tree diameter
Dotaz
Zobrazit nápovědu
Height to crown base (HCB) of a tree is an important variable often included as a predictor in various forest models that serve as the fundamental tools for decision-making in forestry. We developed spatially explicit and spatially inexplicit mixed-effects HCB models using measurements from a total 19,404 trees of Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica L.) on the permanent sample plots that are located across the Czech Republic. Variables describing site quality, stand density or competition, and species mixing effects were included into the HCB model with use of dominant height (HDOM), basal area of trees larger in diameters than a subject tree (BAL- spatially inexplicit measure) or Hegyi's competition index (HCI-spatially explicit measure), and basal area proportion of a species of interest (BAPOR), respectively. The parameters describing sample plot-level random effects were included into the HCB model by applying the mixed-effects modelling approach. Among several functional forms evaluated, the logistic function was found most suited to our data. The HCB model for Norway spruce was tested against the data originated from different inventory designs, but model for European beech was tested using partitioned dataset (a part of the main dataset). The variance heteroscedasticity in the residuals was substantially reduced through inclusion of a power variance function into the HCB model. The results showed that spatially explicit model described significantly a larger part of the HCB variations [R2adj = 0.86 (spruce), 0.85 (beech)] than its spatially inexplicit counterpart [R2adj = 0.84 (spruce), 0.83 (beech)]. The HCB increased with increasing competitive interactions described by tree-centered competition measure: BAL or HCI, and species mixing effects described by BAPOR. A test of the mixed-effects HCB model with the random effects estimated using at least four trees per sample plot in the validation data confirmed that the model was precise enough for the prediction of HCB for a range of site quality, tree size, stand density, and stand structure. We therefore recommend measuring of HCB on four randomly selected trees of a species of interest on each sample plot for localizing the mixed-effects model and predicting HCB of the remaining trees on the plot. Growth simulations can be made from the data that lack the values for either crown ratio or HCB using the HCB models.
- MeSH
- biologické modely * MeSH
- buk (rod) růst a vývoj MeSH
- smrk růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
- validační studie MeSH
BACKGROUND: Coppicing was one of the most important forest management systems in Europe documented in prehistory as well as in the Middle Ages. However, coppicing was gradually abandoned by the mid-20(th) century, which has altered the ecosystem structure, diversity and function of coppice woods. METHODOLOGY/PRINCIPAL FINDINGS: Our aim was to disentangle factors shaping the historical growth dynamics of oak standards (i.e. mature trees growing through several coppice cycles) in a former coppice-with-standards in Central Europe. Specifically, we tried to detect historical coppicing events from tree-rings of oak standards, to link coppicing events with the recruitment of mature oaks, and to determine the effects of neighbouring trees on the stem increment of oak standards. Large peaks in radial growth found for the periods 1895-1899 and 1935-1939 matched with historical records of coppice harvests. After coppicing, the number of newly recruited oak standards markedly grew in comparison with the preceding or following periods. The last significant recruitment of oak standards was after the 1930s following the last regular coppicing event. The diameter increment of oak standards from 1953 to 2003 was negatively correlated with competition indices, suggesting that neighbouring trees (mainly resprouting coppiced Tilia platyphyllos) partly suppressed the growth of oak standards. Our results showed that improved light conditions following historical coppicing events caused significant increase in pulses of radial growth and most probably maintained oak recruitment. CONCLUSIONS/SIGNIFICANCE: Our historical perspective carries important implications for oak management in Central Europe and elsewhere. Relatively intense cutting creating open canopy woodlands, either as in the coppicing system or in the form of selective cutting, is needed to achieve significant radial growth in mature oaks. It is also critical for the successful regeneration and long-term maintenance of oak populations.
- MeSH
- dub (rod) fyziologie MeSH
- ekosystém * MeSH
- stromy chemie růst a vývoj MeSH
- zachování přírodních zdrojů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
What causes individual tree death in tropical forests remains a major gap in our understanding of the biology of tropical trees and leads to significant uncertainty in predicting global carbon cycle dynamics. We measured individual characteristics (diameter at breast height, wood density, growth rate, crown illumination and crown form) and environmental conditions (soil fertility and habitat suitability) for 26 425 trees ≥ 10 cm diameter at breast height belonging to 416 species in a 52-ha plot in Lambir Hills National Park, Malaysia. We used structural equation models to investigate the relationships among the different factors and tree mortality. Crown form (a proxy for mechanical damage and other stresses) and prior growth were the two most important factors related to mortality. The effect of all variables on mortality (except habitat suitability) was substantially greater than expected by chance. Tree death is the result of interactions between factors, including direct and indirect effects. Crown form/damage and prior growth mediated most of the effect of tree size, wood density, fertility and habitat suitability on mortality. Large-scale assessment of crown form or status may result in improved prediction of individual tree death at the landscape scale.
- MeSH
- biologické modely MeSH
- dřevo chemie MeSH
- ekosystém MeSH
- fyziologický stres MeSH
- lesy * MeSH
- stromy fyziologie MeSH
- tropické klima MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Geografické názvy
- Malajsie MeSH
To better understand the long-term impact of Ophiostoma novo-ulmi Brasier on leaf physiology in 'Dodoens', a Dutch elm disease-tolerant hybrid, measurements of leaf area, leaf dry mass, petiole anatomy, petiole hydraulic conductivity, leaf and branch water potential, and branch sap flow were performed 3 years following an initial artificial inoculation. Although fungal hyphae were detected in fully expanded leaves, neither anatomical nor morphological traits were affected, indicating that there was no impact from the fungal hyphae on the leaves during leaf expansion. In contrast, however, infected trees showed both a lower transpiration rate of branches and a lower sap flow density. The long-term persistence of fungal hyphae inside vessels decreased the xylem hydraulic conductivity, but stomatal regulation of transpiration appeared to be unaffected as the leaf water potential in both infected and non-infected trees was similarly driven by the transpirational demands. Regardless of the fungal infection, leaves with a higher leaf mass per area ratio tended to have a higher leaf area-specific conductivity. Smaller leaves had an increased number of conduits with smaller diameters and thicker cell walls. Such a pattern could increase tolerance towards hydraulic dysfunction. Measurements of water potential and theoretical xylem conductivity revealed that petiole anatomy could predict the maximal transpiration rate. Three years following fungal inoculation, phenotypic expressions for the majority of the examined traits revealed a constitutive nature for their possible role in Dutch elm disease tolerance of 'Dodoens' trees.
- MeSH
- analýza hlavních komponent MeSH
- časové faktory MeSH
- hybridizace genetická MeSH
- kvantitativní znak dědičný * MeSH
- listy rostlin mikrobiologie fyziologie MeSH
- nemoci rostlin mikrobiologie MeSH
- Ophiostoma fyziologie MeSH
- stonky rostlin mikrobiologie fyziologie MeSH
- transpirace rostlin fyziologie MeSH
- Ulmus mikrobiologie fyziologie MeSH
- voda MeSH
- xylém mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Determining the drivers of shifting forest disturbance rates remains a pressing global change issue. Large-scale forest dynamics are commonly assumed to be climate driven, but appropriately scaled disturbance histories are rarely available to assess how disturbance legacies alter subsequent disturbance rates and the climate sensitivity of disturbance. We compiled multiple tree ring-based disturbance histories from primary Picea abies forest fragments distributed throughout five European landscapes spanning the Bohemian Forest and the Carpathian Mountains. The regional chronology includes 11,595 tree cores, with ring dates spanning the years 1750-2000, collected from 560 inventory plots in 37 stands distributed across a 1,000 km geographic gradient, amounting to the largest disturbance chronology yet constructed in Europe. Decadal disturbance rates varied significantly through time and declined after 1920, resulting in widespread increases in canopy tree age. Approximately 75% of current canopy area recruited prior to 1900. Long-term disturbance patterns were compared to an historical drought reconstruction, and further linked to spatial variation in stand structure and contemporary disturbance patterns derived from LANDSAT imagery. Historically, decadal Palmer drought severity index minima corresponded to higher rates of canopy removal. The severity of contemporary disturbances increased with each stand's estimated time since last major disturbance, increased with mean diameter, and declined with increasing within-stand structural variability. Reconstructed spatial patterns suggest that high small-scale structural variability has historically acted to reduce large-scale susceptibility and climate sensitivity of disturbance. Reduced disturbance rates since 1920, a potential legacy of high 19th century disturbance rates, have contributed to a recent region-wide increase in disturbance susceptibility. Increasingly common high-severity disturbances throughout primary Picea forests of Central Europe should be reinterpreted in light of both legacy effects (resulting in increased susceptibility) and climate change (resulting in increased exposure to extreme events).
- MeSH
- klimatické změny * MeSH
- lesy * MeSH
- období sucha MeSH
- smrk * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Geografické názvy
- Evropa MeSH
Annual trunk increments are essential for short-term analyses of the response of trees to various factors. For instance, based on annual trunk increments, it is possible to develop and calibrate forest growth models. We investigated the possibility of estimating annual trunk increments from the terrestrial structure from motion (SfM) photogrammetry. Obtaining the annual trunk increments of mature trees is challenging due to the relatively small growth of trunks within one year. In our experiment, annual trunk increments were obtained by two conventional methods: measuring tape (perimeter increment) at heights of 0.8, 1.3, and 1.8 m on the trunk and increment borer (diameter increment) at a height of 1.3 m on the trunk. The following tree species were investigated: Fagus sylvatica L. (beech), Quercus petraea (Matt.) Liebl. (oak), Picea abies (L.) H. Karst (spruce), and Abies alba Mill (fir). The annual trunk increments ranged from 0.9 cm to 2.4 cm (tape/perimeter) and from 0.7 mm to 3.1 mm (borer/diameter). The data were collected before- and after-vegetation season, besides the data collection increment borer. When the estimated perimeters from the terrestrial SfM photogrammetry were compared to those obtained using the measuring tape, the root mean square error (RMSE) was 0.25-1.33 cm. The relative RMSE did not exceed 1% for all tree species. No statistically significant differences were found between the annual trunk increments obtained using the measuring tape and terrestrial SfM photogrammetry for beech, spruce, and fir. Only in the case of oak, the difference was statistically significant. Furthermore, the correlation coefficient between the annual trunk increments collected using the increment borer and those derived from terrestrial SfM photogrammetry was positive and equal to 0.6501. Terrestrial SfM photogrammetry is a hardware low-demanding technique that provides accurate three-dimensional data that can, based on our results, even detect small temporal tree trunk changes.
Root hairs and arbuscular mycorrhiza (AM) coexist in root systems for nutrient and water absorption, but the relation between AM and root hairs is poorly known. A pot study was performed to evaluate the effects of four different AM fungi (AMF), namely, Claroideoglomus etunicatum, Diversispora versiformis, Funneliformis mosseae, and Rhizophagus intraradices on root hair development in trifoliate orange (Poncirus trifoliata) seedlings grown in sand. Mycorrhizal seedlings showed significantly higher root hair density than non-mycorrhizal seedlings, irrespective of AMF species. AMF inoculation generally significantly decreased root hair length in the first- and second-order lateral roots but increased it in the third- and fourth-order lateral roots. AMF colonization induced diverse responses in root hair diameter of different order lateral roots. Considerably greater concentrations of phosphorus (P), nitric oxide (NO), glucose, sucrose, indole-3-acetic acid (IAA), and methyl jasmonate (MeJA) were found in roots of AM seedlings than in non-AM seedlings. Levels of P, NO, carbohydrates, IAA, and MeJA in roots were correlated with AM formation and root hair development. These results suggest that AMF could alter the profile of root hairs in trifoliate orange through modulation of physiological activities. F. mosseae, which had the greatest positive effects, could represent an efficient AM fungus for increasing fruit yields or decreasing fertilizer inputs in citrus production.
- MeSH
- biomasa MeSH
- Citrus růst a vývoj mikrobiologie MeSH
- Glomeromycota fyziologie MeSH
- kořeny rostlin růst a vývoj metabolismus mikrobiologie MeSH
- mykorhiza růst a vývoj fyziologie MeSH
- Poncirus růst a vývoj mikrobiologie MeSH
- půda MeSH
- půdní mikrobiologie MeSH
- semenáček růst a vývoj metabolismus mikrobiologie MeSH
- symbióza fyziologie MeSH
- výhonky rostlin růst a vývoj metabolismus mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
1. Species diversity of arboreal arthropods tends to increase during rainforest succession so that primary forest communities comprise more species than those from secondary vegetation, but it is not well understood why. Primary forests differ from secondary forests in a wide array of factors whose relative impacts on arthropod diversity have not yet been quantified. 2. We assessed the effects of succession-related determinants on a keystone ecological group, arboreal ants, by conducting a complete census of 1332 ant nests from all trees with diameter at breast height ≥ 5 cm occurring within two (unreplicated) 0·32-ha plots, one in primary and one in secondary lowland forest in New Guinea. Specifically, we used a novel rarefaction-based approach to match number, size distribution and taxonomic structure of trees in primary forest communities to those in secondary forest and compared the resulting numbers of ant species. 3. In total, we recorded 80 nesting ant species from 389 trees in primary forest but only 42 species from 295 trees in secondary forest. The two habitats did not differ in the mean number of ant species per tree or in the relationship between ant diversity and tree size. However, the between-tree similarity of ant communities was higher in secondary forest than in primary forest, as was the between-tree nest site similarity, suggesting that secondary trees were more uniform in providing nesting microhabitats. 4. Using our rarefaction method, the difference in ant species richness between two forest types was partitioned according to the effects of higher tree density (22·6%), larger tree size (15·5%) and higher taxonomic diversity of trees (14·3%) in primary than in secondary forest. The remaining difference (47·6%) was because of higher beta diversity of ant communities between primary forest trees. In contrast, difference in nest density was explained solely by difference in tree density. 5. Our study shows that reduction in plant taxonomic diversity in secondary forests is not the main driver of the reduction in canopy ant species richness. We suggest that the majority of arboreal species losses in secondary tropical forests are attributable to simpler vegetation structure, combined with lower turnover of nesting microhabitats between trees.
Hemodynamics in the distal end-to-side anastomosis is related to early development of intimal hyperplasia and bypass failure. In this study we investigated the effect of diameter ratios between the target artery and the bypass at three different angles of the connection. The pulsatile flow field was visualized using particle image velocimetry in transparent models with three different angles of the connection (25°, 45°, 60°) and the diameter ratio between the bypass and the target artery was 4.6 mm : 6 mm, 6 mm : 6 mm, and 7.5 mm : 6 mm. Six parameters including location and oscillation of the stagnation point, local energy dissipation, wall shear stress (WSS), oscillatory shear index, spatial and temporal gradient of WSS and their distribution in the target artery were calculated from the flow field. In the wider bypass, the stagnation point oscillated in a greater range and was located more proximal to the anastomosis. Energy dissipation was minimal in a wider bypass with a more acute angle. The maximum WSS values were tree times greater in a narrow bypass and concentrated in a smaller circular region at the floor of the anastomosis. The oscillatory shear index increased with wider bypass and more acute angle. The maximum of spatial gradient of WSS concentrated around the floor and toe of the anastomosis and decreased with more acute angle and wider bypass, the temporal gradient of WSS was stretched more towards the side wall. Greater bypass to target vessel ratio and more acute anastomosis angle promote hemodynamics known to reduce formation of intimal hyperplasia.
- MeSH
- anastomóza chirurgická * MeSH
- arterie anatomie a histologie fyziologie chirurgie MeSH
- fyziologický stres MeSH
- hemodynamika * MeSH
- hyperplazie * MeSH
- mechanický stres MeSH
- modely kardiovaskulární MeSH
- pevnost ve smyku MeSH
- přenos energie MeSH
- pulzatilní průtok MeSH
- rychlost toku krve MeSH
- Publikační typ
- časopisecké články MeSH