Biobased Waterborne Polyurethane-Ureas Modified with POSS-OH for Fluorine-Free Hydrophobic Textile Coatings

. 2021 Oct 13 ; 13 (20) : . [epub] 20211013

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34685285

Grantová podpora
E!11894 ECO-DWOR European Commission
2018 DI 093 Agency for Administration of University and Research

Waterborne polyurethane-urea dispersions (WPUD), which are based on fully biobased amorphous polyester polyol and isophorone diisocyanate (IPDI), have been successfully synthesized obtaining a finishing agent that provides textiles with an enhanced hydrophobicity and water column. Grafting of trans-cyclohexanediol isobutyl POSS (POSS-OH) to the biobased polymer backbone has also been investigated for the first time and its properties compared to a standard chain extender, 1,3-propanediol (PDO). The chemical structure of WPUD has been characterized by Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). The thermal properties have been evaluated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Mechanical properties have been studied by tensile stress-strain analysis. Moreover, the particle size, particle size distribution (PSD), and stability of developed waterborne dispersions have been assessed by dynamic light scattering (DLS), Z-potential, storage aging tests, and accelerated aging tests by analytical centrifuge (LUM). Subsequently, selected fabrics have been face-coated by the WPUD using the knife coating method and their properties have been assessed by measuring the water contact angle (WCA), oil contact angle (OCA), water column, fabric stiffness, air permeability, and water vapor resistance (breathability). Finally, the surface morphology and elemental composition of uncoated and coated fabrics have been studied by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS), respectively. All of the synthesized polyurethane-ureas provided the coated substrates with a remarkable hydrophobicity and water column, resulting in a more sustainable alternative to waterproof coatings based on fluoropolymers, such as PTFE. Grafting POSS-OH to the polymeric backbone has led to textile coatings with enhanced hydrophobicity, maintaining thermal, mechanical, and water column properties, giving rise to multifunctional coatings that are highly demanded in protective workwear and technical textiles.

Zobrazit více v PubMed

Luz A.L., Anderson J.K., Goodrum P., Durda J. Perfluorohexanoic acid toxicity, part I: Development of a chronic human health toxicity value for use in risk assessment. Regul. Toxicol. Pharmacol. 2019;103:41–55. doi: 10.1016/j.yrtph.2019.01.019. PubMed DOI

Knight E.R., Bräunig J., Janik L.J., Navarro D.A., Kookana R.S., Mueller J.F., McLaughlin M.J. An investigation into the long term binding and uptake of PFOS, PFOA and PFHxS in soil–plant systems. J. Hazard. Mater. 2021;404:124065. doi: 10.1016/j.jhazmat.2020.124065. PubMed DOI

Schellenberger S., Hill P.J., Levenstam O., Gillgard P., Cousins I.T., Taylor M., Blackburn R.S. Highly fluorinated chemicals in functional textiles can be replaced by re-evaluating liquid repellency and end-user requirements. J. Clean. Prod. 2019;217:134–143. doi: 10.1016/j.jclepro.2019.01.160. DOI

Chinthapalli R., Skoczinski P., Carus M., Baltus W., De Guzman D., Käb H., Raschka A., Ravenstijn J. Biobased Building Blocks and Polymers-Global Capacities, Production and Trends, 2018–2023. Ind. Biotechnol. 2019;15:237–241. doi: 10.1089/ind.2019.29179.rch. DOI

Coates G.W., Hillmyer M.A. A Virtual Issue of Macromolecules: “Polymers from Renewable Resources”. Macromolecules. 2009;42:7987–7989. doi: 10.1021/ma902107w. DOI

Santamaria-Echart A., Fernandes I., Barreiro F., Corcuera M.A., Eceiza A. Advances in Waterborne Polyurethane and Polyurethane-Urea Dispersions and Their Eco-friendly Derivatives: A Review. Polymers. 2021;13:409. doi: 10.3390/polym13030409. PubMed DOI PMC

Cavallo D., Gardella L., Soda O., Sparnacci K., Monticelli O. Fully bio-renewable multiblocks copolymers of poly(lactide) and commercial fatty acid-based polyesters polyols: Synthesis and characterization. Eur. Polym. J. 2016;81:247–256. doi: 10.1016/j.eurpolymj.2016.06.012. DOI

Poussard L., Lazko J., Mariage J., Raquez J.M., Dubois P. Biobased waterborne polyurethanes for coating applications: How fully biobased polyols may improve the coating properties. Prog. Org. Coat. 2016;97:175–183. doi: 10.1016/j.porgcoat.2016.04.003. DOI

Lai Y.S., Tsai C.W., Yang H.W., Wang G.P., Wu K.H. Structural and electrochemical properties of polyurethanes/polyhedral oligomeric silsesquioxanes (PU/POSS) hybrid coatings on aluminum alloys. Mater. Chem. Phys. 2009;117:91–98. doi: 10.1016/j.matchemphys.2009.05.006. DOI

Madbouly S.A., Otaigbe J.U., Nanda A.K., Wicks D.A. Rheological Behavior of POSS/Polyurethane-Urea Nanocomposite Films Prepared by Homogeneous Solution Polymerization in Aqueous Dispersions. Macromolecules. 2007;40:4982–4991. doi: 10.1021/ma070186n. DOI

Poussard L., Mecheri A., Mariage J., Barakat I., Bonnaud L., Raquez J.M., Dubois P. Synthesis of oligo(butylene succinate)-based polyurethanes: Influence of the chemical structure on thermal and mechanical properties. J. Renew. Mater. 2014;2:13–22. doi: 10.7569/JRM.2013.634132. DOI

Bueno-Ferrer C., Hablot E., Perrin-Sarazin F., Garrigós M.C., Jiménez A., Averous L. Structure and Morphology of New Bio-Based Thermoplastic Polyurethanes Obtained From Dimeric Fatty Acids. Macromol. Mater. Eng. 2012;297:777–784. doi: 10.1002/mame.201100278. DOI

Lomölder R., Plogmann F., Speier P. Selectivity of isophorone diisocyanate in the urethane reaction influence of temperature, catalysis, and reaction partners. J. Coat. Technol. 1997;69:51–57. doi: 10.1007/BF02696250. DOI

Lacruz A., Salvador M., Blanco M., Vidal K., Goitandia A.M., Martinková L., Kyselka M., de Ilarduya A.M. Biobased Waterborne Polyurethane-Urea/SWCNT Nanocomposites for Hydrophobic and Electrically Conductive Textile Coatings. Polymers. 2021;13:1624. doi: 10.3390/polym13101624. PubMed DOI PMC

Xu J., Li T., Zhao W., Li P., Wu Y. Synthesis and characterization of waterborne polyurethane emulsions based on poly(butylene itaconate) ester. Des. Monomers Polym. 2016;19:309–318. doi: 10.1080/15685551.2016.1152541. DOI

Sun Y., Zhao X., Liu R., Chen G., Zhou X. Synthesis and characterization of fluorinated polyacrylate as water and oil repellent and soil release finishing agent for polyester fabric. Prog. Org. Coat. 2018;123:306–313. doi: 10.1016/j.porgcoat.2018.07.013. DOI

Li D., Müller M.B., Gilje S., Kaner R.B., Wallace G.G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008;3:101–105. doi: 10.1038/nnano.2007.451. PubMed DOI

Sheng L., Zhang X., Ge Z., Liang Z., Liu X., Chai C., Luo Y. Preparation and properties of waterborne polyurethane modified by stearyl acrylate for water repellents. J. Coat. Technol. Res. 2018;15:1283–1292. doi: 10.1007/s11998-018-0096-x. DOI

Lacruz A., Salvador M., Blanco M., Vidal K., Martínez de Ilarduya A. Development of fluorine-free waterborne textile finishing agents for anti-stain and solvent-water separation based on low surface energy (co)polymers. Prog. Org. Coat. 2021;150 doi: 10.1016/j.porgcoat.2020.105968. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...