PHF3 regulates neuronal gene expression through the Pol II CTD reader domain SPOC
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
I 1593
Austrian Science Fund FWF - Austria
T 795
Austrian Science Fund FWF - Austria
Wellcome Trust - United Kingdom
P 31546
Austrian Science Fund FWF - Austria
I 525
Austrian Science Fund FWF - Austria
PubMed
34667177
PubMed Central
PMC8526623
DOI
10.1038/s41467-021-26360-2
PII: 10.1038/s41467-021-26360-2
Knihovny.cz E-zdroje
- MeSH
- buněčné linie MeSH
- fosforylace MeSH
- genetická transkripce MeSH
- genový knockdown MeSH
- lidé MeSH
- myši knockoutované MeSH
- myši MeSH
- neurony chemie metabolismus MeSH
- posttranskripční úpravy RNA MeSH
- proteinové domény MeSH
- regulace genové exprese MeSH
- RNA-polymerasa II chemie genetika metabolismus MeSH
- RNA * chemie genetika metabolismus MeSH
- stabilita RNA MeSH
- transkripční faktory genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- PHF3 protein, human MeSH Prohlížeč
- RNA-polymerasa II MeSH
- RNA * MeSH
- transkripční faktory MeSH
The C-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) is a regulatory hub for transcription and RNA processing. Here, we identify PHD-finger protein 3 (PHF3) as a regulator of transcription and mRNA stability that docks onto Pol II CTD through its SPOC domain. We characterize SPOC as a CTD reader domain that preferentially binds two phosphorylated Serine-2 marks in adjacent CTD repeats. PHF3 drives liquid-liquid phase separation of phosphorylated Pol II, colocalizes with Pol II clusters and tracks with Pol II across the length of genes. PHF3 knock-out or SPOC deletion in human cells results in increased Pol II stalling, reduced elongation rate and an increase in mRNA stability, with marked derepression of neuronal genes. Key neuronal genes are aberrantly expressed in Phf3 knock-out mouse embryonic stem cells, resulting in impaired neuronal differentiation. Our data suggest that PHF3 acts as a prominent effector of neuronal gene regulation by bridging transcription with mRNA decay.
CEITEC Central European Institute of Technology Masaryk University Brno Czech Republic
Comprehensive Cancer Center Medical University of Vienna Vienna Austria
Department of Radiation Oncology Medical University of Vienna Vienna Austria
Institute of Molecular Biotechnology of the Austrian Academy of Sciences Vienna Austria
Institute of Science and Technology Austria Am Campus 1 Klosterneuburg Austria
National Centre for Biomolecular Research Faculty of Science Masaryk University Brno Czech Republic
Research Institute of Molecular Pathology Vienna Austria
The Berlin Institute for Medical Systems Biology Max Delbrück Center Berlin Germany
Zobrazit více v PubMed
Chen FX, Smith ER, Shilatifard A. Born to run: control of transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 2018;19:464–478. doi: 10.1038/s41580-018-0010-5. PubMed DOI
Kwak H, Lis JT. Control of transcriptional elongation. Annu. Rev. Genet. 2013;47:483–508. doi: 10.1146/annurev-genet-110711-155440. PubMed DOI PMC
Core L, Adelman K. Promoter-proximal pausing of RNA polymerase II: a nexus of gene regulation. Genes Dev. 2019;33:960–982. doi: 10.1101/gad.325142.119. PubMed DOI PMC
Lee TI, Young RA. Transcriptional regulation and its misregulation in disease. Cell. 2013;152:1237–1251. doi: 10.1016/j.cell.2013.02.014. PubMed DOI PMC
Chen FX, et al. PAF1, a molecular regulator of promoter-proximal pausing by RNA polymerase II. Cell. 2015;162:1003–1015. doi: 10.1016/j.cell.2015.07.042. PubMed DOI PMC
Close P, et al. DBIRD complex integrates alternative mRNA splicing with RNA polymerase II transcript elongation. Nature. 2012;484:386–389. doi: 10.1038/nature10925. PubMed DOI PMC
Fitz, J., Neumann, T. & Pavri, R. Regulation of RNA polymerase II processivity by Spt5 is restricted to a narrow window during elongation. The EMBO J.37 (2018). PubMed PMC
Jonkers I, Lis JT. Getting up to speed with transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 2015;16:167–177. doi: 10.1038/nrm3953. PubMed DOI PMC
Sims RJ, 3rd, Belotserkovskaya R, Reinberg D. Elongation by RNA polymerase II: the short and long of it. Genes Dev. 2004;18:2437–2468. doi: 10.1101/gad.1235904. PubMed DOI
Saldi T, Cortazar MA, Sheridan RM, Bentley DL. Coupling of RNA polymerase II transcription elongation with Pre-mRNA splicing. J. Mol. Biol. 2016;428:2623–2635. doi: 10.1016/j.jmb.2016.04.017. PubMed DOI PMC
Saponaro M, et al. RECQL5 controls transcript elongation and suppresses genome instability associated with transcription stress. Cell. 2014;157:1037–1049. doi: 10.1016/j.cell.2014.03.048. PubMed DOI PMC
Diamant G, Amir-Zilberstein L, Yamaguchi Y, Handa H, Dikstein R. DSIF restricts NF-kappaB signaling by coordinating elongation with mRNA processing of negative feedback genes. Cell Rep. 2012;2:722–731. doi: 10.1016/j.celrep.2012.08.041. PubMed DOI
Yu M, et al. RNA polymerase II-associated factor 1 regulates the release and phosphorylation of paused RNA polymerase II. Sci. (N. Y., N. Y.) 2015;350:1383–1386. doi: 10.1126/science.aad2338. PubMed DOI PMC
Rahl PB, et al. c-Myc regulates transcriptional pause release. Cell. 2010;141:432–445. doi: 10.1016/j.cell.2010.03.030. PubMed DOI PMC
Hou, L. et al. Paf1C regulates RNA polymerase II progression by modulating elongation rate. Proceedings of the National Academy of Sciences of the United States of America (2019). PubMed PMC
Gregersen LH, et al. SCAF4 and SCAF8, mRNA anti-terminator proteins. Cell. 2019;177:1797–1813.e1718. doi: 10.1016/j.cell.2019.04.038. PubMed DOI PMC
Sheridan RM, Fong N, D’Alessandro A, Bentley DL. Widespread backtracking by RNA Pol II is a major effector of gene activation, 5’ pause release, termination, and transcription elongation rate. Mol. Cell. 2019;73:107–118.e104. doi: 10.1016/j.molcel.2018.10.031. PubMed DOI PMC
Harlen, K. M. & Churchman, L. S. The code and beyond: transcription regulation by the RNA polymerase II carboxy-terminal domain. Nature reviews. Molecular cell Biology (2017). PubMed
Bernecky C, Plitzko JM, Cramer P. Structure of a transcribing RNA polymerase II-DSIF complex reveals a multidentate DNA-RNA clamp. Nat. Struct. Mol. Biol. 2017;24:809–815. doi: 10.1038/nsmb.3465. PubMed DOI
Vos SM, et al. Structure of activated transcription complex Pol II-DSIF-PAF-SPT6. Nature. 2018;560:607–612. doi: 10.1038/s41586-018-0440-4. PubMed DOI
Herzel L, Ottoz DSM, Alpert T, Neugebauer KM. Splicing and transcription touch base: co-transcriptional spliceosome assembly and function. Nat. Rev. Mol. Cell Biol. 2017;18:637–650. doi: 10.1038/nrm.2017.63. PubMed DOI PMC
Eick D, Geyer M. The RNA polymerase II carboxy-terminal domain (CTD) code. Chem. Rev. 2013;113:8456–8490. doi: 10.1021/cr400071f. PubMed DOI
Hsin JP, Manley JL. The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev. 2012;26:2119–2137. doi: 10.1101/gad.200303.112. PubMed DOI PMC
Meinhart A, Cramer P. Recognition of RNA polymerase II carboxy-terminal domain by 3’-RNA-processing factors. Nature. 2004;430:223–226. doi: 10.1038/nature02679. PubMed DOI
Fabrega C, Shen V, Shuman S, Lima CD. Structure of an mRNA capping enzyme bound to the phosphorylated carboxy-terminal domain of RNA polymerase II. Mol. cell. 2003;11:1549–1561. doi: 10.1016/S1097-2765(03)00187-4. PubMed DOI
Ghosh A, Shuman S, Lima CD. Structural insights to how mammalian capping enzyme reads the CTD code. Mol. cell. 2011;43:299–310. doi: 10.1016/j.molcel.2011.06.001. PubMed DOI PMC
Doamekpor SK, Sanchez AM, Schwer B, Shuman S, Lima CD. How an mRNA capping enzyme reads distinct RNA polymerase II and Spt5 CTD phosphorylation codes. Genes Dev. 2014;28:1323–1336. doi: 10.1101/gad.242768.114. PubMed DOI PMC
Becker R, Loll B, Meinhart A. Snapshots of the RNA processing factor SCAF8 bound to different phosphorylated forms of the carboxyl-terminal domain of RNA polymerase II. J. Biol. Chem. 2008;283:22659–22669. doi: 10.1074/jbc.M803540200. PubMed DOI
Boehning M, et al. RNA polymerase II clustering through carboxy-terminal domain phase separation. Nat. Struct. Mol. Biol. 2018;25:833–840. doi: 10.1038/s41594-018-0112-y. PubMed DOI
Guo YE, et al. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates. Nature. 2019;572:543–548. doi: 10.1038/s41586-019-1464-0. PubMed DOI PMC
Kinkelin K, et al. Structures of RNA polymerase II complexes with Bye1, a chromatin-binding PHF3/DIDO homologue. Proc. Natl Acad. Sci. USA. 2013;110:15277–15282. doi: 10.1073/pnas.1311010110. PubMed DOI PMC
Wu X, Rossettini A, Hanes SD. The ESS1 prolyl isomerase and its suppressor BYE1 interact with RNA pol II to inhibit transcription elongation in Saccharomyces cerevisiae. Genetics. 2003;165:1687–1702. doi: 10.1093/genetics/165.4.1687. PubMed DOI PMC
Sanchez-Pulido L, Rojas AM, van Wely KH, Martinez AC, Valencia A. SPOC: a widely distributed domain associated with cancer, apoptosis and transcription. BMC Bioinforma. 2004;5:91. doi: 10.1186/1471-2105-5-91. PubMed DOI PMC
Pinskaya M, et al. PHD and TFIIS-Like domains of the Bye1 transcription factor determine its multivalent genomic distribution. PLoS ONE. 2014;9:e102464. doi: 10.1371/journal.pone.0102464. PubMed DOI PMC
Cheung AC, Cramer P. Structural basis of RNA polymerase II backtracking, arrest and reactivation. Nature. 2011;471:249–253. doi: 10.1038/nature09785. PubMed DOI
Ebmeier CC, et al. Human TFIIH kinase CDK7 regulates transcription-associated chromatin modifications. Cell Rep. 2017;20:1173–1186. doi: 10.1016/j.celrep.2017.07.021. PubMed DOI PMC
Ariyoshi M, Schwabe JW. A conserved structural motif reveals the essential transcriptional repression function of Spen proteins and their role in developmental signaling. Genes Dev. 2003;17:1909–1920. doi: 10.1101/gad.266203. PubMed DOI PMC
Mikami S, et al. Structural insights into the recruitment of SMRT by the corepressor SHARP under phosphorylative regulation. Structure. 2014;22:35–46. doi: 10.1016/j.str.2013.10.007. PubMed DOI
Oswald F, et al. A phospho-dependent mechanism involving NCoR and KMT2D controls a permissive chromatin state at Notch target genes. Nucleic Acids Res. 2016;44:4703–4720. doi: 10.1093/nar/gkw105. PubMed DOI PMC
Stiller JW, Cook MS. Functional unit of the RNA polymerase II C-terminal domain lies within heptapeptide pairs. Eukaryot. Cell. 2004;3:735–740. doi: 10.1128/EC.3.3.735-740.2004. PubMed DOI PMC
Liu P, Kenney JM, Stiller JW, Greenleaf AL. Genetic organization, length conservation, and evolution of RNA polymerase II carboxyl-terminal domain. Mol. Biol. evolution. 2010;27:2628–2641. doi: 10.1093/molbev/msq151. PubMed DOI PMC
Schuller R, et al. Heptad-specific phosphorylation of RNA polymerase II CTD. Mol. Cell. 2016;61:305–314. doi: 10.1016/j.molcel.2015.12.003. PubMed DOI
Suh H, et al. Direct analysis of phosphorylation sites on the Rpb1 C-terminal domain of RNA polymerase II. Mol. Cell. 2016;61:297–304. doi: 10.1016/j.molcel.2015.12.021. PubMed DOI PMC
Jasnovidova O, et al. Structure and dynamics of the RNAPII CTDsome with Rtt103. Proc. Natl Acad. Sci. USA. 2017;114:11133–11138. doi: 10.1073/pnas.1712450114. PubMed DOI PMC
Verdecia MA, Bowman ME, Lu KP, Hunter T, Noel JP. Structural basis for phosphoserine-proline recognition by group IV WW domains. Nat. Struct. Biol. 2000;7:639–643. doi: 10.1038/77929. PubMed DOI
Zhang Y, Rataj K, Simpson GG, Tong L. Crystal structure of the SPOC domain of the arabidopsis flowering regulator FPA. PloS one. 2016;11:e0160694. doi: 10.1371/journal.pone.0160694. PubMed DOI PMC
Ramani MKV, et al. Structural motifs for CTD kinase specificity on RNA polymerase II during eukaryotic transcription. ACS Chem. Biol. 2020;15:2259–2272. doi: 10.1021/acschembio.0c00474. PubMed DOI PMC
Ji X, et al. SR proteins collaborate with 7SK and promoter-associated nascent RNA to release paused polymerase. Cell. 2013;153:855–868. doi: 10.1016/j.cell.2013.04.028. PubMed DOI PMC
Ehrensberger AH, Kelly GP, Svejstrup JQ. Mechanistic interpretation of promoter-proximal peaks and RNAPII density maps. Cell. 2013;154:713–715. doi: 10.1016/j.cell.2013.07.032. PubMed DOI
Herzog VA, et al. Thiol-linked alkylation of RNA to assess expression dynamics. Nat. Methods. 2017;14:1198–1204. doi: 10.1038/nmeth.4435. PubMed DOI PMC
Ferrai C, et al. RNA polymerase II primes Polycomb-repressed developmental genes throughout terminal neuronal differentiation. Mol. Syst. Biol. 2017;13:946. doi: 10.15252/msb.20177754. PubMed DOI PMC
Price DH. Transient pausing by RNA polymerase II. Proc. Natl Acad. Sci. USA. 2018;115:4810–4812. doi: 10.1073/pnas.1805129115. PubMed DOI PMC
Gomez-Herreros F, et al. One step back before moving forward: regulation of transcription elongation by arrest and backtracking. FEBS Lett. 2012;586:2820–2825. doi: 10.1016/j.febslet.2012.07.030. PubMed DOI
Izban MG, Luse DS. The RNA polymerase II ternary complex cleaves the nascent transcript in a 3’—5’ direction in the presence of elongation factor SII. Genes Dev. 1992;6:1342–1356. doi: 10.1101/gad.6.7.1342. PubMed DOI
Nechaev S, et al. Global analysis of short RNAs reveals widespread promoter-proximal stalling and arrest of Pol II in Drosophila. Sci. (N. Y., N. Y.) 2010;327:335–338. doi: 10.1126/science.1181421. PubMed DOI PMC
Ishibashi T, et al. Transcription factors IIS and IIF enhance transcription efficiency by differentially modifying RNA polymerase pausing dynamics. Proc. Natl Acad. Sci. USA. 2014;111:3419–3424. doi: 10.1073/pnas.1401611111. PubMed DOI PMC
Schweikhard V, et al. Transcription factors TFIIF and TFIIS promote transcript elongation by RNA polymerase II by synergistic and independent mechanisms. Proc. Natl Acad. Sci. USA. 2014;111:6642–6647. doi: 10.1073/pnas.1405181111. PubMed DOI PMC
Jain A, Tuteja G. TissueEnrich: Tissue-specific gene enrichment analysis. Bioinformatics. 2019;35:1966–1967. doi: 10.1093/bioinformatics/bty890. PubMed DOI PMC
Yuan, A., Rao, M. V., Veeranna & Nixon, R. A. Neurofilaments and neurofilament proteins in health and disease. Cold Spring Harbor Perspectives in Biology9 (2017). PubMed PMC
Khan M, He L, Zhuang X. The emerging role of GPR50 receptor in brain. Biomed. Pharmacother. = Biomedecine pharmacotherapie. 2016;78:121–128. doi: 10.1016/j.biopha.2016.01.003. PubMed DOI
Fischer U, et al. PHF3 expression is frequently reduced in glioma. Cytogenet Cell Genet. 2001;94:131–136. doi: 10.1159/000048804. PubMed DOI
Vasconcelos FF, Castro DS. Transcriptional control of vertebrate neurogenesis by the proneural factor Ascl1. Front. Cell. Neurosci. 2014;8:412. doi: 10.3389/fncel.2014.00412. PubMed DOI PMC
Wapinski OL, et al. Hierarchical mechanisms for direct reprogramming of fibroblasts to neurons. Cell. 2013;155:621–635. doi: 10.1016/j.cell.2013.09.028. PubMed DOI PMC
Lendahl U, Zimmerman LB, McKay RD. CNS stem cells express a new class of intermediate filament protein. Cell. 1990;60:585–595. doi: 10.1016/0092-8674(90)90662-X. PubMed DOI
Sandberg M, Kallstrom M, Muhr J. Sox21 promotes the progression of vertebrate neurogenesis. Nat. Neurosci. 2005;8:995–1001. doi: 10.1038/nn1493. PubMed DOI
Ohba H, et al. Sox21 is a repressor of neuronal differentiation and is antagonized by YB-1. Neurosci. Lett. 2004;358:157–160. doi: 10.1016/j.neulet.2004.01.026. PubMed DOI
Whittington N, Cunningham D, Le TK, De Maria D, Silva EM. Sox21 regulates the progression of neuronal differentiation in a dose-dependent manner. Dev. Biol. 2015;397:237–247. doi: 10.1016/j.ydbio.2014.11.012. PubMed DOI PMC
Graham V, Khudyakov J, Ellis P, Pevny L. SOX2 functions to maintain neural progenitor identity. Neuron. 2003;39:749–765. doi: 10.1016/S0896-6273(03)00497-5. PubMed DOI
Oswald F, et al. SHARP is a novel component of the Notch/RBP-Jkappa signalling pathway. EMBO J. 2002;21:5417–5426. doi: 10.1093/emboj/cdf549. PubMed DOI PMC
Yabe D, et al. Generation of a conditional knockout allele for mammalian Spen protein Mint/SHARP. Genesis. 2007;45:300–306. doi: 10.1002/dvg.20296. PubMed DOI
Nesterova TB, et al. Systematic allelic analysis defines the interplay of key pathways in X chromosome inactivation. Nat. Commun. 2019;10:3129. doi: 10.1038/s41467-019-11171-3. PubMed DOI PMC
McHugh CA, et al. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature. 2015;521:232–236. doi: 10.1038/nature14443. PubMed DOI PMC
Monfort A, et al. Identification of Spen as a crucial factor for Xist function through forward genetic screening in haploid embryonic stem cells. Cell Rep. 2015;12:554–561. doi: 10.1016/j.celrep.2015.06.067. PubMed DOI PMC
Moindrot B, et al. A pooled shRNA screen identifies Rbm15, Spen, and Wtap as factors required for Xist RNA-mediated silencing. Cell Rep. 2015;12:562–572. doi: 10.1016/j.celrep.2015.06.053. PubMed DOI PMC
Dossin F, et al. SPEN integrates transcriptional and epigenetic control of X-inactivation. Nature. 2020;578:455–460. doi: 10.1038/s41586-020-1974-9. PubMed DOI PMC
Patil DP, et al. m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature. 2016;537:369–373. doi: 10.1038/nature19342. PubMed DOI PMC
Ma X, et al. Rbm15 modulates Notch-induced transcriptional activation and affects myeloid differentiation. Mol. Cell. Biol. 2007;27:3056–3064. doi: 10.1128/MCB.01339-06. PubMed DOI PMC
Zhang, L. et al. Cross-talk between PRMT1-mediated methylation and ubiquitylation on RBM15 controls RNA splicing. eLife4 (2015). PubMed PMC
Zolotukhin AS, et al. Nuclear export factor RBM15 facilitates the access of DBP5 to mRNA. Nucleic Acids Res. 2009;37:7151–7162. doi: 10.1093/nar/gkp782. PubMed DOI PMC
Harlen KM, Churchman LS. Subgenic Pol II interactomes identify region-specific transcription elongation regulators. Mol. Syst. Biol. 2017;13:900. doi: 10.15252/msb.20167279. PubMed DOI PMC
Yu X, Martin PGP, Michaels SD. BORDER proteins protect expression of neighboring genes by promoting 3’ Pol II pausing in plants. Nat. Commun. 2019;10:4359. doi: 10.1038/s41467-019-12328-w. PubMed DOI PMC
Hornyik C, Terzi LC, Simpson GG. The spen family protein FPA controls alternative cleavage and polyadenylation of RNA. Dev. Cell. 2010;18:203–213. doi: 10.1016/j.devcel.2009.12.009. PubMed DOI
Xu Y, et al. Architecture of the RNA polymerase II-Paf1C-TFIIS transcription elongation complex. Nat. Commun. 2017;8:15741. doi: 10.1038/ncomms15741. PubMed DOI PMC
Timmers HTM, Tora L. Transcript buffering: a balancing act between mRNA synthesis and mRNA degradation. Mol. Cell. 2018;72:10–17. doi: 10.1016/j.molcel.2018.08.023. PubMed DOI
Das S, Sarkar D, Das B. The interplay between transcription and mRNA degradation in Saccharomyces cerevisiae. Microb. cell (Graz, Austria) 2017;4:212–228. doi: 10.15698/mic2017.07.580. PubMed DOI PMC
Haimovich G, Choder M, Singer RH, Trcek T. The fate of the messenger is pre-determined: a new model for regulation of gene expression. Biochim. Biophys. Acta. 2013;1829:643–653. doi: 10.1016/j.bbagrm.2013.01.004. PubMed DOI PMC
Begley, V. et al. The mRNA degradation factor Xrn1 regulates transcription elongation in parallel to Ccr4. Nucleic Acids Res. (2019). PubMed PMC
Shi H, Wei J, He C. Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers. Mol. Cell. 2019;74:640–650. doi: 10.1016/j.molcel.2019.04.025. PubMed DOI PMC
Dronamraju R, et al. Spt6 association with RNA polymerase II directs mRNA turnover during transcription. Mol. Cell. 2018;70:1054–1066.e1054. doi: 10.1016/j.molcel.2018.05.020. PubMed DOI PMC
Lu H, et al. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature. 2018;558:318–323. doi: 10.1038/s41586-018-0174-3. PubMed DOI PMC
Bregman A, et al. Promoter elements regulate cytoplasmic mRNA decay. Cell. 2011;147:1473–1483. doi: 10.1016/j.cell.2011.12.005. PubMed DOI
Haimovich G, et al. Gene expression is circular: factors for mRNA degradation also foster mRNA synthesis. Cell. 2013;153:1000–1011. doi: 10.1016/j.cell.2013.05.012. PubMed DOI
Yeo M, et al. Small CTD phosphatases function in silencing neuronal gene expression. Sci. (N. Y., N. Y.) 2005;307:596–600. doi: 10.1126/science.1100801. PubMed DOI
Zemke M, et al. Loss of Ezh2 promotes a midbrain-to-forebrain identity switch by direct gene derepression and Wnt-dependent regulation. BMC Biol. 2015;13:103. doi: 10.1186/s12915-015-0210-9. PubMed DOI PMC
McGann JC, et al. Polycomb- and REST-associated histone deacetylases are independent pathways toward a mature neuronal phenotype. eLife. 2014;3:e04235. doi: 10.7554/eLife.04235. PubMed DOI PMC
Corley M, Kroll KL. The roles and regulation of Polycomb complexes in neural development. Cell Tissue Res. 2015;359:65–85. doi: 10.1007/s00441-014-2011-9. PubMed DOI PMC
Lein ES, et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 2007;445:168–176. doi: 10.1038/nature05453. PubMed DOI
Hawrylycz MJ, et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature. 2012;489:391–399. doi: 10.1038/nature11405. PubMed DOI PMC
RK CY, et al. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nat. Neurosci. 2017;20:602–611. doi: 10.1038/nn.4524. PubMed DOI PMC
Rheinbay E, et al. An aberrant transcription factor network essential for Wnt signaling and stem cell maintenance in glioblastoma. Cell Rep. 2013;3:1567–1579. doi: 10.1016/j.celrep.2013.04.021. PubMed DOI PMC
Suva ML, et al. Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells. Cell. 2014;157:580–594. doi: 10.1016/j.cell.2014.02.030. PubMed DOI PMC
Leeb M, Perry AC, Wutz A. Establishment and Use of Mouse Haploid ES Cells. Curr. Protoc. mouse Biol. 2015;5:155–185. doi: 10.1002/9780470942390.mo140214. PubMed DOI
Ran FA, et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 2013;8:2281–2308. doi: 10.1038/nprot.2013.143. PubMed DOI PMC
Cong L, et al. Multiplex genome engineering using CRISPR/Cas systems. Sci. (N. Y., N. Y.) 2013;339:819–823. doi: 10.1126/science.1231143. PubMed DOI PMC
Engler C, Gruetzner R, Kandzia R, Marillonnet S. Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One. 2009;4:e5553. doi: 10.1371/journal.pone.0005553. PubMed DOI PMC
Li C, et al. FastCloning: a highly simplified, purification-free, sequence- and ligation-independent PCR cloning method. BMC Biotechnol. 2011;11:92. doi: 10.1186/1472-6750-11-92. PubMed DOI PMC
Bernecky C, Herzog F, Baumeister W, Plitzko JM, Cramer P. Structure of transcribing mammalian RNA polymerase II. Nature. 2016;529:551–554. doi: 10.1038/nature16482. PubMed DOI
Elias JE, Gygi SP. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat. Methods. 2007;4:207–214. doi: 10.1038/nmeth1019. PubMed DOI
Tyanova S, Temu T, Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 2016;11:2301–2319. doi: 10.1038/nprot.2016.136. PubMed DOI
Choi H, Glatter T, Gstaiger M, Nesvizhskii AI. SAINT-MS1: protein-protein interaction scoring using label-free intensity data in affinity purification-mass spectrometry experiments. J. Proteome Res. 2012;11:2619–2624. doi: 10.1021/pr201185r. PubMed DOI PMC
Choi, H. et al. Analyzing protein-protein interactions from affinity purification-mass spectrometry data with SAINT. Current protocols in bioinformatics/editoral board, Andreas D. Baxevanis… [et al.] Chapter 8, Unit8.15 (2012). PubMed PMC
Rigler, R. & Elson, E. S. Fluorescence Correlation Spectroscopy: theory and applications. (Springer, 2001).
D’Arcy A, Bergfors T, Cowan-Jacob SW, Marsh M. Microseed matrix screening for optimization in protein crystallization: what have we learned? Acta Crystallogr. Sect. F., Struct. Biol. Commun. 2014;70:1117–1126. doi: 10.1107/S2053230X14015507. PubMed DOI PMC
Kabsch W. XDS. Acta Crystallogr. Sect. D., Biol. Crystallogr. 2010;66:125–132. doi: 10.1107/S0907444909047337. PubMed DOI PMC
Winn MD, et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. Sect. D., Biol. Crystallogr. 2011;67:235–242. doi: 10.1107/S0907444910045749. PubMed DOI PMC
Pannu NS, et al. Recent advances in the CRANK software suite for experimental phasing. Acta Crystallogr. Sect. D., Biol. Crystallogr. 2011;67:331–337. doi: 10.1107/S0907444910052224. PubMed DOI PMC
McCoy AJ, et al. Phaser crystallographic software. J. Appl. Crystallogr. 2007;40:658–674. doi: 10.1107/S0021889807021206. PubMed DOI PMC
Murshudov GN, Vagin AA, Dodson EJ. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. Sect. D., Biol. Crystallogr. 1997;53:240–255. doi: 10.1107/S0907444996012255. PubMed DOI
Adams PD, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D. Biol. Crystallogr. 2010;66:213–221. doi: 10.1107/S0907444909052925. PubMed DOI PMC
Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D. Biol. Crystallogr. 2004;60:2126–2132. doi: 10.1107/S0907444904019158. PubMed DOI
Joosten RP, Long F, Murshudov GN, Perrakis A. The PDB_REDO server for macromolecular structure model optimization. IUCrJ. 2014;1:213–220. doi: 10.1107/S2052252514009324. PubMed DOI PMC
Hawryluk PJ, Ujvari A, Luse DS. Characterization of a novel RNA polymerase II arrest site which lacks a weak 3’ RNA-DNA hybrid. Nucleic acids Res. 2004;32:1904–1916. doi: 10.1093/nar/gkh505. PubMed DOI PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Mayer A, et al. Native elongating transcript sequencing reveals human transcriptional activity at nucleotide resolution. Cell. 2015;161:541–554. doi: 10.1016/j.cell.2015.03.010. PubMed DOI PMC
Zhao H, et al. CrossMap: a versatile tool for coordinate conversion between genome assemblies. Bioinforma. (Oxf., Engl.) 2014;30:1006–1007. doi: 10.1093/bioinformatics/btt730. PubMed DOI PMC
Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinforma. (Oxf., Engl.) 2016;32:2847–2849. doi: 10.1093/bioinformatics/btw313. PubMed DOI
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat. methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC
Wurmus, R. et al. PiGx: reproducible genomics analysis pipelines with GNU Guix. GigaScience7 (2018). PubMed PMC
Kaufman B, et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J. Clin. Oncol.: Off. J. Am. Soc. Clin. Oncol. 2015;33:244–250. doi: 10.1200/JCO.2014.56.2728. PubMed DOI PMC
Lawrence M, et al. Software for computing and annotating genomic ranges. PLoS computational Biol. 2013;9:e1003118. doi: 10.1371/journal.pcbi.1003118. PubMed DOI PMC
Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat. Protoc. 2009;4:1184–1191. doi: 10.1038/nprot.2009.97. PubMed DOI PMC
Lawrence M, Gentleman R, Carey V. rtracklayer: an R package for interfacing with genome browsers. Bioinforma. (Oxf., Engl.) 2009;25:1841–1842. doi: 10.1093/bioinformatics/btp328. PubMed DOI PMC
Akalin A, Franke V, Vlahovicek K, Mason CE, Schubeler D. Genomation: a toolkit to summarize, annotate and visualize genomic intervals. Bioinforma. (Oxf., Engl.) 2015;31:1127–1129. doi: 10.1093/bioinformatics/btu775. PubMed DOI
Pollard SM, Benchoua A, Lowell S. Neural stem cells, neurons, and glia. Methods Enzymol. 2006;418:151–169. doi: 10.1016/S0076-6879(06)18010-6. PubMed DOI
Warde-Farley D, et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic acids Res. 2010;38:W214–W220. doi: 10.1093/nar/gkq537. PubMed DOI PMC