Biobased Waterborne Polyurethane-Ureas Modified with POSS-OH for Fluorine-Free Hydrophobic Textile Coatings
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
E!11894 ECO-DWOR
European Commission
2018 DI 093
Agency for Administration of University and Research
PubMed
34685285
PubMed Central
PMC8537187
DOI
10.3390/polym13203526
PII: polym13203526
Knihovny.cz E-zdroje
- Klíčová slova
- bio-based, fluorine-free, hybrid POSS, hydrophobic, multifunctional fabrics, technical textiles, textile coatings, water-column, waterproof,
- Publikační typ
- časopisecké články MeSH
Waterborne polyurethane-urea dispersions (WPUD), which are based on fully biobased amorphous polyester polyol and isophorone diisocyanate (IPDI), have been successfully synthesized obtaining a finishing agent that provides textiles with an enhanced hydrophobicity and water column. Grafting of trans-cyclohexanediol isobutyl POSS (POSS-OH) to the biobased polymer backbone has also been investigated for the first time and its properties compared to a standard chain extender, 1,3-propanediol (PDO). The chemical structure of WPUD has been characterized by Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). The thermal properties have been evaluated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Mechanical properties have been studied by tensile stress-strain analysis. Moreover, the particle size, particle size distribution (PSD), and stability of developed waterborne dispersions have been assessed by dynamic light scattering (DLS), Z-potential, storage aging tests, and accelerated aging tests by analytical centrifuge (LUM). Subsequently, selected fabrics have been face-coated by the WPUD using the knife coating method and their properties have been assessed by measuring the water contact angle (WCA), oil contact angle (OCA), water column, fabric stiffness, air permeability, and water vapor resistance (breathability). Finally, the surface morphology and elemental composition of uncoated and coated fabrics have been studied by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS), respectively. All of the synthesized polyurethane-ureas provided the coated substrates with a remarkable hydrophobicity and water column, resulting in a more sustainable alternative to waterproof coatings based on fluoropolymers, such as PTFE. Grafting POSS-OH to the polymeric backbone has led to textile coatings with enhanced hydrophobicity, maintaining thermal, mechanical, and water column properties, giving rise to multifunctional coatings that are highly demanded in protective workwear and technical textiles.
Color Center S A Ptge Marie Curie 3 Nau 6 08223 Terrassa Spain
Inotex Spol s r o Stefanikova 1208 54401 Dvůr Králové nad Labem Czech Republic
Zobrazit více v PubMed
Luz A.L., Anderson J.K., Goodrum P., Durda J. Perfluorohexanoic acid toxicity, part I: Development of a chronic human health toxicity value for use in risk assessment. Regul. Toxicol. Pharmacol. 2019;103:41–55. doi: 10.1016/j.yrtph.2019.01.019. PubMed DOI
Knight E.R., Bräunig J., Janik L.J., Navarro D.A., Kookana R.S., Mueller J.F., McLaughlin M.J. An investigation into the long term binding and uptake of PFOS, PFOA and PFHxS in soil–plant systems. J. Hazard. Mater. 2021;404:124065. doi: 10.1016/j.jhazmat.2020.124065. PubMed DOI
Schellenberger S., Hill P.J., Levenstam O., Gillgard P., Cousins I.T., Taylor M., Blackburn R.S. Highly fluorinated chemicals in functional textiles can be replaced by re-evaluating liquid repellency and end-user requirements. J. Clean. Prod. 2019;217:134–143. doi: 10.1016/j.jclepro.2019.01.160. DOI
Chinthapalli R., Skoczinski P., Carus M., Baltus W., De Guzman D., Käb H., Raschka A., Ravenstijn J. Biobased Building Blocks and Polymers-Global Capacities, Production and Trends, 2018–2023. Ind. Biotechnol. 2019;15:237–241. doi: 10.1089/ind.2019.29179.rch. DOI
Coates G.W., Hillmyer M.A. A Virtual Issue of Macromolecules: “Polymers from Renewable Resources”. Macromolecules. 2009;42:7987–7989. doi: 10.1021/ma902107w. DOI
Santamaria-Echart A., Fernandes I., Barreiro F., Corcuera M.A., Eceiza A. Advances in Waterborne Polyurethane and Polyurethane-Urea Dispersions and Their Eco-friendly Derivatives: A Review. Polymers. 2021;13:409. doi: 10.3390/polym13030409. PubMed DOI PMC
Cavallo D., Gardella L., Soda O., Sparnacci K., Monticelli O. Fully bio-renewable multiblocks copolymers of poly(lactide) and commercial fatty acid-based polyesters polyols: Synthesis and characterization. Eur. Polym. J. 2016;81:247–256. doi: 10.1016/j.eurpolymj.2016.06.012. DOI
Poussard L., Lazko J., Mariage J., Raquez J.M., Dubois P. Biobased waterborne polyurethanes for coating applications: How fully biobased polyols may improve the coating properties. Prog. Org. Coat. 2016;97:175–183. doi: 10.1016/j.porgcoat.2016.04.003. DOI
Lai Y.S., Tsai C.W., Yang H.W., Wang G.P., Wu K.H. Structural and electrochemical properties of polyurethanes/polyhedral oligomeric silsesquioxanes (PU/POSS) hybrid coatings on aluminum alloys. Mater. Chem. Phys. 2009;117:91–98. doi: 10.1016/j.matchemphys.2009.05.006. DOI
Madbouly S.A., Otaigbe J.U., Nanda A.K., Wicks D.A. Rheological Behavior of POSS/Polyurethane-Urea Nanocomposite Films Prepared by Homogeneous Solution Polymerization in Aqueous Dispersions. Macromolecules. 2007;40:4982–4991. doi: 10.1021/ma070186n. DOI
Poussard L., Mecheri A., Mariage J., Barakat I., Bonnaud L., Raquez J.M., Dubois P. Synthesis of oligo(butylene succinate)-based polyurethanes: Influence of the chemical structure on thermal and mechanical properties. J. Renew. Mater. 2014;2:13–22. doi: 10.7569/JRM.2013.634132. DOI
Bueno-Ferrer C., Hablot E., Perrin-Sarazin F., Garrigós M.C., Jiménez A., Averous L. Structure and Morphology of New Bio-Based Thermoplastic Polyurethanes Obtained From Dimeric Fatty Acids. Macromol. Mater. Eng. 2012;297:777–784. doi: 10.1002/mame.201100278. DOI
Lomölder R., Plogmann F., Speier P. Selectivity of isophorone diisocyanate in the urethane reaction influence of temperature, catalysis, and reaction partners. J. Coat. Technol. 1997;69:51–57. doi: 10.1007/BF02696250. DOI
Lacruz A., Salvador M., Blanco M., Vidal K., Goitandia A.M., Martinková L., Kyselka M., de Ilarduya A.M. Biobased Waterborne Polyurethane-Urea/SWCNT Nanocomposites for Hydrophobic and Electrically Conductive Textile Coatings. Polymers. 2021;13:1624. doi: 10.3390/polym13101624. PubMed DOI PMC
Xu J., Li T., Zhao W., Li P., Wu Y. Synthesis and characterization of waterborne polyurethane emulsions based on poly(butylene itaconate) ester. Des. Monomers Polym. 2016;19:309–318. doi: 10.1080/15685551.2016.1152541. DOI
Sun Y., Zhao X., Liu R., Chen G., Zhou X. Synthesis and characterization of fluorinated polyacrylate as water and oil repellent and soil release finishing agent for polyester fabric. Prog. Org. Coat. 2018;123:306–313. doi: 10.1016/j.porgcoat.2018.07.013. DOI
Li D., Müller M.B., Gilje S., Kaner R.B., Wallace G.G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008;3:101–105. doi: 10.1038/nnano.2007.451. PubMed DOI
Sheng L., Zhang X., Ge Z., Liang Z., Liu X., Chai C., Luo Y. Preparation and properties of waterborne polyurethane modified by stearyl acrylate for water repellents. J. Coat. Technol. Res. 2018;15:1283–1292. doi: 10.1007/s11998-018-0096-x. DOI
Lacruz A., Salvador M., Blanco M., Vidal K., Martínez de Ilarduya A. Development of fluorine-free waterborne textile finishing agents for anti-stain and solvent-water separation based on low surface energy (co)polymers. Prog. Org. Coat. 2021;150 doi: 10.1016/j.porgcoat.2020.105968. DOI