Evaluation of Miscanthus × giganteus Tolerance to Trace Element Stress: Field Experiment with Soils Possessing Gradient Cd, Pb, and Zn Concentrations
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
37050186
PubMed Central
PMC10096734
DOI
10.3390/plants12071560
PII: plants12071560
Knihovny.cz E-zdroje
- Klíčová slova
- Miscanthus × giganteus, phytoremediation, stress tolerance, trace element contamination,
- Publikační typ
- časopisecké články MeSH
Miscanthus × giganteus demonstrated good phytostabilization potentials by decreasing the trace elements (T.E.s) mobility and enhancing the degraded soil quality. Nevertheless, most of the published work was performed under controlled conditions in ex situ pot experiments and/or with soils being spiked. Hence, data about the plant's tolerance to increased T.E. concentrations in real conditions is still scarce and requires further investigation. For this sake, a field experiment was established by cultivating miscanthus plants in three different agricultural plots representing gradient trace element (Cd, Pb and Zn) concentrations. Another uncontaminated plot was also introduced. Results showed that T.E. concentrations in the leaves were tolerable to the plant. In addition, no variations were detected between the miscanthus cultivated in the contaminated and uncontaminated soils at the level of antioxidant enzymatic activities (ascorbate peroxidase and superoxide dismutase), photosynthetic pigments (chlorophyll a and b and carotenoids), and secondary metabolites (phenolic compounds, flavonoids, anthocyanins, and tannins). These outcomes validate the high capacity of miscanthus to resist and tolerate contaminated conditions. Such results may contribute to further understanding of the miscanthus tolerance mechanisms.
Zobrazit více v PubMed
Su C., Jiang L., Zhang W. A Review on Heavy Metal Contamination in the Soil Worldwide: Situation, Impact and Remediation Techniques. Environ. Skeptics Crit. 2014;3:24–38.
Al Souki K.S., Burdová H., Mamirova A., Kuráň P., Kříženecká S., Oravová L., Tolaszová J., Nebeská D., Popelka J., Ust’ak S., et al. Evaluation of the Miscanthus × giganteus Short Term Impacts on Enhancing the Quality of Agricultural Soils Affected by Single and/or Multiple Contaminants. Environ. Technol. Innov. 2021;24:101890. doi: 10.1016/j.eti.2021.101890. DOI
Pidlisnyuk V., Erickson L., Stefanovska T., Popelka J., Hettiarachchi G., Davis L., Trögl J. Potential Phytomanagement of Military Polluted Sites and Biomass Production Using Biofuel Crop Miscanthus × giganteus. Environ. Pollut. 2019;249:330–337. doi: 10.1016/j.envpol.2019.03.018. PubMed DOI
Jiang H., Zhao X., Fang J., Xiao Y. Physiological Responses and Metal Uptake of Miscanthus under Cadmium/Arsenic Stress. Environ. Sci. Pollut. Res. 2018;25:28275–28284. doi: 10.1007/s11356-018-2835-z. PubMed DOI
Sterckeman T., Douay F., Proix N., Fourrier H., Perdrix E. Assessment of the Contamination of Cultivated Soils by Eighteen Trace Elements around Smelters in the North of France. Water Air Soil Pollut. 2002;135:173–194. doi: 10.1023/A:1014758811194. DOI
Douay F., Pruvot C., Waterlot C., Fritsch C., Fourrier H., Loriette A., Bidar G., Grand C., de Vaufleury A., Scheifler R. Contamination of Woody Habitat Soils around a Former Lead Smelter in the North of France. Sci. Total Environ. 2009;407:5564–5577. doi: 10.1016/j.scitotenv.2009.06.015. PubMed DOI
Nsanganwimana F., Pourrut B., Waterlot C., Louvel B., Bidar G., Labidi S., Fontaine J., Muchembled J., Sahraoui A.L.-H., Fourrier H., et al. Metal Accumulation and Shoot Yield of Miscanthus × giganteus Growing in Contaminated Agricultural Soils: Insights into Agronomic Practices. Agric. Ecosyst. Environ. 2015;213:61–71. doi: 10.1016/j.agee.2015.07.023. DOI
Nsanganwimana F., Waterlot C., Louvel B., Pourrut B., Douay F. Metal, Nutrient and Biomass Accumulation during the Growing Cycle of Miscanthus Established on Metal-Contaminated Soils. J. Plant Nutr. Soil Sci. 2016;179:257–269. doi: 10.1002/jpln.201500163. DOI
Kocoń A., Jurga B. The Evaluation of Growth and Phytoextraction Potential of Miscanthus × giganteus and Sida Hermaphrodita on Soil Contaminated Simultaneously with Cd, Cu, Ni, Pb, and Zn. Environ. Sci. Pollut. Res. 2017;24:4990–5000. doi: 10.1007/s11356-016-8241-5. PubMed DOI
Andrejić G., Šinžar-Sekulić J., Prica M., Dželetović Ž., Rakić T. Phytoremediation Potential and Physiological Response of Miscanthus × giganteus Cultivated on Fertilized and Non-Fertilized Flotation Tailings. Environ. Sci. Pollut. Res. 2019;26:34658–34669. doi: 10.1007/s11356-019-06543-7. PubMed DOI
Zgorelec Z., Bilandzija N., Knez K., Galic M., Zuzul S. Cadmium and Mercury Phytostabilization from Soil Using Miscanthus × giganteus. Sci. Rep. 2020;10:6685. doi: 10.1038/s41598-020-63488-5. PubMed DOI PMC
Nurzhanova A., Pidlisnyuk V., Abit K., Nurzhanov C., Kenessov B., Stefanovska T., Erickson L. Comparative Assessment of Using Miscanthus × giganteus for Remediation of Soils Contaminated by Heavy Metals: A Case of Military and Mining Sites. Environ. Sci. Pollut. Res. 2019;26:13320–13333. doi: 10.1007/s11356-019-04707-z. PubMed DOI
Korzeniowska J., Stanislawska-Glubiak E. Phytoremediation Potential of Miscanthus × giganteus and Spartina Pectinata in Soil Contaminated with Heavy Metals. Environ. Sci. Pollut. Res. 2015;22:11648–11657. doi: 10.1007/s11356-015-4439-1. PubMed DOI
Pogrzeba M., Krzyżak J., Sas-Nowosielska A. Environmental Hazards Related to Miscanthus × giganteus Cultivation on Heavy Metal Contaminated Soil. E3S Web Conf. 2013;1:29006. doi: 10.1051/e3sconf/20130129006. DOI
Al Souki K.S., Liné C., Moravec J., Douay F., Pourrut B. Response of Three Miscanthus × giganteus Cultivars to Toxic Elements Stress: Part 2, Comparison between Two Growing Seasons. Plants. 2022;11:945. doi: 10.3390/plants11070945. PubMed DOI PMC
Nsanganwimana F., Al Souki K.S., Waterlot C., Douay F., Pelfrêne A., Ridošková A., Louvel B., Pourrut B. Potentials of Miscanthus × giganteus for Phytostabilization of Trace Element-Contaminated Soils: Ex Situ Experiment. Ecotoxicol. Environ. Saf. 2021;214:112125. doi: 10.1016/j.ecoenv.2021.112125. PubMed DOI
Al Souki K.S., Louvel B., Douay F., Pourrut B. Assessment of Miscanthus × giganteus Capacity to Restore the Functionality of Metal-Contaminated Soils: Ex Situ Experiment. Appl. Soil Ecol. 2017;115:44–52. doi: 10.1016/j.apsoil.2017.03.002. DOI
Al Souki K.S., Liné C., Louvel B., Waterlot C., Douay F., Pourrut B. Miscanthus × giganteus Culture on Soils Highly Contaminated by Metals: Modelling Leaf Decomposition Impact on Metal Mobility and Bioavailability in the Soil–Plant System. Ecotoxicol. Environ. Saf. 2020;199:110654. doi: 10.1016/j.ecoenv.2020.110654. PubMed DOI
Singh S., Parihar P., Singh R., Singh V.P., Prasad S.M. Heavy Metal Tolerance in Plants: Role of Transcriptomics, Proteomics, Metabolomics and Ionomics. Front. Plant Sci. 2016;6:1–36. doi: 10.3389/fpls.2015.01143. PubMed DOI PMC
Huang H., Ullah F., Zhou D.-X., Zhao Y. Mechanisms of ROS Regulation of Plant Development and Stress Responses. Front. Plant Sci. 2019;10:800. doi: 10.3389/fpls.2019.00800. PubMed DOI PMC
Pourrut B., Shahid M., Dumat C., Winterton P., Pinelli E. Lead Uptake, Toxicity, and Detoxification in Plants. Rev. Environ. Contam. Toxicol. 2011;213:113–136. PubMed
Suzuki N., Koussevitzky S., Mittler R., Miller G. ROS and Redox Signalling in the Response of Plants to Abiotic Stress. Plant Cell Environ. 2012;35:259–270. doi: 10.1111/j.1365-3040.2011.02336.x. PubMed DOI
Hasanuzzaman M., Bhuyan B., Parvin K., Bhuiyan T.F., Anee T.I., Nahar K., Hossen S., Zulfiqar F., Alam M., Fujita M. Regulation of ROS Metabolism in Plants under Environmental Stress: A Review of Recent Experimental Evidence. Int. J. Mol. Sci. 2020;21:8695. doi: 10.3390/ijms21228695. PubMed DOI PMC
Zhang J., Yang S., Huang Y., Zhou S. The Tolerance and Accumulation of Miscanthus sacchariflorus (Maxim.) Benth., an Energy Plant Species, to Cadmium. Int. J. Phytoremediat. 2015;17:538–545. doi: 10.1080/15226514.2014.922925. PubMed DOI
Sharma A., Shahzad B., Rehman A., Bhardwaj R., Landi M., Zheng B. Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules. 2019;24:2452. doi: 10.3390/molecules24132452. PubMed DOI PMC
Das S.K., Patra J.K., Thatoi H. Antioxidative Response to Abiotic and Biotic Stresses in Mangrove Plants: A Review. Int. Rev. Hydrobiol. 2016;101:3–19. doi: 10.1002/iroh.201401744. DOI
Mierziak J., Kostyn K., Kulma A. Flavonoids as Important Molecules of Plant Interactions with the Environment. Molecules. 2014;19:16240–16265. doi: 10.3390/molecules191016240. PubMed DOI PMC
Baek S.-A., Han T., Ahn S.-K., Kang H., Cho M.R., Lee S.-C., Im K.-H. Effects of Heavy Metals on Plant Growths and Pigment Contents in Arabidopsis Thaliana. Plant Pathol. J. 2012;28:446–452. doi: 10.5423/PPJ.NT.01.2012.0006. DOI
Guo H., Hong C., Chen X., Xu Y., Liu Y., Jiang D., Zheng B. Different Growth and Physiological Responses to Cadmium of the Three Miscanthus Species. PLoS ONE. 2016;11:e0153475. doi: 10.1371/journal.pone.0153475. PubMed DOI PMC
Nowack B., Koehler S., Schulin R. Use of Diffusive Gradients in Thin Films (DGT) in Undisturbed Field Soils. Environ. Sci. Technol. 2004;38:1133–1138. doi: 10.1021/es034867j. PubMed DOI
Wang Z., Shan X.-Q., Zhang S. Comparison between Fractionation and Bioavailability of Trace Elements in Rhizosphere and Bulk Soils. Chemosphere. 2002;46:1163–1171. doi: 10.1016/S0045-6535(01)00206-5. PubMed DOI
Conesa H.M., Robinson B.H., Schulin R., Nowack B. Growth of Lygeum Spartum in Acid Mine Tailings: Response of Plants Developed from Seedlings, Rhizomes and at Field Conditions. Environ. Pollut. 2007;145:700–707. doi: 10.1016/j.envpol.2006.06.002. PubMed DOI
Cheng S. Effects of Heavy Metals on Plants and Resistance Mechanisms. Environ. Sci. Pollut. Res. 2003;10:256–264. doi: 10.1065/espr2002.11.141.2. PubMed DOI
Robinson B.H., Leblanc M., Petit D., Brooks R.R., Kirkman J.H., Gregg P.E.H. The Potential of Thlaspi Caerulescens for Phytoremediation of Contaminated Soils. Plant Soil. 1998;203:47–56. doi: 10.1023/A:1004328816645. DOI
Hu Y., Nan Z., Su J., Wang N. Heavy Metal Accumulation by Poplar in Calcareous Soil with Various Degrees of Multi-Metal Contamination: Implications for Phytoextraction and Phytostabilization. Environ. Sci. Pollut. Res. 2013;20:7194–7203. doi: 10.1007/s11356-013-1711-0. PubMed DOI
Sterckeman T., Douay F., Proix N., Fourrier H. Vertical Distribution of Cd, Pb and Zn in Soils near Smelters in the North of France. Environ. Pollut. 2000;107:377–389. doi: 10.1016/S0269-7491(99)00165-7. PubMed DOI
Joret F., Hébert J. Contribution à La Détermination Du Besoin Des Sols En Acide Phosphorique. Ann. Agron. Ser. 1955;6:233–299.
Waterlot C., Bidar G., Pelfrêne A., Roussel H., Fourrier H., Douay F. Contamination, Fractionation and Availability of Metals in Urban Soils in the Vicinity of Former Lead and Zinc Smelters, France. Pedosphere. 2013;23:143–159. doi: 10.1016/S1002-0160(13)60002-8. DOI
Al Souki K.S., Liné C., Douay F., Pourrut B. Response of Three Miscanthus × giganteus Cultivars to Toxic Elements Stress: Part 1, Plant Defence Mechanisms. Plants. 2021;10:2035. doi: 10.3390/plants10102035. PubMed DOI PMC
Bradford M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
Giannopolitis C.N., Ries S.K. Superoxide Dismutases: I. Occurrence in Higher Plants. Plant Physiol. 1977;59:309–314. doi: 10.1104/pp.59.2.309. PubMed DOI PMC
Nakano Y., Asada K. Hydrogen Peroxide Is Scavenged by Ascorbate-Specific Peroxidase in Spinach Chloroplasts. Plant Cell Physiol. 1981;22:867–880.
Lichtenthaler H.K. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods Enzymol. 1987;148:350–382.