Polyethylene Glycol and Sorbitol-Mediated In Vitro Screening for Drought Stress as an Efficient and Rapid Tool to Reach the Tolerant Cucumis melo L. Genotypes
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
IGA/FT/2022/004
TBU in Zlin
PubMed
36840218
PubMed Central
PMC9967323
DOI
10.3390/plants12040870
PII: plants12040870
Knihovny.cz E-resources
- Keywords
- evaluation melon, osmoregulation, simulation, water deficit,
- Publication type
- Journal Article MeSH
An efficient method to instantly assess drought-tolerant plants after germination is using osmoregulation in tissue culture media. In this study, the responses of three Iranian melon genotypes to sorbitol (0.1, 0.2, and 0.4 M) or polyethylene glycol (PEG) (0.009, 0.012, and 0.015 M) were evaluated as drought stress simulators in MS medium. 'Girke' (GIR), 'Ghobadloo' (GHO), and 'Toghermezi' (TOG) were the genotypes. GIR is reputed as a drought-tolerant genotype in Iran. The PEG or sorbitol decreased the coleoptile length, fresh weight, and photosynthetic pigments content while enhancing proline and malondialdehyde (MDA) contents. Protein content and antioxidant enzyme activity were utterly dependent on genotype, osmotic regulators, and their concentration. Coleoptile length, root and shoot fresh weight, root dry weight, proline and MDA content, and guaiacol peroxidase (GPX) activity can be used as indicators for in vitro screening of Cucumis melo L. genotypes. The results showed that sorbitol mimics drought stress better than PEG. Overall, our findings suggest that in vitro screening could be an accurate, rapid, and reliable methodology for evaluating and identifying drought-tolerant genotypes.
See more in PubMed
Ouzounidou G., Giannakoula A., Ilias I., Zamanidis P. Alleviation of drought and salinity stresses on growth, physiology, biochemistry and quality of two Cucumis sativus L. cultivars by Si application. Braz. J. Bot. 2016;39:531–539. doi: 10.1007/s40415-016-0274-y. DOI
Eskandari Dameneh H., Gholami H., Telfer M.W., Comino J.R., Collins A.L., Jansen J.D. Desertification of Iran in the early twenty-first century: Assessment using climate and vegetation indices. Sci. Rep. 2021;11:20548. doi: 10.1038/s41598-021-99636-8. PubMed DOI PMC
Kıran S., Furtana G.B., Talhouni M., Ellialtıoğlu Ş.Ş. Drought stress mitigation with humic acid in two Cucumis melo L. genotypes differ in their drought tolerance. Bragantia. 2019;78:490–497. doi: 10.1590/1678-4499.20190057. DOI
Zahedi S.M., Hosseini M.S., Meybodi N.D.H., Abadía J., Germ M., Gholami R., Abdelrahman M. Evaluation of drought tolerance in three commercial pomegranate cultivars using photosynthetic pigments, yield parameters and biochemical traits as biomarkers. Agric. Water Manag. 2022;261:107357. doi: 10.1016/j.agwat.2021.107357. DOI
Abdelrahman M., Burritt D.J., Tran L.-S.P. The use of metabolomic quantitative trait locus mapping and osmotic adjustment traits for the improvement of crop yields under environmental stresses. Semin. Cell Dev. Biol. 2018;83:86–94. doi: 10.1016/j.semcdb.2017.06.020. PubMed DOI
Pourghayoumi M., Bakhshi D., Rahemi M., Kamgar-Haghighi A.A., Aalami A. The physiological responses of various pomegranate cultivars to drought stress and recovery in order to screen for drought tolerance. Sci. Hortic. 2017;217:164–172. doi: 10.1016/j.scienta.2017.01.044. DOI
Kavas M., Baloğlu M.C., Akca O., Köse F.S., Gökçay D. Effect of drought stress on oxidative damage and antioxidant enzyme activity in melon seedlings. Turk. J. Biol. 2013;37:491–498. doi: 10.3906/biy-1210-55. DOI
Munger H., Robinson R. Nomenclature of Cucumis melo L. Cucurbit. Genet. Coop Rep. 1991;14:43–44.
Rai M.K., Kalia R.K., Singh R., Gangola M.P., Dhawan A. Developing stress tolerant plants through in vitro selection—An overview of the recent progress. Environ. Exp. Bot. 2011;71:89–98. doi: 10.1016/j.envexpbot.2010.10.021. DOI
Dwivedi S.L., Ceccarelli S., Blair M.W., Upadhyaya H.D., Are A.K., Ortiz R. Landrace germplasm for improving yield and abiotic stress adaptation. Trends Plant Sci. 2016;21:31–42. doi: 10.1016/j.tplants.2015.10.012. PubMed DOI
Errabii T., Gandonou C.B., Essalmani H., Abrini J., Idaomar M., Skali-Senhaji N. Growth, proline and ion accumulation in sugarcane callus cultures under drought-induced osmotic stress and its subsequent relief. Afr. J. Biotechnol. 2006;5:1488–1493.
Munns R., Husain S., Rivelli A.R., James R.A., Condon A., Lindsay M.P., Lagudah E.S., Schachtman D.P., Hare R.A. Progress in Plant Nutrition: Plenary Lectures of the XIV International Plant Nutrition Colloquium. Springer Nature; Hannover, The Netherlands: 2002. Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits; pp. 93–105.
Gopal J., Iwama K. In vitro screening of potato against water-stress mediated through sorbitol and polyethylene glycol. Plant Cell Rep. 2007;26:693–700. doi: 10.1007/s00299-006-0275-6. PubMed DOI
D’souza A.A., Shegokar R. Polyethylene glycol (PEG): A versatile polymer for pharmaceutical applications. Expert Opin. Drug Deliv. 2016;13:1257–1275. doi: 10.1080/17425247.2016.1182485. PubMed DOI
Siaga E., Maharijaya A., Rahayu M.S. Plant Growth of Eggplant (Solanum melongena L.) In Vitro in Drought Stress Polyethylene Glycol (PEG) BIOVALENTIA Biol. Res. J. 2016;2:10–17. doi: 10.24233/BIOV.2.1.2016.29. DOI
Cammenga H., Figura L., Zielasko B. Thermal behaviour of some sugar alcohols. J. Therm. Anal. Calorim. 1996;47:427–434. doi: 10.1007/BF01983984. DOI
Ansari W.A., Atri N., Ahmad J., Qureshi M.I., Singh B., Kumar R., Rai V., Pandey S. Drought mediated physiological and molecular changes in muskmelon (Cucumis melo L.) PLoS ONE. 2019;14:e0222647. doi: 10.1371/journal.pone.0222647. PubMed DOI PMC
Jaleel C.A., Manivannan P., Wahid A., Farooq M., Al-Juburi H.J., Somasundaram R., Panneerselvam R. Drought stress in plants: A review on morphological characteristics and pigments composition. Int. J. Agric. Biol. 2009;11:100–105.
Abu-Romman S., Suwwan M., Al-Shadiadeh A., Hasan H. Effects of osmotic stress on cucumber (Cucumis sativus L.) microshoots cultured on proliferation medium. World Appl. Sci. J. 2012;20:177–181.
Hellal F., El-Shabrawi H., Abd El-Hady M., Khatab I., El-Sayed S., Abdelly C. Influence of PEG induced drought stress on molecular and biochemical constituents and seedling growth of Egyptian barley cultivars. J. Genet. Eng. Biotechnol. 2018;16:203–212. doi: 10.1016/j.jgeb.2017.10.009. PubMed DOI PMC
Sairam R., Saxena D. Oxidative stress and antioxidants in wheat genotypes: Possible mechanism of water stress tolerance. J. Agron. Crop Sci. 2000;184:55–61. doi: 10.1046/j.1439-037x.2000.00358.x. DOI
Shivakrishna P., Reddy K.A., Rao D.M. Effect of PEG-6000 imposed drought stress on RNA content, relative water content (RWC), and chlorophyll content in peanut leaves and roots. Saudi J. Biol. Sci. 2018;25:285–289. PubMed PMC
Sun Y., Wang H., Liu S., Peng X. Exogenous application of hydrogen peroxide alleviates drought stress in cucumber seedlings. S. Afr. J. Bot. 2016;106:23–28. doi: 10.1016/j.sajb.2016.05.008. DOI
Per T.S., Khan N.A., Reddy P.S., Masood A., Hasanuzzaman M., Khan M.I.R., Anjum N.A. Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: Phytohormones, mineral nutrients and transgenics. Plant Physiol. Biochem. 2017;115:126–140. doi: 10.1016/j.plaphy.2017.03.018. PubMed DOI
Gill S.S., Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010;48:909–930. doi: 10.1016/j.plaphy.2010.08.016. PubMed DOI
Jariteh M., Ebrahimzadeh H., Niknam V., Mirmasoumi M., Vahdati K. Developmental changes of protein, proline and some antioxidant enzymes activities in somatic and zygotic embryos of Persian walnut (Juglans regia L.) Plant Cell Tissue Organ Cult. (PCTOC) 2015;122:101–115. doi: 10.1007/s11240-015-0753-z. DOI
Gharibi S., Tabatabaei B.E.S., Saeidi G., Goli S.A.H. Effect of drought stress on total phenolic, lipid peroxidation, and antioxidant activity of Achillea species. Appl. Biochem. Biotechnol. 2016;178:796–809. doi: 10.1007/s12010-015-1909-3. PubMed DOI
Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002;7:405–410. doi: 10.1016/S1360-1385(02)02312-9. PubMed DOI
Shirani Bidabadi S., Sharifi P. Strigolactone and methyl Jasmonate-induced antioxidant defense and the composition alterations of different active compounds in Dracocephalum kotschyi Boiss under drought stress. J. Plant Growth Regul. 2021;40:878–889. doi: 10.1007/s00344-020-10157-6. DOI
Rezayian M., Niknam V., Ebrahimzadeh H. Differential responses of phenolic compounds of Brassica napus under drought stress. Iran. J. Plant Physiol. 2018;8:2417–2425.
Josipović A., Sudar R., Sudarić A., Jurković V., Matoša Kočar M., Markulj Kulundžić A. Total phenolic and total flavonoid content variability of soybean genotypes in eastern Croatia. Croat. J. Food Sci. Technol. 2016;8:60–65. doi: 10.17508/CJFST.2016.8.2.04. DOI
Anjum s.A., Xie X., Wang L.C., Saleem M.F., Man C., Lei W. Morphological, physiological and biochemical responses of plants to drought stress. Afr. J. Agric. Res. 2011;6:2026–2032.
Sebnem K. Effects of drought and salt stresses on growth, stomatal conductance, leaf water and osmotic potentials of melon genotypes (Cucumis melo L.) Afr. J. Agric. Res. 2012;7:775–781.
Ghassemi-Golezani K., Farhadi N., Nikpour-Rashidabad N. Responses of in vitro-cultured Allium hirtifolium to exogenous sodium nitroprusside under PEG-imposed drought stress. Plant Cell Tissue Organ Cult. (PCTOC) 2018;133:237–248. doi: 10.1007/s11240-017-1377-2. DOI
Sharma P., Gujral H.S., Singh B. Antioxidant activity of barley as affected by extrusion cooking. Food Chem. 2012;131:1406–1413. doi: 10.1016/j.foodchem.2011.10.009. DOI
Zahedi S.M., Moharrami F., Sarikhani S., Padervand M. Selenium and silica nanostructure-based recovery of strawberry plants subjected to drought stress. Sci. Rep. 2020;10:1–18. doi: 10.1038/s41598-020-74273-9. PubMed DOI PMC
Behboudi F., Tahmasebi Sarvestani Z., Kassaee M.Z., Modares Sanavi S., Sorooshzadeh A. Improving growth and yield of wheat under drought stress via application of SiO2 nanoparticles. J. Agric. Sci. Technol. 2018;20:1479–1492.
Khudsar T., Iqbal M. Cadmium-induced changes in leaf epidermes, photosynthetic rate and pigment concentrations in Cajanus cajan. Biol. Plant. 2001;44:59–64. doi: 10.1023/A:1017918320697. DOI
Farooq M., Wahid A., Kobayashi N., Fujita D., Basra S. Sustainable Agriculture. Springer; Berlin/Heidelberg, Germany: 2009. Plant drought stress: Effects, mechanisms and management; pp. 153–188.
Reid D.S. Water Activity in Foods. Wiley Online Library; Hoboken, NJ, USA: 2020. Water Activity; pp. 13–26.
Michel B.E., Kaufmann M.R. The osmotic potential of polyethylene glycol 6000. Plant Physiol. 1973;51:914–916. doi: 10.1104/pp.51.5.914. PubMed DOI PMC
Armon D. Copper enzymes in isolated chloroplast. Plant Physiol. 1949;24:1–15. doi: 10.1104/pp.24.1.1. PubMed DOI PMC
Bates L., Waldren R.P., Tare I.D. Rapid Determination of Free Proline for Water Stress Studies. Plant Soil. 1973;33:205–208. doi: 10.1007/BF00018060. DOI
Heath R.L., Packer L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968;125:189–198. doi: 10.1016/0003-9861(68)90654-1. PubMed DOI
Sinha S., Saxena R., Singh S. Chromium induced lipid peroxidation in the plants of Pistia stratiotes L.: Role of antioxidants and antioxidant enzymes. Chemosphere. 2005;58:595–604. doi: 10.1016/j.chemosphere.2004.08.071. PubMed DOI
Chiou M.J., Wang Y.D., Kuo C.M., Chen J.C., Chen J.Y. Functional analysis of mitogen-activated protein kinase-3 (MAPK3) and its regulation of the promoter region in zebrafish. DNA Cell Biol. 2007;26:781–790. doi: 10.1089/dna.2007.0613. PubMed DOI
Singleton V.L., Rossi J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965;16:144–158.
Chang C.C., Yang M.H., Wen H.M., Chern J.-C. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 2002;10:45–52.
Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
Nakano Y., Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981;22:867–880.