Desertification of Iran in the early twenty-first century: assessment using climate and vegetation indices

. 2021 Oct 15 ; 11 (1) : 20548. [epub] 20211015

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34654866

Grantová podpora
BBS/E/C/000I0330 Biotechnology and Biological Sciences Research Council - United Kingdom

Odkazy

PubMed 34654866
PubMed Central PMC8519952
DOI 10.1038/s41598-021-99636-8
PII: 10.1038/s41598-021-99636-8
Knihovny.cz E-zdroje

Remote sensing of specific climatic and biogeographical parameters is an effective means of evaluating the large-scale desertification status of drylands affected by negative human impacts. Here, we identify and analyze desertification trends in Iran for the period 2001-2015 via a combination of three indices for vegetation (NPP-net primary production, NDVI-normalized difference vegetation index, LAI-leaf area index) and two climate indices (LST-land surface temperature, P-precipitation). We combine these indices to identify and map areas of Iran that are susceptible to land degradation. We then apply a simple linear regression method, the Mann-Kendall non-parametric test, and the Theil-Sen estimator to identify long-term temporal and spatial trends within the data. Based on desertification map, we find that 68% of Iran shows a high to very high susceptibility to desertification, representing an area of 1.1 million km2 (excluding 0.42 million km2 classified as unvegetated). Our results highlight the importance of scale in assessments of desertification, and the value of high-resolution data, in particular. Annually, no significant change is evident within any of the five indices, but significant changes (some positive, some negative) become apparent on a seasonal basis. Some observations follow expectations; for instance, NDVI is strongly associated with cooler, wet spring and summer seasons, and milder winters. Others require more explanation; for instance, vegetation appears decoupled from climatic forcing during autumn. Spatially, too, there is much local and regional variation, which is lost when the data are considered only at the largest nationwide scale. We identify a northwest-southeast belt spanning central Iran, which has experienced significant vegetation decline (2001-2015). We tentatively link this belt of land degradation with intensified agriculture in the hinterlands of Iran's major cities. The spatial and temporal trends identified with the three vegetation and two climate indices afford a cost-effective framework for the prediction and management of future environmental trends in developing regions at risk of desertification.

Zobrazit více v PubMed

Barrow C. World atlas of desertification (United Nations environment programme), edited by N. Middleton and DSG Thomas. Edward Arnold, London, 1992. isbn 0 340 55512 2, £ 89.50 (hardback), ix+ 69 pp. Land Degrad. Dev. 1992;3(4):249–249. doi: 10.1002/ldr.3400030407. DOI

Jie C, Jing-Zhang C, Man-Zhi T, Zi-tong G. Soil degradation: A global problem endangering sustainable development. J. Geogr. Sci. 2002;12(2):243–252. doi: 10.1007/BF02837480. DOI

Smith P. Managing the global land resource. Proc. Roy. Soc. B: Biol. Sci. 1874;2018(285):20172798. PubMed PMC

Griggs D, Stafford-Smith M, Gaffney O, Rockström J, Öhman MC, Shyamsundar P, Noble I. Sustainable development goals for people and planet. Nature. 2013;495(7441):305–307. doi: 10.1038/495305a. PubMed DOI

Zhou W, et al. Quantitative assessment of the individual contribution of climate and human factors to desertification in northwest China using net primary productivity as an indicator. Ecol. Ind. 2015;48:560–569. doi: 10.1016/j.ecolind.2014.08.043. DOI

Bouma J, Montanarella L, Evanylo G. The challenge for the soil science community to contribute to the implementation of the UN sustainable development goals. Soil Use Manag. 2019;35(4):538–546. doi: 10.1111/sum.12518. DOI

Cerdà, A. & Lavée, H. The effect of grazing on soil and water losses under arid and mediterranean climates. Implications for desertification (1999).

Montgomery DR. Soil erosion and agricultural sustainability. Proc. Natl. Acad. Sci. 2007;104(33):13268–13272. doi: 10.1073/pnas.0611508104. PubMed DOI PMC

Dregne H, Kassas M, Rozanov B. A new assessment of the world status of desertification. Desertif. Control Bull. 1991;20(1):7–18.

Reynolds JF, Smith DMS, Lambin EF, Turner BL, Mortimore M, Batterbury SP, Walker B. Global desertification: Building a science for dryland development. Science. 2007;316(5826):847–851. doi: 10.1126/science.1131634. PubMed DOI

Wessels KJ, Prince SD, Malherbe J, Small J, Frost PE, VanZyl D. Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in South Africa. J. Arid Environ. 2007;68(2):271–297. doi: 10.1016/j.jaridenv.2006.05.015. DOI

Bao Y, Cheng L, Bao Y, Yang L, Jiang L, Long C, Lu Q. Desertification: China provides a solution to a global challenge. Front. Agric. Sci. Eng. 2017;4(4):402–413. doi: 10.15302/J-FASE-2017187. DOI

Brown LJ, Nickling WG. Desertification and wind erosion. Ann. Arid Zone. 2003;42:347–370.

Chasek P, Safriel U, Shikongo S, Fuhrman VF. Operationalizing zero net land degradation: The next stage in international efforts to combat desertification? J. Arid Environ. 2015;112:5–13. doi: 10.1016/j.jaridenv.2014.05.020. DOI

Bakr N, Weindorf DC, Bahnassy MH, El-Badawi MM. Multi-temporal assessment of land sensitivity to desertification in a fragile agro-ecosystem: Environmental indicators. Ecol. Ind. 2012;15(1):271–280. doi: 10.1016/j.ecolind.2011.09.034. DOI

Matarira D, Mutanga O, Dube T. Landscape scale land degradation mapping in the semi-arid areas of the save catchment, Zimbabwe. S. Afr. Geogr. J. 2021;103(2):183–203. doi: 10.1080/03736245.2020.1717588. DOI

Venter ZS, Scott SL, Desmet PG, Hoffman MT. Application of Landsat-derived vegetation trends over South Africa: Potential for monitoring land degradation and restoration. Ecol. Indic. 2020;113:106206. doi: 10.1016/j.ecolind.2020.106206. DOI

Hill J, Megier J, Mehl W. Land degradation, soil erosion and desertification monitoring in Mediterranean ecosystems. Remote Sens. Rev. 1995;12(1–2):107–130. doi: 10.1080/02757259509532278. DOI

Kaiser A, Neugirg F, Rock G, Müller C, Haas F, Ries J, Schmidt J. Small-scale surface reconstruction and volume calculation of soil erosion in complex Moroccan gully morphology using structure from motion. Remote Sens. 2014;6(8):7050–7080. doi: 10.3390/rs6087050. DOI

Ayele GT, Tebeje AK, Demissie SS, Belete MA, Jemberrie MA, Teshome WM, Teshale EZ. Time series land cover mapping and change detection analysis using geographic information system and remote sensing, Northern Ethiopia. Air, Soil Water Res. 2018;11:1178622117751603. doi: 10.1177/1178622117751603. DOI

Wessels KJ, Van Den Bergh F, Scholes RJ. Limits to detectability of land degradation by trend analysis of vegetation index data. Remote Sens. Environ. 2012;125:10–22. doi: 10.1016/j.rse.2012.06.022. DOI

Mbow C, Brandt M, Ouedraogo I, De Leeuw J, Marshall M. What four decades of earth observation tell us about land degradation in the Sahel? Remote Sens. 2015;7(4):4048–4067. doi: 10.3390/rs70404048. DOI

Eckert S, Hüsler F, Liniger H, Hodel E. Trend analysis of MODIS NDVI time series for detecting land degradation and regeneration in Mongolia. J. Arid Environ. 2015;113:16–28. doi: 10.1016/j.jaridenv.2014.09.001. DOI

Stellmes M, Udelhoven T, Röder A, Sonnenschein R, Hill J. Dryland observation at local and regional scale—Comparison of Landsat TM/ETM+ and NOAA AVHRR time series. Remote Sens. Environ. 2010;114(10):2111–2125. doi: 10.1016/j.rse.2010.04.016. DOI

Lamchin M, Lee WK, Jeon SW, Wang SW, Lim CH, Song C, Sung M. Long-term trend and correlation between vegetation greenness and climate variables in Asia based on satellite data. Sci. Total Environ. 2018;618:1089–1095. doi: 10.1016/j.scitotenv.2017.09.145. PubMed DOI

Fensholt R, Proud SR. Evaluation of earth observation based global long term vegetation trends—Comparing GIMMS and MODIS global NDVI time series. Remote Sens. Environ. 2012;119:131–147. doi: 10.1016/j.rse.2011.12.015. DOI

Helldén U. A coupled human–environment model for desertification simulation and impact studies. Global Planet. Change. 2008;64(3–4):158–168. doi: 10.1016/j.gloplacha.2008.09.004. DOI

Higginbottom TP, Symeonakis E. Assessing land degradation and desertification using vegetation index data: Current frameworks and future directions. Remote Sens. 2014;6(10):9552–9575. doi: 10.3390/rs6109552. DOI

Zoungrana BJ, Conrad C, Thiel M, Amekudzi LK, Da ED. MODIS NDVI trends and fractional land cover change for improved assessments of vegetation degradation in Burkina Faso, West Africa. J. Arid Environ. 2018;153:66–75. doi: 10.1016/j.jaridenv.2018.01.005. DOI

Nguy-Robertson AL, Peng Y, Gitelson AA, Arkebauer TJ, Pimstein A, Herrmann I, Bonfil DJ. Estimating green LAI in four crops: Potential of determining optimal spectral bands for a universal algorithm. Agric. For. Meteorol. 2014;192:140–148. doi: 10.1016/j.agrformet.2014.03.004. DOI

Mariano DA, dos Santos CA, Wardlow BD, Anderson MC, Schiltmeyer AV, Tadesse T, Svoboda MD. Use of remote sensing indicators to assess effects of drought and human-induced land degradation on ecosystem health in Northeastern Brazil. Remote Sens. Environ. 2018;213:129–143. doi: 10.1016/j.rse.2018.04.048. DOI

Fernandes FHS, Sano EE, Ferreira LG, de Mello Baptista GM, de Castro Victoria D, Fassoni-Andrade AC. Degradation trends based on MODIS-derived estimates of productivity and water use efficiency: A case study for the cultivated pastures in the Brazilian Cerrado. Remote Sens. Appl.: Soc. Environ. 2018;11:30–40. doi: 10.3390/rs11010030. DOI

De Beurs KM, Henebry GM, Owsley BC, Sokolik I. Using multiple remote sensing perspectives to identify and attribute land surface dynamics in Central Asia 2001–2013. Remote Sens. Environ. 2015;170:48–61. doi: 10.1016/j.rse.2015.08.018. DOI

Burrell AL, Evans JP, Liu Y. The impact of dataset selection on land degradation assessment. ISPRS J. Photogramm. Remote Sens. 2018;146:22–37. doi: 10.1016/j.isprsjprs.2018.08.017. DOI

Yu R, Evans AJ, Malleson N. Quantifying grazing patterns using a new growth function based on MODIS Leaf Area Index. Remote Sens. Environ. 2018;209:181–194. doi: 10.1016/j.rse.2018.02.034. DOI

Prince SD, Becker-Reshef I, Rishmawi K. Detection and mapping of long-term land degradation using local net production scaling: Application to Zimbabwe. Remote Sens. Environ. 2009;113(5):1046–1057. doi: 10.1016/j.rse.2009.01.016. DOI

Fensholt R, Langanke T, Rasmussen K, Reenberg A, Prince SD, Tucker C, Wessels K. Greenness in semi-arid areas across the globe 1981–2007—An Earth Observing Satellite based analysis of trends and drivers. Remote Sens. Environ. 2012;121:144–158. doi: 10.1016/j.rse.2012.01.017. DOI

Gao Y, Huang J, Li S, Li S. Spatial pattern of non-stationarity and scale-dependent relationships between NDVI and climatic factors—A case study in Qinghai-Tibet Plateau, China. Ecol. Ind. 2012;20:170–176. doi: 10.1016/j.ecolind.2012.02.007. DOI

Piao S, Fang J, He J. Variations in vegetation net primary production in the Qinghai-Xizang Plateau, China, from 1982 to 1999. Clim. Change. 2006;74(1):253–267. doi: 10.1007/s10584-005-6339-8. DOI

Muro J, Strauch A, Heinemann S, Steinbach S, Thonfeld F, Waske B, Diekkrüger B. Land surface temperature trends as indicator of land use changes in wetlands. Int. J. Appl. Earth Obs. Geoinf. 2018;70:62–71. doi: 10.1016/j.jag.2018.02.002. DOI

Gholami L, Sadeghi SH, Homaee M. Straw mulching effect on splash erosion, runoff, and sediment yield from eroded plots. Soil Sci. Soc. Am. J. 2013;77(1):268–278. doi: 10.2136/sssaj2012.0271. DOI

Sadeghi SHR, Seghaleh MB, Rangavar AS. Plot sizes dependency of runoff and sediment yield estimates from a small watershed. CATENA. 2013;102:55–61. doi: 10.1016/j.catena.2011.01.003. DOI

Rahmanipour F, Marzaioli R, Bahrami HA, Fereidouni Z, Bandarabadi SR. Assessment of soil quality indices in agricultural lands of Qazvin Province, Iran. Ecol. Indic. 2014;40:19–26. doi: 10.1016/j.ecolind.2013.12.003. DOI

Khaledian Y, Brevik EC, Pereira P, Cerdà A, Fattah MA, Tazikeh H. Modeling soil cation exchange capacity in multiple countries. CATENA. 2017;158:194–200. doi: 10.1016/j.catena.2017.07.002. DOI

Yazdanbakhsh A, Alavi SN, Valadabadi SA, Karimi F, Karimi Z. Heavy metals uptake of salty soils by ornamental sunflower, using cow manure and biosolids: A case study in Alborz city, Iran. Air, Soil Water Res. 2020;13:1178622119898460. doi: 10.1177/1178622119898460. DOI

Kavian A, Mohammadi M, Gholami L, Rodrigo-Comino J. Assessment of the spatiotemporal effects of land use changes on runoff and nitrate loads in the Talar River. Water. 2018;10(4):445. doi: 10.3390/w10040445. DOI

Zeraatpisheh, M. Digital Soil Mapping, Downscaling and Updating Conventional Soil Maps Using GIS, RS, Statistics and Auxiliary Data. Doctoral dissertation, Ghent University (2017).

Ayoubi S, Mokhtari J, Mosaddeghi MR, Zeraatpisheh M. Erodibility of calcareous soils as influenced by land use and intrinsic soil properties in a semiarid region of central Iran. Environ. Monit. Assess. 2018;190(4):1–12. doi: 10.1007/s10661-018-6557-y. PubMed DOI

Sheykhi V, Moore F. Geochemical characterization of Kor river water quality, Fars province, Southwest Iran. Water Qual. Expo. Health. 2012;4(1):25–38. doi: 10.1007/s12403-012-0063-1. DOI

Kharazmi R, Tavili A, Rahdari MR, Chaban L, Panidi E, Rodrigo-Comino J. Monitoring and assessment of seasonal land cover changes using remote sensing: A 30-year (1987–2016) case study of Hamoun Wetland, Iran. Environ. Monit. Assess. 2018;190(6):1–23. doi: 10.1007/s10661-018-6726-z. PubMed DOI

Karandish F, Mousavi SS. Climate change uncertainty and risk assessment in Iran during twenty-first century: Evapotranspiration and green water deficit analysis. Theoret. Appl. Climatol. 2018;131(1):777–791. doi: 10.1007/s00704-016-2008-2. DOI

Modarres R, da Silva VDPR. Rainfall trends in arid and semi-arid regions of Iran. J. Arid Environ. 2007;70(2):344–355. doi: 10.1016/j.jaridenv.2006.12.024. DOI

Abbaspour KC, Faramarzi M, Ghasemi SS, Yang H. Assessing the impact of climate change on water resources in Iran. Water Resour. Res. 2009;45(10):1–16. doi: 10.1029/2008WR007615. DOI

Ghasemifar E, Farajzadeh M, Perry MC, Rahimi YG, Bidokhti AA. Analysis of spatiotemporal variations of cloud fraction based on geographic characteristics over Iran. Theoret. Appl. Climatol. 2018;134(3):1429–1445. doi: 10.1007/s00704-017-2308-1. DOI

Jafari R, Hasheminasab S. Assessing the effects of dam building on land degradation in central Iran with Landsat LST and LULC time series. Environ. Monit. Assess. 2017;189(2):74. doi: 10.1007/s10661-017-5792-y. PubMed DOI

Madani K, AghaKouchak A, Mirchi A. Iran’s socio-economic drought: Challenges of a water-bankrupt nation. Iran. Stud. 2016;49(6):997–1016. doi: 10.1080/00210862.2016.1259286. DOI

Keshavarz M, Karami E, Zibaei M. Adaptation of Iranian farmers to climate variability and change. Reg. Environ. Change. 2014;14(3):1163–1174. doi: 10.1007/s10113-013-0558-8. DOI

Amiraslani F, Dragovich D. Combating desertification in Iran over the last 50 years: An overview of changing approaches. J. Environ. Manag. 2011;92(1):1–13. doi: 10.1016/j.jenvman.2010.08.012. PubMed DOI

Du L, Tian Q, Yu T, Meng Q, Jancso T, Udvardy P, Huang Y. A comprehensive drought monitoring method integrating MODIS and TRMM data. Int. J. Appl. Earth Obs. Geoinf. 2013;23:245–253. doi: 10.1016/j.jag.2012.09.010. DOI

Daham A, Han D, Rico-Ramirez M, Marsh A. Analysis of NVDI variability in response to precipitation and air temperature in different regions of Iraq, using MODIS vegetation indices. Environ. Earth Sci. 2018;77(10):1–24. doi: 10.1007/s12665-018-7560-x. DOI

Di Vittorio CA, Georgakakos AP. Land cover classification and wetland inundation mapping using MODIS. Remote Sens. Environ. 2018;204:1–17. doi: 10.1016/j.rse.2017.11.001. DOI

Landeschi G, Nilsson B, Dell'Unto N. Assessing the damage of an archaeological site: New contributions from the combination of image-based 3D modelling techniques and GIS. J. Archaeol. Sci. Rep. 2016;10:431–440.

Eskandari Damaneh H, Jafari M, Eskandari Damaneh H, Behnia M, Khoorani A, Tiefenbacher JP. Testing possible scenario-based responses of vegetation under expected climatic changes in Khuzestan Province. Air, Soil Water Res. 2021;14:11786221211013332. doi: 10.1177/11786221211013332. DOI

Sala, O. E. & Austin, A. T. Methods of estimating aboveground net primary productivity. In Methods in Ecosystem Science 31–43 (Springer, 2000).

Ahmadaali K, Damaneh HE, Ababaei B, Damaneh HE. Impacts of droughts on rainfall use efficiency in different climatic zones and land uses in Iran. Arab. J. Geosci. 2021;14(2):1–15. doi: 10.1007/s12517-020-06389-1. DOI

Eskandari H, Borji M, Khosravi H, Mesbahzadeh T. Desertification of forest, range and desert in Tehran province, affected by climate change. Solid Earth. 2016;7(3):905–915. doi: 10.5194/se-7-905-2016. DOI

De Leeuw J, Rizayeva A, Namazov E, Bayramov E, Marshall MT, Etzold J, Neudert R. Application of the MODIS MOD 17 net primary production product in grassland carrying capacity assessment. Int. J. Appl. Earth Obs. Geoinf. 2019;78:66–76. doi: 10.1016/j.jag.2018.09.014. DOI

Morse PD, Wolfe SA, Kokelj SV, Gaanderse AJR. The occurrence and thermal disequilibrium state of permafrost in forest ecotopes of the Great Slave Region, Northwest Territories, Canada. Permafr. Periglac. Process. 2016;27(2):145–162. doi: 10.1002/ppp.1858. DOI

Gitelson AA. Remote estimation of fraction of radiation absorbed by photosynthetically active vegetation: Generic algorithm for maize and soybean. Remote Sens. Lett. 2019;10(3):283–291. doi: 10.1080/2150704X.2018.1547445. DOI

Myneni, R., Knyazikhin, Y. & Park, T. MOD15A2H MODIS/Terra Leaf Area Index/FPAR 8-Day L4 Global 500 m SIN Grid V006. NASA EOSDIS Land Processes DAAC (accessed 08 May 2020); 10.5067/MODIS/MOD15A2H.006 (2015).

Tharammal T, Bala G, Narayanappa D, Nemani R. Potential roles of CO2 fertilization, nitrogen deposition, climate change, and land use and land cover change on the global terrestrial carbon uptake in the twenty-first century. Clim. Dyn. 2019;52(7):4393–4406. doi: 10.1007/s00382-018-4388-8. DOI

Luo P, Zhou M, Deng H, Lyu J, Cao W, Takara K, Schladow SG. Impact of forest maintenance on water shortages: Hydrologic modeling and effects of climate change. Sci. Total Environ. 2018;615:1355–1363. doi: 10.1016/j.scitotenv.2017.09.044. PubMed DOI

Kotikot SM, Flores A, Griffin RE, Sedah A, Nyaga J, Mugo R, Irwin DE. Mapping threats to agriculture in East Africa: Performance of MODIS derived LST for frost identification in Kenya’s tea plantations. Int. J. Appl. Earth Obs. Geoinf. 2018;72:131–139. doi: 10.1016/j.jag.2018.05.009. DOI

Aguilar-Lome J, Espinoza-Villar R, Espinoza JC, Rojas-Acuña J, Willems BL, Leyva-Molina WM. Elevation-dependent warming of land surface temperatures in the Andes assessed using MODIS LST time series (2000–2017) Int. J. Appl. Earth Obs. Geoinf. 2019;77:119–128. doi: 10.1016/j.jag.2018.12.013. DOI

Wan Z, Hulley G. MOD11C1 MODIS/Terra Land Surface Temperature/Emissivity Daily L3 Global 0.05 Deg CMG V006. NASA EOSDIS Land Processes DAAC. University of Hamburg; 2015.

Kummerow C, Barnes W, Kozu T, Shiue J, Simpson J. The tropical rainfall measuring mission (TRMM) sensor package. J. Atmos. Ocean. Technol. 1998;15(3):809–817. doi: 10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2. DOI

Sun Q, Miao C, Duan Q, Ashouri H, Sorooshian S, Hsu KL. A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Rev. Geophys. 2018;56(1):79–107. doi: 10.1002/2017RG000574. DOI

Anderson MC, Zolin CA, Sentelhas PC, Hain CR, Semmens K, Yilmaz MT, Tetrault R. The evaporative stress index as an indicator of agricultural drought in Brazil: An assessment based on crop yield impacts. Remote Sens. Environ. 2016;174:82–99. doi: 10.1016/j.rse.2015.11.034. DOI

Li Z, Huffman T, McConkey B, Townley-Smith L. Monitoring and modeling spatial and temporal patterns of grassland dynamics using time-series MODIS NDVI with climate and stocking data. Remote Sens. Environ. 2013;138:232–244. doi: 10.1016/j.rse.2013.07.020. DOI

Kaspersen PS, Fensholt R, Huber S. A spatiotemporal analysis of climatic drivers for observed changes in Sahelian vegetation productivity (1982–2007) Int. J. Geophys. 2011;2011:1–14. doi: 10.1155/2011/715321. DOI

Hamed KH, Rao AR. A modified Mann–Kendall trend test for autocorrelated data. J. Hydrol. 1998;204(1–4):182–196. doi: 10.1016/S0022-1694(97)00125-X. DOI

Asfaw A, Simane B, Hassen A, Bantider A. Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: A case study in Woleka sub-basin. Weather Clim. Extrem. 2018;19:29–41. doi: 10.1016/j.wace.2017.12.002. DOI

Sen PK. Estimates of the regression coefficient based on Kendall's tau. J. Am. Stat. Assoc. 1968;63(324):1379–1389. doi: 10.1080/01621459.1968.10480934. DOI

Theil H. A rank-invariant method of linear and polynomial regression analysis. Indag. Math. 1950;12(85):173.

Verbyla D. The greening and browning of Alaska based on 1982–2003 satellite data. Glob. Ecol. Biogeogr. 2008;17(4):547–555. doi: 10.1111/j.1466-8238.2008.00396.x. DOI

Symeonakis E, Drake N. Monitoring desertification and land degradation over sub-Saharan Africa. Int. J. Remote Sens. 2004;25(3):573–592. doi: 10.1080/0143116031000095998. DOI

Lavee H, Imeson AC, Sarah P. The impact of climate change on geomorphology and desertification along a Mediterranean-arid transect. Land Degrad. Dev. 1998;9(5):407–422. doi: 10.1002/(SICI)1099-145X(199809/10)9:5<407::AID-LDR302>3.0.CO;2-6. DOI

Cantón Y, Solé-Benet A, De Vente J, Boix-Fayos C, Calvo-Cases A, Asensio C, Puigdefábregas J. A review of runoff generation and soil erosion across scales in semiarid south-eastern Spain. J. Arid Environ. 2011;75(12):1254–1261. doi: 10.1016/j.jaridenv.2011.03.004. DOI

Davidson EA, Janssens IA. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature. 2006;440(7081):165–173. doi: 10.1038/nature04514. PubMed DOI

Mao J, Ribes A, Yan B, Shi X, Thornton PE, Séférian R, Lian X. Human-induced greening of the northern extratropical land surface. Nat. Clim. Chang. 2016;6(10):959–963. doi: 10.1038/nclimate3056. DOI

Soltani M, Laux P, Kunstmann H, Stan K, Sohrabi MM, Molanejad M, Martin MV. Assessment of climate variations in temperature and precipitation extreme events over Iran. Theoret. Appl. Climatol. 2016;126(3):775–795. doi: 10.1007/s00704-015-1609-5. DOI

Carlson TN, Ripley DA. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 1997;62(3):241–252. doi: 10.1016/S0034-4257(97)00104-1. DOI

Mesgaran, M. B. & Azadi, P. A national adaptation plan for water scarcity in Iran. In Working Paper 6, Stanford Iran 2040 Project, Stanford University, August 2018 (2018).

Krüger E, Drach P, Emmanuel R. Atmospheric impacts on daytime urban heat island. Air, Soil Water Res. 2018;11:1178622118810201. doi: 10.1177/1178622118810201. DOI

Tabari H, Talaee PH. Sensitivity of evapotranspiration to climatic change in different climates. Glob. Planet. Change. 2014;115:16–23. doi: 10.1016/j.gloplacha.2014.01.006. DOI

Peña-Angulo D, Nadal-Romero E, González-Hidalgo JC, Albaladejo J, Andreu V, Bagarello V, Zorn M. Spatial variability of the relationships of runoff and sediment yield with weather types throughout the Mediterranean basin. J. Hydrol. 2019;571:390–405. doi: 10.1016/j.jhydrol.2019.01.059. DOI

Rodrigo-Comino J, Senciales JM, Sillero-Medina JA, Gyasi-Agyei Y, Ruiz-Sinoga JD, Ries JB. Analysis of weather-type-induced soil erosion in cultivated and poorly managed abandoned sloping vineyards in the Axarquía region (Málaga, Spain) Air, Soil Water Res. 2019;12:1178622119839403.

Soltani S, Saboohi R, Yaghmaei L. Rainfall and rainy days trend in Iran. Clim. Change. 2012;110(1):187–213. doi: 10.1007/s10584-011-0146-1. DOI

Modarres R, Sarhadi A. Rainfall trends analysis of Iran in the last half of the twentieth century. J. Geophys. Res.: Atmos. 2009;114(D3):1–28. doi: 10.1029/2008JD010707. DOI

Mirzaei A, Saghafian B, Mirchi A, Madani K. The groundwater-energy-food nexus in Iran’s agricultural sector: Implications for water security. Water. 2019;11(9):1835. doi: 10.3390/w11091835. DOI

Sadeghi SH, Nouri H, Faramarzi M. Assessing the spatial distribution of rainfall and the effect of altitude in Iran (Hamadan Province) Air, Soil Water Res. 2017;10:1178622116686066. doi: 10.1177/1178622116686066. DOI

Pan N, Feng X, Fu B, Wang S, Ji F, Pan S. Increasing global vegetation browning hidden in overall vegetation greening: Insights from time-varying trends. Remote Sens. Environ. 2018;214:59–72. doi: 10.1016/j.rse.2018.05.018. DOI

Wang X, Tan K, Chen B, Du P. Assessing the spatiotemporal variation and impact factors of net primary productivity in China. Sci. Rep. 2017;7(1):1–10. doi: 10.1038/s41598-016-0028-x. PubMed DOI PMC

Ashraf S, Nazemi A, AghaKouchak A. Anthropogenic drought dominates groundwater depletion in Iran. Sci. Rep. 2021;11(1):1–10. doi: 10.1038/s41598-020-79139-8. PubMed DOI PMC

Baghvand A, Nasrabadi T, Bidhendi GN, Vosoogh A, Karbassi A, Mehrdadi N. Groundwater quality degradation of an aquifer in Iran central desert. Desalination. 2010;260(1–3):264–275. doi: 10.1016/j.desal.2010.02.038. DOI

D'Oleire-Oltmanns S, Marzolff I, Peter KD, Ries JB. Unmanned aerial vehicle (UAV) for monitoring soil erosion in Morocco. Remote Sens. 2012;4(11):3390–3416. doi: 10.3390/rs4113390. DOI

Dittrich A, von Wehrden H, Abson DJ, Bartkowski B, Cord AF, Fust P, Beckmann M. Mapping and analysing historical indicators of ecosystem services in Germany. Ecol. Ind. 2017;75:101–110. doi: 10.1016/j.ecolind.2016.12.010. DOI

Akinyemi FO, Tlhalerwa LT, Eze PN. Land degradation assessment in an African dryland context based on the composite land degradation index and mapping method. Geocarto Int. 2019;32:1–17.

Angulo-Martínez M, López-Vicente M, Vicente-Serrano SM, Beguería S. Mapping rainfall erosivity at a regional scale: A comparison of interpolation methods in the Ebro Basin (NE Spain) Hydrol. Earth Syst. Sci. 2009;13(10):1907–1920. doi: 10.5194/hess-13-1907-2009. DOI

Rodrigo-Comino J, Senciales JM, Cerdà A, Brevik EC. The multidisciplinary origin of soil geography: A review. Earth Sci. Rev. 2018;177:114–123. doi: 10.1016/j.earscirev.2017.11.008. DOI

Rahimi J, Ebrahimpour M, Khalili A. Spatial changes of extended De Martonne climatic zones affected by climate change in Iran. Theoret. Appl. Climatol. 2013;112(3):409–418. doi: 10.1007/s00704-012-0741-8. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...