rings‐and‐climate/fritts/978‐0‐12‐268450‐0
Fritts, H. C. , & Swetnam, T. W. (1989). Dendroecology: A tool for evaluating variations in past and present forest environments. In Begon M., Fitter A. H., Ford E. D., & MacFadyen A. (Eds.), Advances in Ecological Research, Vol. 19 (pp. 111–188). Academic Press. 10.1016/S0065-2504(08)60158-0 DOI
Furniss, T. J. , Larson, A. J. , & Lutz, J. A. (2017). Reconciling niches and neutrality in a subalpine temperate forest. Ecosphere, 8(6), 10.1002/ecs2.1847 DOI
Germain, S. J. , & Lutz, J. A. (2020). Climate extremes may be more important than climate means when predicting species range shifts. Climatic Change, 163(1), 579–598. 10.1007/s10584-020-02868-2 DOI
Gillerot, L. , Forrester, D. I. , Bottero, A. , Rigling, A. , & Lévesque, M. (2020). Tree neighbourhood diversity has negligible effects on drought resilience of European beech, silver fir and Norway spruce. Ecosystems, 24(1), 20–36. 10.1007/s10021-020-00501-y DOI
Girardin, M. P. , Bouriaud, O. , Hogg, E. H. , Kurz, W. , Zimmermann, N. E. , Metsaranta, J. M. , de Jong, R. , Frank, D. C. , Esper, J. , Büntgen, U. , Guo, X. J. , & Bhatti, J. (2016). No growth stimulation of Canada’s boreal forest under half‐century of combined warming and CO2 fertilization. Proceedings of the National Academy of Sciences, 201610156. 10.1073/pnas.1610156113 PubMed DOI PMC
Gonzalez‐Akre, E. , Piponiot, C. , Lepore, M. , Herrmann, V. , Lutz, J. A. , Baltzer, J. L. , Dick, C. , Gilbert, G. S. , He, F. , Heym, M. , Huerta, A. I. , Jansen, P. , Johnson, D. J. , Knapp, N. , Kral, K. , Lin, D. , Malhi, Y. , McMahon, S. M. , Myers, J. A. , … Anderson‐Teixeira, K. J. (2021). allodb: An R package for biomass estimation at globally distributed extratropical forest plots. Methods in Ecology and Evolution. In press.
Goodman, R. C. , Phillips, O. L. , & Baker, T. R. (2014). The importance of crown dimensions to improve tropical tree biomass estimates. Ecological Applications, 24(4), 680–698. 10.1890/13-0070.1 PubMed DOI
Goulden, M. L. , McMillan, A. M. S. , Winston, G. C. , Rocha, A. V. , Manies, K. L. , Harden, J. W. , & Bond‐Lamberty, B. P. (2011). Patterns of NPP, GPP, respiration, and NEP during boreal forest succession. Global Change Biology, 17(2), 855–871. 10.1111/j.1365-2486.2010.02274.x DOI
Graumlich, L. J. , Brubaker, L. B. , & Grier, C. C. (1989). Long‐term trends in forest net primary productivity: Cascade Mountains, Washington. Ecology, 70(2), 405–410. 10.2307/1937545 DOI
Groenendijk, P. , van der Sleen, P. , Vlam, M. , Bunyavejchewin, S. , Bongers, F. , & Zuidema, P. A. (2015). No evidence for consistent long‐term growth stimulation of 13 tropical tree species: Results from tree‐ring analysis. Global Change Biology, 21(10), 3762–3776. 10.1111/gcb.12955 PubMed DOI
Hacket‐Pain, A. J. , Cavin, L. , Friend, A. D. , & Jump, A. S. (2016). Consistent limitation of growth by high temperature and low precipitation from range core to southern edge of European beech indicates widespread vulnerability to changing climate. European Journal of Forest Research, 135(5), 897–909. 10.1007/s10342-016-0982-7 DOI
Hararuk, O. , Campbell, E. M. , Antos, J. A. , & Parish, R. (2019). Tree rings provide no evidence of a CO 2 fertilization effect in old‐growth subalpine forests of western Canada. Global Change Biology, 25(4), 1222–1234. 10.1111/gcb.14561 PubMed DOI
Harris, I. , Jones, P. D. , Osborn, T. J. , & Lister, D. H. (2014). Updated high‐resolution grids of monthly climatic observations ‐ The CRU TS3.10 Dataset. International Journal of Climatology, 34(3), 623–642. 10.1002/joc.3711 DOI
Harris, I. , Osborn, T. J. , Jones, P. , & Lister, D. (2020). Version 4 of the CRU TS monthly high‐resolution gridded multivariate climate dataset. Scientific Data, 7(1), 10.1038/s41597-020-0453-3 PubMed DOI PMC
Helcoski, R. , Tepley, A. J. , Pederson, N. , McGarvey, J. C. , Meakem, V. , Herrmann, V. , Thompson, J. R. , & Anderson‐Teixeira, K. J. (2019). Growing season moisture drives interannual variation in woody productivity of a temperate deciduous forest. New Phytologist, 223(3), 1204–1216. 10.1111/nph.15906 PubMed DOI
Hember, R. A. , Kurz, W. A. , & Girardin, M. P. (2019). Tree ring reconstructions of stemwood biomass indicate increases in the growth rate of black spruce trees across boreal forests of Canada. Journal of Geophysical Research: Biogeosciences, 124(8), 2460–2480. 10.1029/2018JG004573 DOI
Humphrey, V. , Berg, A. , Ciais, P. , Gentine, P. , Jung, M. , Reichstein, M. , Seneviratne, S. I. , & Frankenberg, C. (2021). Soil moisture atmosphere feedback dominates land carbon uptake variability. Nature, 592(7852), 65–69. 10.1038/s41586-021-03325-5 PubMed DOI PMC
IPCC . (2021). Climate change 2014: Impacts, adaptation, and vulnerability: Working Group II contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change [Masson‐Delmotte V., Zhai P., Pirani A., Connors S. L., Péan C., Berger S., Caud N., Chen Y., Goldfarb L., Gomis M. I., Huang M., Leitzell K., Lonnoy E., Matthews J. B. R., Maycock T. K., Waterfield T., Yelekçi O., Yu R., & Zhou B. (Eds.)]. Cambridge University Press. In press. https://www.ipcc.ch/report/sixth‐assessment‐report‐working‐group‐i/
Keenan, T. F. , Gray, J. , Friedl, M. A. , Toomey, M. , Bohrer, G. , Hollinger, D. Y. , Munger, J. W. , O’Keefe, J. , Schmid, H. P. , Wing, I. S. , Yang, B. , & Richardson, A. D. (2014). Net carbon uptake has increased through warming‐induced changes in temperate forest phenology. Nature Climate Change, 4(7), 598–604. 10.1038/nclimate2253 DOI
Klesse, S. , DeRose, R. J. , Guiterman, C. H. , Lynch, A. M. , O’Connor, C. D. , Shaw, J. D. , & Evans, M. E. K. (2018). Sampling bias overestimates climate change impacts on forest growth in the southwestern United States. Nature Communications, 9(1), 5336. 10.1038/s41467-018-07800-y PubMed DOI PMC
Klesse, S. , von Arx, G. , Gossner, M. M. , Hug, C. , Rigling, A. , & Queloz, V. (2021). Amplifying feedback loop between growth and wood anatomical characteristics of Fraxinus excelsior explains size‐related susceptibility to ash dieback. Tree Physiology, 41, 683–696. 10.1093/treephys/tpaa091 PubMed DOI
Kumarathunge, D. P. , Medlyn, B. E. , Drake, J. E. , Tjoelker, M. G. , Aspinwall, M. J. , Battaglia, M. , Cano, F. J. , Carter, K. R. , Cavaleri, M. A. , Cernusak, L. A. , Chambers, J. Q. , Crous, K. Y. , De Kauwe, M. G. , Dillaway, D. N. , Dreyer, E. , Ellsworth, D. S. , Ghannoum, O. , Han, Q. , Hikosaka, K. , … Way, D. A. (2019). Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale. New Phytologist, 222(2), 768–784. 10.1111/nph.15668 PubMed DOI
Levesque, M. , Andreu‐Hayles, L. , & Pederson, N. (2017). Water availability drives gas exchange and growth of trees in northeastern US, not elevated CO2 and reduced acid deposition. Scientific Reports, 7, 46158. 10.1038/srep46158 PubMed DOI PMC
López, J. , Way, D. A. , & Sadok, W. (2021). Systemic effects of rising atmospheric vapor pressure deficit on plant physiology and productivity. Global Change Biology, 27(9), 1704–1720. 10.1111/gcb.15548 PubMed DOI PMC
Lorimer, C. G. , & Frelich, L. E. (1989). A methodology for estimating canopy disturbance frequency and intensity in dense temperate forests. Canadian Journal of Forest Research, 19(5), 651–663. 10.1139/x89-102 DOI
Lorimer, C. G. , Frelich, L. E. , & Nordheim, E. V. (1988). Estimating gap origin probabilities for canopy trees. Ecology, 69(3), 778–785. 10.2307/1941026 DOI
Lutz, J. A. , van Wagtendonk, J. W. , & Franklin, J. F. (2009). Twentieth‐century decline of large‐diameter trees in Yosemite National Park, California, USA. Forest Ecology and Management, 257(11), 12. 10.1016/j.foreco.2009.03.009 DOI
Mathias, J. M. , & Thomas, R. B. (2018). Disentangling the effects of acidic air pollution, atmospheric CO2, and climate change on recent growth of red spruce trees in the Central Appalachian Mountains. Global Change Biology, 24(9), 3938–3953. 10.1111/gcb.14273 PubMed DOI
Maxwell, J. T. , Harley, G. L. , Mandra, T. E. , Yi, K. , Kannenberg, S. A. , Au, T. F. , Robeson, S. M. , Pederson, N. , Sauer, P. E. , & Novick, K. A. (2019). Higher CO2 concentrations and lower acidic deposition have not changed drought response in tree growth but do influence iWUE in hardwood trees in the Midwestern United States. Journal of Geophysical Research: Biogeosciences, 124(12), 3798–3813. 10.1029/2019JG005298 DOI
Maxwell, J. T. , Harley, G. L. , & Robeson, S. M. (2016). On the declining relationship between tree growth and climate in the Midwest United States: The fading drought signal. Climatic Change, 138(1–2), 127–142. 10.1007/s10584-016-1720-3 DOI
McDowell, N. G. , Allen, C. D. , Anderson‐Teixeira, K. , Aukema, B. H. , Bond‐Lamberty, B. , Chini, L. , Clark, J. S. , Dietze, M. , Grossiord, C. , Hanbury‐Brown, A. , Hurtt, G. C. , Jackson, R. B. , Johnson, D. J. , Kueppers, L. , Lichstein, J. W. , Ogle, K. , Poulter, B. , Pugh, T. A. M. , Seidl, R. , … Xu, C. (2020). Pervasive shifts in forest dynamics in a changing world. Science, 368(6494), 10.1126/science.aaz9463 PubMed DOI
McGregor, I. R. , Helcoski, R. , Kunert, N. , Tepley, A. J. , Gonzalez‐Akre, E. B. , Herrmann, V. , Zailaa, J. , Stovall, A. E. L. , Bourg, N. A. , McShea, W. J. , Pederson, N. , Sack, L. , & Anderson‐Teixeira, K. J. (2021). Tree height and leaf drought tolerance traits shape growth responses across droughts in a temperate broadleaf forest. New Phytologist, 231(2), 601–616. 10.1111/nph.16996 PubMed DOI
Meakem, V. , Tepley, A. J. , Gonzalez‐Akre, E. B. , Herrmann, V. , Muller‐Landau, H. C. , Wright, S. J. , Hubbell, S. P. , Condit, R. , & Anderson‐Teixeira, K. J. (2018). Role of tree size in moist tropical forest carbon cycling and water deficit responses. New Phytologist, 219(3), 947–958. 10.1111/nph.14633 PubMed DOI
Meko, D. M. , Touchan, R. , & Anchukaitis, K. J. (2011). Seascorr: A MATLAB program for identifying the seasonal climate signal in an annual tree‐ring time series. Computers & Geosciences, 37(9), 1234–1241. 10.1016/j.cageo.2011.01.013 DOI
Muller‐Landau, H. C. , Condit, R. S. , Chave, J. , Thomas, S. C. , Bohlman, S. A. , Bunyavejchewin, S. , Davies, S. , Foster, R. , Gunatilleke, S. , Gunatilleke, N. , Harms, K. E. , Hart, T. , Hubbell, S. P. , Itoh, A. , Kassim, A. R. , LaFrankie, J. V. , Lee, H. S. , Losos, E. , Makana, J.‐R. , … Ashton, P. (2006). Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecology Letters, 9(5), 575–588. 10.1111/j.1461-0248.2006.00904.x PubMed DOI
Naimi, B. , Hamm, N. A. S. , Groen, T. A. , Skidmore, A. K. , & Toxopeus, A. G. (2014). Where is positional uncertainty a problem for species distribution modelling? Ecography, 37(2), 191–203. 10.1111/j.1600-0587.2013.00205.x DOI
Nehrbass‐Ahles, C. , Babst, F. , Klesse, S. , Nötzli, M. , Bouriaud, O. , Neukom, R. , Dobbertin, M. , & Frank, D. (2014). The influence of sampling design on tree‐ring‐based quantification of forest growth. Global Change Biology, 20(9), 2867–2885. 10.1111/gcb.12599 PubMed DOI
Nock, C. A. , Baker, P. J. , Wanek, W. , Leis, A. , Grabner, M. , Bunyavejchewin, S. , & Hietz, P. (2011). Long‐term increases in intrinsic water‐use efficiency do not lead to increased stem growth in a tropical monsoon forest in western Thailand. Global Change Biology, 17(2), 1049–1063. 10.1111/j.1365-2486.2010.02222.x DOI
Novick, K. A. , Ficklin, D. L. , Stoy, P. C. , Williams, C. A. , Bohrer, G. , Oishi, A. C. , Papuga, S. A. , Blanken, P. D. , Noormets, A. , Sulman, B. N. , Scott, R. L. , Wang, L. , & Phillips, R. P. (2016). The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nature Climate Change, 6(11), 1023–1027. 10.1038/nclimate3114 DOI
Oliver, C. D. , & Larson, B. C. (1996). Forest stand dynamics, update edition. Yale School of the Environment Other Publications. https://elischolar.library.yale.edu/fes_pubs/1/
Peters, R. L. , Groenendijk, P. , Vlam, M. , & Zuidema, P. A. (2015). Detecting long‐term growth trends using tree rings: A critical evaluation of methods. Global Change Biology, 21(5), 2040–2054. 10.1111/gcb.12826 PubMed DOI
Pinheiro, J. , Bates, D. , DebRoy, S. , Sarkar, D. , Heisterkamp, S. , Van Willigen, B. , Ranke, J. , EISPACK authors , & R‐core . (2021). Nlme: Linear and nonlinear mixed effects models. https://svn.r‐project.org/R‐packages/trunk/nlme/
Piovesan, G. , Biondi, F. , Baliva, M. , De Vivo, G. , Marchianò, V. , Schettino, A. , & Di Filippo, A. (2019). Lessons from the wild: Slow but increasing long‐term growth allows for maximum longevity in European beech. Ecology, 100(9), 10.1002/ecy.2737 PubMed DOI
Pregitzer, K. S. , & Euskirchen, E. S. (2004). Carbon cycling and storage in world forests: Biome patterns related to forest age. Global Change Biology, 10(12), 2052–2077. 10.1111/j.1365-2486.2004.00866.x DOI
Pretzsch, H. , Schütze, G. , & Biber, P. (2018). Drought can favour the growth of small in relation to tall trees in mature stands of Norway spruce and European beech. Forest Ecosystems, 5(1), 20. 10.1186/s40663-018-0139-x DOI
Qiu, T. , Aravena, M.‐C. , Andrus, R. , Ascoli, D. , Bergeron, Y. , Berretti, R. , Bogdziewicz, M. , Boivin, T. , Bonal, R. , Caignard, T. , Calama, R. , Camarero, J. J. , Clark, C. J. , Courbaud, B. , Delzon, S. , Calderon, S. D. , Farfan‐Rios, W. , Gehring, C. A. , Gilbert, G. S. , & Clark, J. S. (2021). Is there tree senescence? The fecundity evidence. Proceedings of the National Academy of Sciences, 118(34), e2106130118–10.1073/pnas.2106130118 PubMed DOI PMC
Rayback, S. A. , Duncan, J. A. , Schaberg, P. G. , Kosiba, A. M. , Hansen, C. F. , & Murakami, P. F. (2020). The DendroEcological Network: A cyberinfrastructure for the storage, discovery and sharing of tree‐ring and associated ecological data. Dendrochronologia, 60, 125678. 10.1016/j.dendro.2020.125678 DOI
Réjou‐Méchain, M. , Tanguy, A. , Piponiot, C. , Chave, J. , & Hérault, B. (2017). Biomass: An R package for estimating above‐ground biomass and its uncertainty in tropical forests. Methods in Ecology and Evolution, 8(9), 1163–1167. 10.1111/2041-210X.12753 DOI
Rollinson, C. R. , Alexander, M. R. , Dye, A. W. , Moore, D. J. P. , Pederson, N. , & Trouet, V. (2021). Climate sensitivity of understory trees differs from overstory trees in temperate mesic forests. Ecology, 102(3), e03264, 10.1002/ecy.3264 PubMed DOI
Rossi, S. , Deslauriers, A. , Anfodillo, T. , & Carrer, M. (2007). Age‐dependent xylogenesis in timberline conifers. New Phytologist, 177(1), 199–208. 10.1111/j.1469-8137.2007.02235.x PubMed DOI
Rozendaal, D. M. A. , & Zuidema, P. A. (2011). Dendroecology in the tropics: A review. Trees, 25(1), 3–16. 10.1007/s00468-010-0480-3 DOI
Šamonil, P. , Doleželová, P. , Vašíčková, I. , Adam, D. , Valtera, M. , Král, K. , Janík, D. , & Šebková, B. (2013). Individual‐based approach to the detection of disturbance history through spatial scales in a natural beech‐dominated forest. Journal of Vegetation Science, 24(6), 1167–1184. 10.1111/jvs.12025 DOI
Šamonil, P. , & Vrška, T. (2008). Long‐term vegetation dynamics in the Šumava Mts. Natural spruce‐fir‐beech Forests. Plant Ecology, 196(2), 197–214. 10.1007/s11258-007-9345-2 DOI
Sánchez‐Salguero, R. , Linares, J. C. , Camarero, J. J. , Madrigal‐González, J. , Hevia, A. , Sánchez‐Miranda, Á. , Ballesteros‐Cánovas, J. A. , Alfaro‐Sánchez, R. , García‐Cervigón, A. I. , Bigler, C. , & Rigling, A. (2015). Disentangling the effects of competition and climate on individual tree growth: A retrospective and dynamic approach in Scots pine. Forest Ecology and Management, 358, 12–25. 10.1016/j.foreco.2015.08.034 DOI
Schelhaas, M.‐J. , Hengeveld, G. M. , Heidema, N. , Thürig, E. , Rohner, B. , Vacchiano, G. , Vayreda, J. , Redmond, J. , Socha, J. , Fridman, J. , Tomter, S. , Polley, H. , Barreiro, S. , & Nabuurs, G.‐J. (2018). Species‐specific, pan‐European diameter increment models based on data of 2.3 million trees. Forest Ecosystems, 5(1), 21. 10.1186/s40663-018-0133-3 DOI
Sheil, D. , Eastaugh, C. S. , Vlam, M. , Zuidema, P. A. , Groenendijk, P. , van der Sleen, P. , Jay, A. , & Vanclay, J. (2017). Does biomass growth increase in the largest trees? Flaws, fallacies and alternative analyses. Functional Ecology, 31(3), 568–581. 10.1111/1365-2435.12775 DOI
Sillett, S. C. , Kramer, R. D. , Van Pelt, R. , Carroll, A. L. , Campbell‐Spickler, J. , & Antoine, M. E. (2021). Comparative development of the four tallest conifer species. Forest Ecology and Management, 480, 118688. 10.1016/j.foreco.2020.118688 DOI
Sillett, S. C. , Van Pelt, R. , Koch, G. W. , Ambrose, A. R. , Carroll, A. L. , Antoine, M. E. , & Mifsud, B. M. (2010). Increasing wood production through old age in tall trees. Forest Ecology and Management, 259(5), 976–994. 10.1016/j.foreco.2009.12.003 DOI
Sniderhan, A. E. , & Baltzer, J. L. (2016). Growth dynamics of black spruce (Picea Mariana) in a rapidly thawing discontinuous permafrost peatland: Growth Dynamics Boreal Peatlands. Journal of Geophysical Research: Biogeosciences, 121(12), 2988–3000. 10.1002/2016JG003528 DOI
Speer, J. H. (2010). Fundamentals of tree‐ring research. University of Arizona Press. https://uapress.arizona.edu/book/fundamentals‐of‐tree‐ring‐research
Stephenson, N. L. , Das, A. J. , Condit, R. , Russo, S. E. , Baker, P. J. , Beckman, N. G. , Coomes, D. A. , Lines, E. R. , Morris, W. K. , Rüger, N. , Álvarez, E. , Blundo, C. , Bunyavejchewin, S. , Chuyong, G. , Davies, S. J. , Duque, Á. , Ewango, C. N. , Flores, O. , Franklin, J. F. , … Zavala, M. A. (2014). Rate of tree carbon accumulation increases continuously with tree size. Nature, 507, 90–93. 10.1038/nature12914 PubMed DOI
Stokes, M. A. , & Smiley, T. L. (1968). An Introduction to Tree‐ring Dating. University of Arizona Press.
Sullivan, P. F. , Pattison, R. R. , Brownlee, A. H. , Cahoon, S. M. P. , & Hollingsworth, T. N. (2016). Effect of tree‐ring detrending method on apparent growth trends of black and white spruce in interior Alaska. Environmental Research Letters, 11(11), 114007. 10.1088/1748-9326/11/11/114007 DOI
Takahashi, M. , Feng, Z. , Mikhailova, T. A. , Kalugina, O. V. , Shergina, O. V. , Afanasieva, L. V. , Heng, R. K. J. , Majid, N. M. A. , & Sase, H. (2020). Air pollution monitoring and tree and forest decline in East Asia: A review. Science of the Total Environment, 742, 140288. 10.1016/j.scitotenv.2020.140288 PubMed DOI
Teets, A. , Fraver, S. , Weiskittel, A. R. , & Hollinger, D. Y. (2018). Quantifying climate‐growth relationships at the stand level in a mature mixed‐species conifer forest. Global Change Biology, 24(8), 3587–3602. 10.1111/gcb.14120 PubMed DOI
Thom, D. , Rammer, W. , & Seidl, R. (2017). The impact of future forest dynamics on climate: Interactive effects of changing vegetation and disturbance regimes. Ecological Monographs, 87(4), 665–684. 10.1002/ecm.1272 PubMed DOI PMC
Thomas, S. C. (2011). Age‐Related Changes in Tree Growth and Functional Biology: The Role of Reproduction. In Meinzer F. C., Lachenbruch B., & Dawson T. E. (Eds.), Size‐ and Age‐Related Changes in Tree Structure and Function, Vol. 4 (pp. 33–64). Springer. 10.1007/978-94-007-1242-3_2 DOI
Touchan, R. , Woodhouse, C. A. , Meko, D. M. , & Allen, C. (2011). Millennial precipitation reconstruction for the Jemez Mountains, New Mexico, reveals changing drought signal. International Journal of Climatology, 31(6), 896–906. 10.1002/joc.2117 DOI
Trouillier, M. , van der Maaten‐Theunissen, M. , Scharnweber, T. , Würth, D. , Burger, A. , Schnittler, M. , & Wilmking, M. (2019). Size matters—a comparison of three methods to assess age‐ and size‐dependent climate sensitivity of trees. Trees, 33(1), 183–192. 10.1007/s00468-018-1767-z DOI
Tumajer, J. , Altman, J. , Štěpánek, P. , Treml, V. , Doležal, J. , & Cienciala, E. (2017). Increasing moisture limitation of Norway spruce in Central Europe revealed by forward modelling of tree growth in tree‐ring network. Agricultural and Forest Meteorology, 247, 56–64. 10.1016/j.agrformet.2017.07.015 DOI
van de Pol, M. , Bailey, L. D. , McLean, N. , Rijsdijk, L. , Lawson, C. R. , & Brouwer, L. (2016). Identifying the best climatic predictors in ecology and evolution. Methods in Ecology and Evolution, 7(10), 1246–1257. 10.1111/2041-210X.12590 DOI
van der Sleen, P. , Groenendijk, P. , Vlam, M. , Anten, N. P. R. , Bongers, F. , & Zuidema, P. A. (2017). Trends in tropical tree growth: Re‐analyses confirm earlier findings. Global Change Biology, 23(5), 1761–1762. 10.1111/gcb.13572 PubMed DOI
van der Sleen, P. , Groenendijk, P. , Vlam, M. , Anten, N. P. R. , Boom, A. , Bongers, F. , Pons, T. L. , Terburg, G. , & Zuidema, P. A. (2015). No growth stimulation of tropical trees by 150 years of CO2 fertilization but water‐use efficiency increased. Nature Geoscience, 8(1), 24–28. 10.1038/ngeo2313 DOI
Vlam, M. , Baker, P. J. , Bunyavejchewin, S. , & Zuidema, P. A. (2014). Temperature and rainfall strongly drive temporal growth variation in Asian tropical forest trees. Oecologia, 174(4), 1449–1461. 10.1007/s00442-013-2846-x PubMed DOI
Voelker, S. L. , Muzika, R.‐M. , Guyette, R. P. , & Stambaugh, M. C. (2006). Historical CO2 growth enhancement declines with age in Quercus and Pinus. Ecological Monographs, 76(4), 549–564. 10.1890/0012-9615(2006)076[0549:HCGEDW]2.0.CO;2 DOI
Vrška, T. , Adam, D. , Hort, L. , Kolář, T. , & Janík, D. (2009). European beech (Fagus sylvatica L.) And silver fir (Abies alba Mill.) Rotation in the Carpathians‐A developmental cycle or a linear trend induced by man? Forest Ecology and Management, 258(4), 347–356. 10.1016/j.foreco.2009.03.007 DOI
Walker, A. P. , De Kauwe, M. G. , Bastos, A. , Belmecheri, S. , Georgiou, K. , Keeling, R. F. , McMahon, S. M. , Medlyn, B. E. , Moore, D. J. P. , Norby, R. J. , Zaehle, S. , Anderson‐Teixeira, K. J. , Battipaglia, G. , Brienen, R. J. W. , Cabugao, K. G. , Cailleret, M. , Campbell, E. , Canadell, J. G. , Ciais, P. , … Zuidema, P. A. (2021). Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2 . New Phytologist, 229(5), 2413–2445. 10.1111/nph.16866 PubMed DOI
West, P. W. (2020). Do increasing respiratory costs explain the decline with age of forest growth rate? Journal of Forestry Research, 31(3), 693–712. 10.1007/s11676-019-01020-w DOI
Williams, A. P. , Allen, C. D. , Macalady, A. K. , Griffin, D. , Woodhouse, C. A. , Meko, D. M. , Swetnam, T. W. , Rauscher, S. A. , Seager, R. , Grissino‐Mayer, H. D. , Dean, J. S. , Cook, E. R. , Gangodagamage, C. , Cai, M. , & McDowell, N. G. (2013). Temperature as a potent driver of regional forest drought stress and tree mortality. Nature Climate Change, 3(3), 292–297. 10.1038/nclimate1693 DOI
Wilmking, M. , van der Maaten‐Theunissen, M. , van der Maaten, E. , Scharnweber, T. , Buras, A. , Biermann, C. , Gurskaya, M. , Hallinger, M. , Lange, J. , Shetti, R. , Smiljanic, M. , & Trouillier, M. (2020). Global assessment of relationships between climate and tree growth. Global Change Biology, 26(6), 3212–3220. 10.1111/gcb.15057 PubMed DOI
Wood, S. N. (2011). Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models: Estimation of Semiparametric Generalized Linear Models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(1), 3–36. 10.1111/j.1467-9868.2010.00749.x DOI
Woodhouse, C. A. (1999). Artificial neural networks and dendroclimatic reconstructions: An example from the Front Range, Colorado, USA. The Holocene, 9(5), 521–529. 10.1191/095968399667128516 DOI
Zang, C. , & Biondi, F. (2013). Dendroclimatic calibration in R: The bootRes package for response and correlation function analysis. Dendrochronologia, 31(1), 68–74. 10.1016/j.dendro.2012.08.001 DOI
Zhang, J. , Huang, S. , & He, F. (2015). Half‐century evidence from western Canada shows forest dynamics are primarily driven by competition followed by climate. Proceedings of the National Academy of Sciences, 112(13), 4009–4014. 10.1073/pnas.1420844112 PubMed DOI PMC
Zuidema, P. A. , Baker, P. J. , Groenendijk, P. , Schippers, P. , van der Sleen, P. , Vlam, M. , & Sterck, F. (2013). Tropical forests and global change: Filling knowledge gaps. Trends in Plant Science, 18(8), 413–419. 10.1016/j.tplants.2013.05.006 PubMed DOI
Zuidema, P. A. , Heinrich, I. , Rahman, M. , Vlam, M. , Zwartsenberg, S. A. , & Sleen, P. (2020). Recent CO2 rise has modified the sensitivity of tropical tree growth to rainfall and temperature. Global Change Biology, 26(7), 4028–4041. 10.1111/gcb.15092 PubMed DOI PMC