Response of Three Miscanthus × giganteus Cultivars to Toxic Elements Stress: Part 1, Plant Defence Mechanisms
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Phytener program
Agence De L'Environnement Et De La Maitrise De L'Energie
PubMed
34685846
PubMed Central
PMC8538925
DOI
10.3390/plants10102035
PII: plants10102035
Knihovny.cz E-zdroje
- Klíčová slova
- Miscanthus × giganteus, antioxidant enzymes, photosynthetic pigments, secondary metabolites, toxic elements (TE),
- Publikační typ
- časopisecké články MeSH
Miscanthus × giganteus demonstrated good phytostabilization potentials in toxic element (TE) contaminated soils. However, information about its tolerance to elevated concentrations is still scarce. Therefore, an ex-situ pot experiment was launched using three cultivars (termed B, U, and A) grown in soils with a gradient Cd, Pb and Zn concentrations. Control plants were also cultivated in non-contaminated soil. Results show that the number of tillers per plant, stem diameter as well as leaf photosynthetic pigments (chlorophyll a, b and carotenoids) were negatively impacted by soil contamination. On the other hand, phenolic compounds, flavonoids, tannins, and anthocyanins levels along with the antioxidant enzymatic activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase increased in the plants grown on contaminated soils. Altogether, these data demonstrate that miscanthus is impacted by concentrations of toxic elements yet is able to tolerate high levels of soil contamination. These results may contribute to clarifying the miscanthus tolerance strategy against high contamination levels and its efficiency in phytoremediation.
Zobrazit více v PubMed
Gomez-Sagasti M.T., Alkorta I., Becerril J.M., Epelde L., Anza M., Garbisu C. Microbial Monitoring of the Recovery of Soil Quality During Heavy Metal Phytoremediation. Water Air Soil Pollut. 2012;223:3249–3262. doi: 10.1007/s11270-012-1106-8. DOI
Panagos P., van Liedekerke M., Yigini Y., Montanarella L. Contaminated Sites in Europe: Review of the Current Situation Based on Data Collected through a European Network. J. Environ. Public Health. 2013;2013:11. doi: 10.1155/2013/158764. PubMed DOI PMC
Al Souki K.S., Liné C., Louvel B., Waterlot C., Douay F., Pourrut B. Miscanthus × giganteus Culture on Soils Highly Contaminated by Metals: Modelling Leaf Decomposition Impact on Metal Mobility and Bioavailability in the Soil–Plant System. Ecotoxicol. Environ. Saf. 2020;199:110654. doi: 10.1016/j.ecoenv.2020.110654. PubMed DOI
Al Souki K.S., Burdová H., Trubač J., Štojdl J., Kuráň P., Kříženecká S., Machová I., Kubát K., Popelka J., Auer Malinská H., et al. Enhanced Carbon Sequestration in Marginal Land Upon Shift towards Perennial C4 Miscanthus × giganteus: A Case Study in North-Western Czechia. Agronomy. 2021;11:293. doi: 10.3390/agronomy11020293. DOI
Techer D., Martinez-Chois C., Laval-Gilly P., Henry S., Bennasroune A., D’Innocenzo M., Falla J. Assessment of Miscanthus × giganteus for Rhizoremediation of Long Term PAH Contaminated Soils. Appl. Soil Ecol. 2012;62:42–49. doi: 10.1016/j.apsoil.2012.07.009. DOI
Técher D., Laval-Gilly P., Henry S., Bennasroune A., Martinez-Chois C., D’Innocenzo M., Falla J. Prospects of Miscanthus × giganteus for PAH Phytoremediation: A Microcosm Study. Ind. Crop. Prod. 2012;36:276–281.
Al Souki K.S., Burdová H., Mamirova A., Kuráň P., Kříženecká S., Oravová L., Tolaszová J., Nebeská D., Popelka J., Ust’ak S., et al. Evaluation of the Miscanthus × giganteus Short Term Impacts on Enhancing the Quality of Agricultural Soils Affected by Single and/or Multiple Contaminants. Environ. Technol. Innov. 2021;24:101890. doi: 10.1016/j.eti.2021.101890. DOI
Nsanganwimana F., Pourrut B., Waterlot C., Louvel B., Bidar G., Labidi S., Fontaine J., Muchembled J., Sahraoui A.L.-H., Fourrier H., et al. Metal Accumulation and Shoot Yield of Miscanthus × giganteus Growing in Contaminated Agricultural Soils: Insights into Agronomic Practices. Agric. Ecosyst. Environ. 2015;213:61–71. doi: 10.1016/j.agee.2015.07.023. DOI
Nsanganwimana F., Waterlot C., Louvel B., Pourrut B., Douay F. Metal, Nutrient and Biomass Accumulation During the Growing Cycle of Miscanthus Established on Metal-Contaminated Soils. J. Plant Nutr. Soil Sci. 2016;179:257–269. doi: 10.1002/jpln.201500163. DOI
Pelfrêne A., Kleckerová A., Pourrut B., Nsanganwimana F., Douay F., Waterlot C. Effect of Miscanthus Cultivation on Metal Fractionation and Human Bioaccessibility in Metal-Contaminated Soils: Comparison Between Greenhouse and Field Experiments. Environ. Sci. Pollut. Res. 2015;22:3043–3054. doi: 10.1007/s11356-014-3585-1. PubMed DOI
Al Souki K.S., Louvel B., Douay F., Pourrut B. Assessment of Miscanthus × giganteus Capacity to Restore the Functionality of Metal-Contaminated Soils: Ex Situ Experiment. Appl. Soil Ecol. 2017;115:44–52. doi: 10.1016/j.apsoil.2017.03.002. DOI
Küpper H., Andersen E. Mechanisms of Metal Toxicity in Plants. Metallomics. 2016;8:269–285. doi: 10.1039/C5MT00244C. PubMed DOI
Andrejić G., Šinžar-Sekulić J., Prica M., Dželetović Ž., Rakić T. Phytoremediation Potential and Physiological Response of Miscanthus × giganteus Cultivated on Fertilized and Non-Fertilized Flotation Tailings. Environ. Sci. Pollut. Res. 2019;26:34658–34669. doi: 10.1007/s11356-019-06543-7. PubMed DOI
Mazid M., Khan T.A., Mohammad F. Role of Secondary Metabolites in Defense Mechanisms of Plants. Biol. Med. 2011;3:232–249.
Lajayer B.M., Chorbanpour M., Nikabadi S. Heavy Metals in Contaminated Environment: Destiny of Secondary Metabolite Biosynthesis, Oxidative Status and Phytoextraction in Medicinal Plants. Ecotoxicol. Environ. Saf. 2017;145:377–390. doi: 10.1016/j.ecoenv.2017.07.035. PubMed DOI
Firmin S., Labidi S., Fontaine J., Laruelle F., Tisserant B., Nsanganwimana F., Pourrut B., Dalpé Y., Grandmougin A., Douay F., et al. Arbuscular Mycorrhizal Fungal Inoculation Protects Miscanthus × giganteus against Trace Element Toxicity in a Highly Metal-Contaminated Site. Sci. Total Environ. 2015;527–528:91–99. doi: 10.1016/j.scitotenv.2015.04.116. PubMed DOI
Lopareva-Pohu A., Pourrut B., Waterlot C., Garcon G., Bidar G., Pruvot C., Shirali P., Douay F. Assessment of Fly Ash-Aided Phytostabilisation of Highly Contaminated Soils After an 8-Year Field Trial: Part 1. Influence on Soil Parameters and Metal Extractability. Sci. Total Environ. 2011;409:647–654. doi: 10.1016/j.scitotenv.2010.10.040. PubMed DOI
Douay F., Pelfrêne A., Planque J., Fourrier H., Richard A., Roussel H., Girondelot B. Assessment of Potential Health Risk for Inhabitants Living Near a Former Lead Smelter. Part 1: Metal Concentrations in Soils, Agricultural Crops, and Homegrown Vegetables. Environ. Monit. Assess. 2013;185:3665–3680. doi: 10.1007/s10661-012-2818-3. PubMed DOI
Bradford M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
Dringen R., Gutterer J.M. Glutathione Reductase from Bovine Brain. Methods Enzymol. 2002;348:281–288. PubMed
Nsanganwimana F., Al Souki K.S., Waterlot C., Douay F., Pelfrêne A., Ridošková A., Louvel B., Pourrut B. Potentials of Miscanthus × giganteus for Phytostabilization of Trace Element-Contaminated Soils: Ex Situ Experiment. Ecotoxicol. Environ. Saf. 2021;214:112125. doi: 10.1016/j.ecoenv.2021.112125. PubMed DOI
Guo H., Hong C., Chen X., Xu Y., Liu Y., Jiang D., Zheng B. Different Growth and Physiological Responses to Cadmium of the Three Miscanthus Species. PLoS ONE. 2016;11:e0153475. PubMed PMC
Andrejić G., Gajić G., Prica M., Dželetović Ž., Rakić T. Zinc Accumulation, Photosynthetic Gas Exchange, and Chlorophyll a Fluorescence in Zn-Stressed Miscanthus × giganteus Plants. Photosynthetica. 2018;56:1249–1258. doi: 10.1007/s11099-018-0827-3. DOI
Jiang H., Zhao X., Fang J., Xiao Y. Physiological Responses and Metal Uptake of Miscanthus Under Cadmium/Arsenic Stress. Environ. Sci. Pollut. Res. 2018;25:28275–28284. doi: 10.1007/s11356-018-2835-z. PubMed DOI
Zhang J., Yang S., Huang Y., Zhou S. The Tolerance and Accumulation of Miscanthus Sacchariflorus (Maxim.) Benth., an Energy Plant Species, to Cadmium. Int. J. Phytoremediat. 2015;17:538–545. doi: 10.1080/15226514.2014.922925. PubMed DOI
Fernando A., Oliveira J.S. Effects on Growth, Productivity and Biomass Quality of Miscanthus × giganteus of Soils Contaminated with Heavy Metals; Proceedings of the Biomass for Energy, Industry and Climate Protection: 2nd World Biomass Conference; Rome, Italy. 10 May 2004.
Pourrut B., Shahid M., Dumat C., Winterton P., Pinelli E. Lead Uptake, Toxicity, and Detoxification in Plants. Rev. Environ. Contam. Toxicol. 2011;213:113–136. PubMed
Suzuki N., Koussevitzky S., Mittler R., Miller G. ROS and Redox Signalling in the Response of Plants to Abiotic Stress. Plant Cell Environ. 2012;35:259–270. doi: 10.1111/j.1365-3040.2011.02336.x. PubMed DOI
Shahid M., Pourrut B., Dumat C., Nadeem M., Aslam M., Pinelli E. Heavy-Metal-Induced Reactive Oxygen Species: Phytotoxicity and Physicochemical Changes in Plants. Rev. Environ. Contam. Toxicol. 2014;232:1–44. PubMed
Berni R., Luyckx M., Xu X., Legay S., Sergeant K., Hausman J.-F., Lutts S., Cai G., Guerriero G. Reactive Oxygen Species and Heavy Metal Stress in Plants: Impact on the Cell Wall and Secondary Metabolism. Environ. Exp. Bot. 2019;161:98–106. doi: 10.1016/j.envexpbot.2018.10.017. DOI
Sharma A., Shahzad B., Rehman A., Bhardwaj R., Landi M., Zheng B. Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants Under Abiotic Stress. Molecules. 2019;24:2452. doi: 10.3390/molecules24132452. PubMed DOI PMC
Das S.K., Patra J.K., Thatoi H. Antioxidative Response to Abiotic and Biotic Stresses in Mangrove Plants: A Review. Int. Rev. Hydrobiol. 2016;101:3–19. doi: 10.1002/iroh.201401744. DOI
Mierziak J., Kostyn K., Kulma A. Flavonoids as Important Molecules of Plant Interactions with the Environment. Molecules. 2014;19:16240–16265. doi: 10.3390/molecules191016240. PubMed DOI PMC
Baek S.-A., Han T., Ahn S.-K., Kang H., Cho M.R., Lee S.-C., Im K.-H. Effects of Heavy Metals on Plant Growths and Pigment Contents in Arabidopsis Thaliana. Plant Pathol. J. 2012;28:446–452. doi: 10.5423/PPJ.NT.01.2012.0006. DOI
Šamec D., Karalija E., Šola I., Vujčić Bok V., Salope-Sondi B. The Role of Polyphenols in Abiotic Stress Response: The Influence of Molecular Structure. Plants. 2021;10:118. doi: 10.3390/plants10010118. PubMed DOI PMC
Martínez-Alcala I., Hernandez L.E., Esteban E., Walker D.J., Bernal M.P. Responses of Noccaea Caerulescens and Lupinus Albus in Trace Elements-Contaminated Soils. Plant Physiol. Biochem. 2013;66:47–55. doi: 10.1016/j.plaphy.2013.01.017. PubMed DOI
Singh S., Parihar P., Singh R., Singh V.P., Prasad S.M. Heavy Metal Tolerance in Plants: Role of Transcriptomics, Proteomics, Metabolomics and Ionomics. Front. Plant Sci. 2016;6:1–36. doi: 10.3389/fpls.2015.01143. PubMed DOI PMC
Rezayian M., Niknam V., Ebrahimzadeh H. Oxidative Damage and Antioxidative System in Algae. Toxicol. Rep. 2019;6:1309–1313. doi: 10.1016/j.toxrep.2019.10.001. PubMed DOI PMC
Gill S.S., Khan N.A., Tuteja N. Cadmium at High Dose Perturbs Growth, Photosynthesis and Nitrogen Metabolism While at Low Dose It up Regulates Sulfur Assimilation and Antioxidant Machinery in Garden Cress (Lepidium Sativum L.) Plant Sci. 2012;182:112–120. doi: 10.1016/j.plantsci.2011.04.018. PubMed DOI
Lopez-Orenes A., Bueso M.C., Conesa H.M., Calderon A.A., Ferrer M.A. Seasonal Changes in Antioxidative/Oxidative Profile of Mining and Non-Mining Populations of Syrian Beancaper as Determined by Soil Conditions. Sci. Total Environ. 2017;575:437–447. doi: 10.1016/j.scitotenv.2016.10.030. PubMed DOI
Pandey N., Pathak G.C., Pandey D.K., Pandey R. Heavy Metals, Co, Ni, Cu, Zn and Cd, Produce Oxidative Damage and Evoke Differential Antioxidant Responses in Spinach. Braz. J. Plant Physiol. 2009;21:103–111. doi: 10.1590/S1677-04202009000200003. DOI
Gill S.S., Tuteja N. Reactive Oxygen Species and Antioxidant Machinery in Abiotic Stress Tolerance in Crop Plants. Plant Physiol. Biochem. 2010;48:909–930. doi: 10.1016/j.plaphy.2010.08.016. PubMed DOI
Fernandez R., Bertrand A., Reis R., Mourato M.P., Martins L.L., Gonzalez A. Growth and Physiological Responses to Cadmium Stress of Two Populations of Dittrichia viscosa (L.) Greuter. J. Hazard. Mater. 2013;244–245:555–562. doi: 10.1016/j.jhazmat.2012.10.044. PubMed DOI