Desertification of Iran in the early twenty-first century: assessment using climate and vegetation indices
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
BBS/E/C/000I0330
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
34654866
PubMed Central
PMC8519952
DOI
10.1038/s41598-021-99636-8
PII: 10.1038/s41598-021-99636-8
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Remote sensing of specific climatic and biogeographical parameters is an effective means of evaluating the large-scale desertification status of drylands affected by negative human impacts. Here, we identify and analyze desertification trends in Iran for the period 2001-2015 via a combination of three indices for vegetation (NPP-net primary production, NDVI-normalized difference vegetation index, LAI-leaf area index) and two climate indices (LST-land surface temperature, P-precipitation). We combine these indices to identify and map areas of Iran that are susceptible to land degradation. We then apply a simple linear regression method, the Mann-Kendall non-parametric test, and the Theil-Sen estimator to identify long-term temporal and spatial trends within the data. Based on desertification map, we find that 68% of Iran shows a high to very high susceptibility to desertification, representing an area of 1.1 million km2 (excluding 0.42 million km2 classified as unvegetated). Our results highlight the importance of scale in assessments of desertification, and the value of high-resolution data, in particular. Annually, no significant change is evident within any of the five indices, but significant changes (some positive, some negative) become apparent on a seasonal basis. Some observations follow expectations; for instance, NDVI is strongly associated with cooler, wet spring and summer seasons, and milder winters. Others require more explanation; for instance, vegetation appears decoupled from climatic forcing during autumn. Spatially, too, there is much local and regional variation, which is lost when the data are considered only at the largest nationwide scale. We identify a northwest-southeast belt spanning central Iran, which has experienced significant vegetation decline (2001-2015). We tentatively link this belt of land degradation with intensified agriculture in the hinterlands of Iran's major cities. The spatial and temporal trends identified with the three vegetation and two climate indices afford a cost-effective framework for the prediction and management of future environmental trends in developing regions at risk of desertification.
Department of Natural Resources Engineering University of Hormozgan Bandar Abbas Iran
GFÚ Institute of Geophysics Czech Academy of Sciences Prague Czech Republic
School of Geography Earth and Environmental Sciences Plymouth University Plymouth UK
Sustainable Agriculture Sciences Department Rothamsted Research North Wyke Okehampton EX20 2SB UK
Zobrazit více v PubMed
Barrow C. World atlas of desertification (United Nations environment programme), edited by N. Middleton and DSG Thomas. Edward Arnold, London, 1992. isbn 0 340 55512 2, £ 89.50 (hardback), ix+ 69 pp. Land Degrad. Dev. 1992;3(4):249–249. doi: 10.1002/ldr.3400030407. DOI
Jie C, Jing-Zhang C, Man-Zhi T, Zi-tong G. Soil degradation: A global problem endangering sustainable development. J. Geogr. Sci. 2002;12(2):243–252. doi: 10.1007/BF02837480. DOI
Smith P. Managing the global land resource. Proc. Roy. Soc. B: Biol. Sci. 1874;2018(285):20172798. PubMed PMC
Griggs D, Stafford-Smith M, Gaffney O, Rockström J, Öhman MC, Shyamsundar P, Noble I. Sustainable development goals for people and planet. Nature. 2013;495(7441):305–307. doi: 10.1038/495305a. PubMed DOI
Zhou W, et al. Quantitative assessment of the individual contribution of climate and human factors to desertification in northwest China using net primary productivity as an indicator. Ecol. Ind. 2015;48:560–569. doi: 10.1016/j.ecolind.2014.08.043. DOI
Bouma J, Montanarella L, Evanylo G. The challenge for the soil science community to contribute to the implementation of the UN sustainable development goals. Soil Use Manag. 2019;35(4):538–546. doi: 10.1111/sum.12518. DOI
Cerdà, A. & Lavée, H. The effect of grazing on soil and water losses under arid and mediterranean climates. Implications for desertification (1999).
Montgomery DR. Soil erosion and agricultural sustainability. Proc. Natl. Acad. Sci. 2007;104(33):13268–13272. doi: 10.1073/pnas.0611508104. PubMed DOI PMC
Dregne H, Kassas M, Rozanov B. A new assessment of the world status of desertification. Desertif. Control Bull. 1991;20(1):7–18.
Reynolds JF, Smith DMS, Lambin EF, Turner BL, Mortimore M, Batterbury SP, Walker B. Global desertification: Building a science for dryland development. Science. 2007;316(5826):847–851. doi: 10.1126/science.1131634. PubMed DOI
Wessels KJ, Prince SD, Malherbe J, Small J, Frost PE, VanZyl D. Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in South Africa. J. Arid Environ. 2007;68(2):271–297. doi: 10.1016/j.jaridenv.2006.05.015. DOI
Bao Y, Cheng L, Bao Y, Yang L, Jiang L, Long C, Lu Q. Desertification: China provides a solution to a global challenge. Front. Agric. Sci. Eng. 2017;4(4):402–413. doi: 10.15302/J-FASE-2017187. DOI
Brown LJ, Nickling WG. Desertification and wind erosion. Ann. Arid Zone. 2003;42:347–370.
Chasek P, Safriel U, Shikongo S, Fuhrman VF. Operationalizing zero net land degradation: The next stage in international efforts to combat desertification? J. Arid Environ. 2015;112:5–13. doi: 10.1016/j.jaridenv.2014.05.020. DOI
Bakr N, Weindorf DC, Bahnassy MH, El-Badawi MM. Multi-temporal assessment of land sensitivity to desertification in a fragile agro-ecosystem: Environmental indicators. Ecol. Ind. 2012;15(1):271–280. doi: 10.1016/j.ecolind.2011.09.034. DOI
Matarira D, Mutanga O, Dube T. Landscape scale land degradation mapping in the semi-arid areas of the save catchment, Zimbabwe. S. Afr. Geogr. J. 2021;103(2):183–203. doi: 10.1080/03736245.2020.1717588. DOI
Venter ZS, Scott SL, Desmet PG, Hoffman MT. Application of Landsat-derived vegetation trends over South Africa: Potential for monitoring land degradation and restoration. Ecol. Indic. 2020;113:106206. doi: 10.1016/j.ecolind.2020.106206. DOI
Hill J, Megier J, Mehl W. Land degradation, soil erosion and desertification monitoring in Mediterranean ecosystems. Remote Sens. Rev. 1995;12(1–2):107–130. doi: 10.1080/02757259509532278. DOI
Kaiser A, Neugirg F, Rock G, Müller C, Haas F, Ries J, Schmidt J. Small-scale surface reconstruction and volume calculation of soil erosion in complex Moroccan gully morphology using structure from motion. Remote Sens. 2014;6(8):7050–7080. doi: 10.3390/rs6087050. DOI
Ayele GT, Tebeje AK, Demissie SS, Belete MA, Jemberrie MA, Teshome WM, Teshale EZ. Time series land cover mapping and change detection analysis using geographic information system and remote sensing, Northern Ethiopia. Air, Soil Water Res. 2018;11:1178622117751603. doi: 10.1177/1178622117751603. DOI
Wessels KJ, Van Den Bergh F, Scholes RJ. Limits to detectability of land degradation by trend analysis of vegetation index data. Remote Sens. Environ. 2012;125:10–22. doi: 10.1016/j.rse.2012.06.022. DOI
Mbow C, Brandt M, Ouedraogo I, De Leeuw J, Marshall M. What four decades of earth observation tell us about land degradation in the Sahel? Remote Sens. 2015;7(4):4048–4067. doi: 10.3390/rs70404048. DOI
Eckert S, Hüsler F, Liniger H, Hodel E. Trend analysis of MODIS NDVI time series for detecting land degradation and regeneration in Mongolia. J. Arid Environ. 2015;113:16–28. doi: 10.1016/j.jaridenv.2014.09.001. DOI
Stellmes M, Udelhoven T, Röder A, Sonnenschein R, Hill J. Dryland observation at local and regional scale—Comparison of Landsat TM/ETM+ and NOAA AVHRR time series. Remote Sens. Environ. 2010;114(10):2111–2125. doi: 10.1016/j.rse.2010.04.016. DOI
Lamchin M, Lee WK, Jeon SW, Wang SW, Lim CH, Song C, Sung M. Long-term trend and correlation between vegetation greenness and climate variables in Asia based on satellite data. Sci. Total Environ. 2018;618:1089–1095. doi: 10.1016/j.scitotenv.2017.09.145. PubMed DOI
Fensholt R, Proud SR. Evaluation of earth observation based global long term vegetation trends—Comparing GIMMS and MODIS global NDVI time series. Remote Sens. Environ. 2012;119:131–147. doi: 10.1016/j.rse.2011.12.015. DOI
Helldén U. A coupled human–environment model for desertification simulation and impact studies. Global Planet. Change. 2008;64(3–4):158–168. doi: 10.1016/j.gloplacha.2008.09.004. DOI
Higginbottom TP, Symeonakis E. Assessing land degradation and desertification using vegetation index data: Current frameworks and future directions. Remote Sens. 2014;6(10):9552–9575. doi: 10.3390/rs6109552. DOI
Zoungrana BJ, Conrad C, Thiel M, Amekudzi LK, Da ED. MODIS NDVI trends and fractional land cover change for improved assessments of vegetation degradation in Burkina Faso, West Africa. J. Arid Environ. 2018;153:66–75. doi: 10.1016/j.jaridenv.2018.01.005. DOI
Nguy-Robertson AL, Peng Y, Gitelson AA, Arkebauer TJ, Pimstein A, Herrmann I, Bonfil DJ. Estimating green LAI in four crops: Potential of determining optimal spectral bands for a universal algorithm. Agric. For. Meteorol. 2014;192:140–148. doi: 10.1016/j.agrformet.2014.03.004. DOI
Mariano DA, dos Santos CA, Wardlow BD, Anderson MC, Schiltmeyer AV, Tadesse T, Svoboda MD. Use of remote sensing indicators to assess effects of drought and human-induced land degradation on ecosystem health in Northeastern Brazil. Remote Sens. Environ. 2018;213:129–143. doi: 10.1016/j.rse.2018.04.048. DOI
Fernandes FHS, Sano EE, Ferreira LG, de Mello Baptista GM, de Castro Victoria D, Fassoni-Andrade AC. Degradation trends based on MODIS-derived estimates of productivity and water use efficiency: A case study for the cultivated pastures in the Brazilian Cerrado. Remote Sens. Appl.: Soc. Environ. 2018;11:30–40. doi: 10.3390/rs11010030. DOI
De Beurs KM, Henebry GM, Owsley BC, Sokolik I. Using multiple remote sensing perspectives to identify and attribute land surface dynamics in Central Asia 2001–2013. Remote Sens. Environ. 2015;170:48–61. doi: 10.1016/j.rse.2015.08.018. DOI
Burrell AL, Evans JP, Liu Y. The impact of dataset selection on land degradation assessment. ISPRS J. Photogramm. Remote Sens. 2018;146:22–37. doi: 10.1016/j.isprsjprs.2018.08.017. DOI
Yu R, Evans AJ, Malleson N. Quantifying grazing patterns using a new growth function based on MODIS Leaf Area Index. Remote Sens. Environ. 2018;209:181–194. doi: 10.1016/j.rse.2018.02.034. DOI
Prince SD, Becker-Reshef I, Rishmawi K. Detection and mapping of long-term land degradation using local net production scaling: Application to Zimbabwe. Remote Sens. Environ. 2009;113(5):1046–1057. doi: 10.1016/j.rse.2009.01.016. DOI
Fensholt R, Langanke T, Rasmussen K, Reenberg A, Prince SD, Tucker C, Wessels K. Greenness in semi-arid areas across the globe 1981–2007—An Earth Observing Satellite based analysis of trends and drivers. Remote Sens. Environ. 2012;121:144–158. doi: 10.1016/j.rse.2012.01.017. DOI
Gao Y, Huang J, Li S, Li S. Spatial pattern of non-stationarity and scale-dependent relationships between NDVI and climatic factors—A case study in Qinghai-Tibet Plateau, China. Ecol. Ind. 2012;20:170–176. doi: 10.1016/j.ecolind.2012.02.007. DOI
Piao S, Fang J, He J. Variations in vegetation net primary production in the Qinghai-Xizang Plateau, China, from 1982 to 1999. Clim. Change. 2006;74(1):253–267. doi: 10.1007/s10584-005-6339-8. DOI
Muro J, Strauch A, Heinemann S, Steinbach S, Thonfeld F, Waske B, Diekkrüger B. Land surface temperature trends as indicator of land use changes in wetlands. Int. J. Appl. Earth Obs. Geoinf. 2018;70:62–71. doi: 10.1016/j.jag.2018.02.002. DOI
Gholami L, Sadeghi SH, Homaee M. Straw mulching effect on splash erosion, runoff, and sediment yield from eroded plots. Soil Sci. Soc. Am. J. 2013;77(1):268–278. doi: 10.2136/sssaj2012.0271. DOI
Sadeghi SHR, Seghaleh MB, Rangavar AS. Plot sizes dependency of runoff and sediment yield estimates from a small watershed. CATENA. 2013;102:55–61. doi: 10.1016/j.catena.2011.01.003. DOI
Rahmanipour F, Marzaioli R, Bahrami HA, Fereidouni Z, Bandarabadi SR. Assessment of soil quality indices in agricultural lands of Qazvin Province, Iran. Ecol. Indic. 2014;40:19–26. doi: 10.1016/j.ecolind.2013.12.003. DOI
Khaledian Y, Brevik EC, Pereira P, Cerdà A, Fattah MA, Tazikeh H. Modeling soil cation exchange capacity in multiple countries. CATENA. 2017;158:194–200. doi: 10.1016/j.catena.2017.07.002. DOI
Yazdanbakhsh A, Alavi SN, Valadabadi SA, Karimi F, Karimi Z. Heavy metals uptake of salty soils by ornamental sunflower, using cow manure and biosolids: A case study in Alborz city, Iran. Air, Soil Water Res. 2020;13:1178622119898460. doi: 10.1177/1178622119898460. DOI
Kavian A, Mohammadi M, Gholami L, Rodrigo-Comino J. Assessment of the spatiotemporal effects of land use changes on runoff and nitrate loads in the Talar River. Water. 2018;10(4):445. doi: 10.3390/w10040445. DOI
Zeraatpisheh, M. Digital Soil Mapping, Downscaling and Updating Conventional Soil Maps Using GIS, RS, Statistics and Auxiliary Data. Doctoral dissertation, Ghent University (2017).
Ayoubi S, Mokhtari J, Mosaddeghi MR, Zeraatpisheh M. Erodibility of calcareous soils as influenced by land use and intrinsic soil properties in a semiarid region of central Iran. Environ. Monit. Assess. 2018;190(4):1–12. doi: 10.1007/s10661-018-6557-y. PubMed DOI
Sheykhi V, Moore F. Geochemical characterization of Kor river water quality, Fars province, Southwest Iran. Water Qual. Expo. Health. 2012;4(1):25–38. doi: 10.1007/s12403-012-0063-1. DOI
Kharazmi R, Tavili A, Rahdari MR, Chaban L, Panidi E, Rodrigo-Comino J. Monitoring and assessment of seasonal land cover changes using remote sensing: A 30-year (1987–2016) case study of Hamoun Wetland, Iran. Environ. Monit. Assess. 2018;190(6):1–23. doi: 10.1007/s10661-018-6726-z. PubMed DOI
Karandish F, Mousavi SS. Climate change uncertainty and risk assessment in Iran during twenty-first century: Evapotranspiration and green water deficit analysis. Theoret. Appl. Climatol. 2018;131(1):777–791. doi: 10.1007/s00704-016-2008-2. DOI
Modarres R, da Silva VDPR. Rainfall trends in arid and semi-arid regions of Iran. J. Arid Environ. 2007;70(2):344–355. doi: 10.1016/j.jaridenv.2006.12.024. DOI
Abbaspour KC, Faramarzi M, Ghasemi SS, Yang H. Assessing the impact of climate change on water resources in Iran. Water Resour. Res. 2009;45(10):1–16. doi: 10.1029/2008WR007615. DOI
Ghasemifar E, Farajzadeh M, Perry MC, Rahimi YG, Bidokhti AA. Analysis of spatiotemporal variations of cloud fraction based on geographic characteristics over Iran. Theoret. Appl. Climatol. 2018;134(3):1429–1445. doi: 10.1007/s00704-017-2308-1. DOI
Jafari R, Hasheminasab S. Assessing the effects of dam building on land degradation in central Iran with Landsat LST and LULC time series. Environ. Monit. Assess. 2017;189(2):74. doi: 10.1007/s10661-017-5792-y. PubMed DOI
Madani K, AghaKouchak A, Mirchi A. Iran’s socio-economic drought: Challenges of a water-bankrupt nation. Iran. Stud. 2016;49(6):997–1016. doi: 10.1080/00210862.2016.1259286. DOI
Keshavarz M, Karami E, Zibaei M. Adaptation of Iranian farmers to climate variability and change. Reg. Environ. Change. 2014;14(3):1163–1174. doi: 10.1007/s10113-013-0558-8. DOI
Amiraslani F, Dragovich D. Combating desertification in Iran over the last 50 years: An overview of changing approaches. J. Environ. Manag. 2011;92(1):1–13. doi: 10.1016/j.jenvman.2010.08.012. PubMed DOI
Du L, Tian Q, Yu T, Meng Q, Jancso T, Udvardy P, Huang Y. A comprehensive drought monitoring method integrating MODIS and TRMM data. Int. J. Appl. Earth Obs. Geoinf. 2013;23:245–253. doi: 10.1016/j.jag.2012.09.010. DOI
Daham A, Han D, Rico-Ramirez M, Marsh A. Analysis of NVDI variability in response to precipitation and air temperature in different regions of Iraq, using MODIS vegetation indices. Environ. Earth Sci. 2018;77(10):1–24. doi: 10.1007/s12665-018-7560-x. DOI
Di Vittorio CA, Georgakakos AP. Land cover classification and wetland inundation mapping using MODIS. Remote Sens. Environ. 2018;204:1–17. doi: 10.1016/j.rse.2017.11.001. DOI
Landeschi G, Nilsson B, Dell'Unto N. Assessing the damage of an archaeological site: New contributions from the combination of image-based 3D modelling techniques and GIS. J. Archaeol. Sci. Rep. 2016;10:431–440.
Eskandari Damaneh H, Jafari M, Eskandari Damaneh H, Behnia M, Khoorani A, Tiefenbacher JP. Testing possible scenario-based responses of vegetation under expected climatic changes in Khuzestan Province. Air, Soil Water Res. 2021;14:11786221211013332. doi: 10.1177/11786221211013332. DOI
Sala, O. E. & Austin, A. T. Methods of estimating aboveground net primary productivity. In Methods in Ecosystem Science 31–43 (Springer, 2000).
Ahmadaali K, Damaneh HE, Ababaei B, Damaneh HE. Impacts of droughts on rainfall use efficiency in different climatic zones and land uses in Iran. Arab. J. Geosci. 2021;14(2):1–15. doi: 10.1007/s12517-020-06389-1. DOI
Eskandari H, Borji M, Khosravi H, Mesbahzadeh T. Desertification of forest, range and desert in Tehran province, affected by climate change. Solid Earth. 2016;7(3):905–915. doi: 10.5194/se-7-905-2016. DOI
De Leeuw J, Rizayeva A, Namazov E, Bayramov E, Marshall MT, Etzold J, Neudert R. Application of the MODIS MOD 17 net primary production product in grassland carrying capacity assessment. Int. J. Appl. Earth Obs. Geoinf. 2019;78:66–76. doi: 10.1016/j.jag.2018.09.014. DOI
Morse PD, Wolfe SA, Kokelj SV, Gaanderse AJR. The occurrence and thermal disequilibrium state of permafrost in forest ecotopes of the Great Slave Region, Northwest Territories, Canada. Permafr. Periglac. Process. 2016;27(2):145–162. doi: 10.1002/ppp.1858. DOI
Gitelson AA. Remote estimation of fraction of radiation absorbed by photosynthetically active vegetation: Generic algorithm for maize and soybean. Remote Sens. Lett. 2019;10(3):283–291. doi: 10.1080/2150704X.2018.1547445. DOI
Myneni, R., Knyazikhin, Y. & Park, T. MOD15A2H MODIS/Terra Leaf Area Index/FPAR 8-Day L4 Global 500 m SIN Grid V006. NASA EOSDIS Land Processes DAAC (accessed 08 May 2020); 10.5067/MODIS/MOD15A2H.006 (2015).
Tharammal T, Bala G, Narayanappa D, Nemani R. Potential roles of CO2 fertilization, nitrogen deposition, climate change, and land use and land cover change on the global terrestrial carbon uptake in the twenty-first century. Clim. Dyn. 2019;52(7):4393–4406. doi: 10.1007/s00382-018-4388-8. DOI
Luo P, Zhou M, Deng H, Lyu J, Cao W, Takara K, Schladow SG. Impact of forest maintenance on water shortages: Hydrologic modeling and effects of climate change. Sci. Total Environ. 2018;615:1355–1363. doi: 10.1016/j.scitotenv.2017.09.044. PubMed DOI
Kotikot SM, Flores A, Griffin RE, Sedah A, Nyaga J, Mugo R, Irwin DE. Mapping threats to agriculture in East Africa: Performance of MODIS derived LST for frost identification in Kenya’s tea plantations. Int. J. Appl. Earth Obs. Geoinf. 2018;72:131–139. doi: 10.1016/j.jag.2018.05.009. DOI
Aguilar-Lome J, Espinoza-Villar R, Espinoza JC, Rojas-Acuña J, Willems BL, Leyva-Molina WM. Elevation-dependent warming of land surface temperatures in the Andes assessed using MODIS LST time series (2000–2017) Int. J. Appl. Earth Obs. Geoinf. 2019;77:119–128. doi: 10.1016/j.jag.2018.12.013. DOI
Wan Z, Hulley G. MOD11C1 MODIS/Terra Land Surface Temperature/Emissivity Daily L3 Global 0.05 Deg CMG V006. NASA EOSDIS Land Processes DAAC. University of Hamburg; 2015.
Kummerow C, Barnes W, Kozu T, Shiue J, Simpson J. The tropical rainfall measuring mission (TRMM) sensor package. J. Atmos. Ocean. Technol. 1998;15(3):809–817. doi: 10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2. DOI
Sun Q, Miao C, Duan Q, Ashouri H, Sorooshian S, Hsu KL. A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Rev. Geophys. 2018;56(1):79–107. doi: 10.1002/2017RG000574. DOI
Anderson MC, Zolin CA, Sentelhas PC, Hain CR, Semmens K, Yilmaz MT, Tetrault R. The evaporative stress index as an indicator of agricultural drought in Brazil: An assessment based on crop yield impacts. Remote Sens. Environ. 2016;174:82–99. doi: 10.1016/j.rse.2015.11.034. DOI
Li Z, Huffman T, McConkey B, Townley-Smith L. Monitoring and modeling spatial and temporal patterns of grassland dynamics using time-series MODIS NDVI with climate and stocking data. Remote Sens. Environ. 2013;138:232–244. doi: 10.1016/j.rse.2013.07.020. DOI
Kaspersen PS, Fensholt R, Huber S. A spatiotemporal analysis of climatic drivers for observed changes in Sahelian vegetation productivity (1982–2007) Int. J. Geophys. 2011;2011:1–14. doi: 10.1155/2011/715321. DOI
Hamed KH, Rao AR. A modified Mann–Kendall trend test for autocorrelated data. J. Hydrol. 1998;204(1–4):182–196. doi: 10.1016/S0022-1694(97)00125-X. DOI
Asfaw A, Simane B, Hassen A, Bantider A. Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: A case study in Woleka sub-basin. Weather Clim. Extrem. 2018;19:29–41. doi: 10.1016/j.wace.2017.12.002. DOI
Sen PK. Estimates of the regression coefficient based on Kendall's tau. J. Am. Stat. Assoc. 1968;63(324):1379–1389. doi: 10.1080/01621459.1968.10480934. DOI
Theil H. A rank-invariant method of linear and polynomial regression analysis. Indag. Math. 1950;12(85):173.
Verbyla D. The greening and browning of Alaska based on 1982–2003 satellite data. Glob. Ecol. Biogeogr. 2008;17(4):547–555. doi: 10.1111/j.1466-8238.2008.00396.x. DOI
Symeonakis E, Drake N. Monitoring desertification and land degradation over sub-Saharan Africa. Int. J. Remote Sens. 2004;25(3):573–592. doi: 10.1080/0143116031000095998. DOI
Lavee H, Imeson AC, Sarah P. The impact of climate change on geomorphology and desertification along a Mediterranean-arid transect. Land Degrad. Dev. 1998;9(5):407–422. doi: 10.1002/(SICI)1099-145X(199809/10)9:5<407::AID-LDR302>3.0.CO;2-6. DOI
Cantón Y, Solé-Benet A, De Vente J, Boix-Fayos C, Calvo-Cases A, Asensio C, Puigdefábregas J. A review of runoff generation and soil erosion across scales in semiarid south-eastern Spain. J. Arid Environ. 2011;75(12):1254–1261. doi: 10.1016/j.jaridenv.2011.03.004. DOI
Davidson EA, Janssens IA. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature. 2006;440(7081):165–173. doi: 10.1038/nature04514. PubMed DOI
Mao J, Ribes A, Yan B, Shi X, Thornton PE, Séférian R, Lian X. Human-induced greening of the northern extratropical land surface. Nat. Clim. Chang. 2016;6(10):959–963. doi: 10.1038/nclimate3056. DOI
Soltani M, Laux P, Kunstmann H, Stan K, Sohrabi MM, Molanejad M, Martin MV. Assessment of climate variations in temperature and precipitation extreme events over Iran. Theoret. Appl. Climatol. 2016;126(3):775–795. doi: 10.1007/s00704-015-1609-5. DOI
Carlson TN, Ripley DA. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 1997;62(3):241–252. doi: 10.1016/S0034-4257(97)00104-1. DOI
Mesgaran, M. B. & Azadi, P. A national adaptation plan for water scarcity in Iran. In Working Paper 6, Stanford Iran 2040 Project, Stanford University, August 2018 (2018).
Krüger E, Drach P, Emmanuel R. Atmospheric impacts on daytime urban heat island. Air, Soil Water Res. 2018;11:1178622118810201. doi: 10.1177/1178622118810201. DOI
Tabari H, Talaee PH. Sensitivity of evapotranspiration to climatic change in different climates. Glob. Planet. Change. 2014;115:16–23. doi: 10.1016/j.gloplacha.2014.01.006. DOI
Peña-Angulo D, Nadal-Romero E, González-Hidalgo JC, Albaladejo J, Andreu V, Bagarello V, Zorn M. Spatial variability of the relationships of runoff and sediment yield with weather types throughout the Mediterranean basin. J. Hydrol. 2019;571:390–405. doi: 10.1016/j.jhydrol.2019.01.059. DOI
Rodrigo-Comino J, Senciales JM, Sillero-Medina JA, Gyasi-Agyei Y, Ruiz-Sinoga JD, Ries JB. Analysis of weather-type-induced soil erosion in cultivated and poorly managed abandoned sloping vineyards in the Axarquía region (Málaga, Spain) Air, Soil Water Res. 2019;12:1178622119839403.
Soltani S, Saboohi R, Yaghmaei L. Rainfall and rainy days trend in Iran. Clim. Change. 2012;110(1):187–213. doi: 10.1007/s10584-011-0146-1. DOI
Modarres R, Sarhadi A. Rainfall trends analysis of Iran in the last half of the twentieth century. J. Geophys. Res.: Atmos. 2009;114(D3):1–28. doi: 10.1029/2008JD010707. DOI
Mirzaei A, Saghafian B, Mirchi A, Madani K. The groundwater-energy-food nexus in Iran’s agricultural sector: Implications for water security. Water. 2019;11(9):1835. doi: 10.3390/w11091835. DOI
Sadeghi SH, Nouri H, Faramarzi M. Assessing the spatial distribution of rainfall and the effect of altitude in Iran (Hamadan Province) Air, Soil Water Res. 2017;10:1178622116686066. doi: 10.1177/1178622116686066. DOI
Pan N, Feng X, Fu B, Wang S, Ji F, Pan S. Increasing global vegetation browning hidden in overall vegetation greening: Insights from time-varying trends. Remote Sens. Environ. 2018;214:59–72. doi: 10.1016/j.rse.2018.05.018. DOI
Wang X, Tan K, Chen B, Du P. Assessing the spatiotemporal variation and impact factors of net primary productivity in China. Sci. Rep. 2017;7(1):1–10. doi: 10.1038/s41598-016-0028-x. PubMed DOI PMC
Ashraf S, Nazemi A, AghaKouchak A. Anthropogenic drought dominates groundwater depletion in Iran. Sci. Rep. 2021;11(1):1–10. doi: 10.1038/s41598-020-79139-8. PubMed DOI PMC
Baghvand A, Nasrabadi T, Bidhendi GN, Vosoogh A, Karbassi A, Mehrdadi N. Groundwater quality degradation of an aquifer in Iran central desert. Desalination. 2010;260(1–3):264–275. doi: 10.1016/j.desal.2010.02.038. DOI
D'Oleire-Oltmanns S, Marzolff I, Peter KD, Ries JB. Unmanned aerial vehicle (UAV) for monitoring soil erosion in Morocco. Remote Sens. 2012;4(11):3390–3416. doi: 10.3390/rs4113390. DOI
Dittrich A, von Wehrden H, Abson DJ, Bartkowski B, Cord AF, Fust P, Beckmann M. Mapping and analysing historical indicators of ecosystem services in Germany. Ecol. Ind. 2017;75:101–110. doi: 10.1016/j.ecolind.2016.12.010. DOI
Akinyemi FO, Tlhalerwa LT, Eze PN. Land degradation assessment in an African dryland context based on the composite land degradation index and mapping method. Geocarto Int. 2019;32:1–17.
Angulo-Martínez M, López-Vicente M, Vicente-Serrano SM, Beguería S. Mapping rainfall erosivity at a regional scale: A comparison of interpolation methods in the Ebro Basin (NE Spain) Hydrol. Earth Syst. Sci. 2009;13(10):1907–1920. doi: 10.5194/hess-13-1907-2009. DOI
Rodrigo-Comino J, Senciales JM, Cerdà A, Brevik EC. The multidisciplinary origin of soil geography: A review. Earth Sci. Rev. 2018;177:114–123. doi: 10.1016/j.earscirev.2017.11.008. DOI
Rahimi J, Ebrahimpour M, Khalili A. Spatial changes of extended De Martonne climatic zones affected by climate change in Iran. Theoret. Appl. Climatol. 2013;112(3):409–418. doi: 10.1007/s00704-012-0741-8. DOI