• This record comes from PubMed

Bromodomain 4 inhibition leads to MYCN downregulation in Wilms tumor

. 2022 Feb ; 69 (2) : e29401. [epub] 20211024

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't

Grant support
K12 CA184746 NCI NIH HHS - United States
P30 CA008748 NCI NIH HHS - United States

BACKGROUND: Wilms tumor is the most common childhood kidney cancer. Two distinct histological subtypes of Wilms tumor have been described: tumors lacking anaplasia (the favorable subtype) and tumors displaying anaplastic features (the unfavorable subtype). Children with favorable disease generally have a very good prognosis, whereas those with anaplasia are oftentimes refractory to standard treatments and suffer poor outcomes, leading to an unmet clinical need. MYCN dysregulation has been associated with a number of pediatric cancers including Wilms tumor. PROCEDURES: In this context, we undertook a functional genomics approach to uncover novel therapeutic strategies for those patients with anaplastic Wilms tumor. Genomic analysis and in vitro experimentation demonstrate that cell growth can be reduced by modulating MYCN overexpression via bromodomain 4 (BRD4) inhibition in both anaplastic and nonanaplastic Wilms tumor models. RESULTS: We observed a time-dependent reduction of MYCN and MYCC protein levels upon BRD4 inhibition in Wilms tumor cell lines, which led to cell death and proliferation suppression. BRD4 inhibition significantly reduced tumor volumes in Wilms tumor patient-derived xenograft (PDX) mouse models. CONCLUSIONS: We suggest that AZD5153, a novel dual-BRD4 inhibitor, can reduce MYCN levels in both anaplastic and nonanaplastic Wilms tumor cell lines, reduces tumor volume in Wilms tumor PDXs, and should be further explored for its therapeutic potential.

See more in PubMed

Howlader NNA, Krapcho M, Garshell J, Miller D, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (EDS). SEER Cancer Statistics Review, 1975-2015, National Cancer Institute. Bethesda, MD, based on November 2014 SEER data submission, posted to the SEER web site, April 2015. Accessed December 15, 2018. https://seer.cancer.gov/csr/1975_2015/

Gatta G, Botta L, Rossi S, et al. Childhood cancer survival in Europe 1999-2007: results of EUROCARE-5--a population-based study. Lancet Oncol. Jan 2014;15(1):35–47. doi:10.1016/s1470-2045(13)70548-5 PubMed DOI

Breslow N, Olshan A, Beckwith JB, Green DM. Epidemiology of Wilms tumor. Med Pediatr Oncol. 1993;21(3):172–81. doi:10.1002/mpo.2950210305 PubMed DOI

Dome JS, Graf N, Geller JI, et al. Advances in Wilms Tumor Treatment and Biology: Progress Through International Collaboration. J Clin Oncol. Sep 20 2015;33(27):2999–3007. doi:10.1200/jco.2015.62.1888 PubMed DOI PMC

Zuppan CW, Beckwith JB, Luckey DW. Anaplasia in unilateral Wilms’ tumor: a report from the National Wilms’ Tumor Study Pathology Center. Hum Pathol. Oct 1988;19(10):1199–209. doi:10.1016/s0046-8177(88)80152-7 PubMed DOI

Beckwith JB, Palmer NF. Histopathology and prognosis of Wilms tumors: results from the First National Wilms’ Tumor Study. Cancer. May 1978;41(5):1937–48. doi:10.1002/1097-0142(197805)41:5<1937::aid-cncr2820410538>3.0.co;2-u PubMed DOI

Phelps HM, Kaviany S, Borinstein SC, Lovvorn HN 3rd. Biological Drivers of Wilms Tumor Prognosis and Treatment. Children (Basel). Oct 26 2018;5(11)doi:10.3390/children5110145 PubMed DOI PMC

Dome JS, Cotton CA, Perlman EJ, et al. Treatment of anaplastic histology Wilms’ tumor: results from the fifth National Wilms’ Tumor Study. J Clin Oncol. May 20 2006;24(15):2352–8. doi:10.1200/jco.2005.04.7852 PubMed DOI

Ooms AH, Gadd S, Gerhard DS, et al. Significance of TP53 Mutation in Wilms Tumors with Diffuse Anaplasia: A Report from the Children’s Oncology Group. Clin Cancer Res. Nov 15 2016;22(22):5582–5591. doi:10.1158/1078-0432.Ccr-16-0985 PubMed DOI PMC

Daw NC, Chi YY, Kalapurakal JA, et al. Activity of Vincristine and Irinotecan in Diffuse Anaplastic Wilms Tumor and Therapy Outcomes of Stage II to IV Disease: Results of the Children’s Oncology Group AREN0321 Study. J Clin Oncol. May 10 2020;38(14):1558–1568. doi:10.1200/jco.19.01265 PubMed DOI PMC

Termuhlen AM, Tersak JM, Liu Q, et al. Twenty-five year follow-up of childhood Wilms tumor: a report from the Childhood Cancer Survivor Study. Pediatr Blood Cancer. Dec 15 2011;57(7):1210–6. doi:10.1002/pbc.23090 PubMed DOI PMC

Bardeesy N, Falkoff D, Petruzzi MJ, et al. Anaplastic Wilms’ tumour, a subtype displaying poor prognosis, harbours p53 gene mutations. Nat Genet. May 1994;7(1):91–7. doi:10.1038/ng0594-91 PubMed DOI

Li W, Kessler P, Williams BR. Transcript profiling of Wilms tumors reveals connections to kidney morphogenesis and expression patterns associated with anaplasia. Oncogene. Jan 13 2005;24(3):457–68. doi:10.1038/sj.onc.1208228 PubMed DOI

Williams RD, Chagtai T, Alcaide-German M, et al. Multiple mechanisms of MYCN dysregulation in Wilms tumour. Oncotarget. Mar 30 2015;6(9):7232–43. doi:10.18632/oncotarget.3377 PubMed DOI PMC

Pugh TJ, Morozova O, Attiyeh EF, et al. The genetic landscape of high-risk neuroblastoma. Nat Genet. Mar 2013;45(3):279–84. doi:10.1038/ng.2529 PubMed DOI PMC

Campbell K, Gastier-Foster JM, Mann M, et al. Association of MYCN copy number with clinical features, tumor biology, and outcomes in neuroblastoma: A report from the Children’s Oncology Group. Cancer. Nov 1 2017;123(21):4224–4235. doi:10.1002/cncr.30873 PubMed DOI PMC

Williamson D, Lu YJ, Gordon T, et al. Relationship between MYCN copy number and expression in rhabdomyosarcomas and correlation with adverse prognosis in the alveolar subtype. J Clin Oncol. Feb 1 2005;23(4):880–8. doi:10.1200/jco.2005.11.078 PubMed DOI

Gamberi G, Benassi MS, Bohling T, et al. C-myc and c-fos in human osteosarcoma: prognostic value of mRNA and protein expression. Oncology. Nov-Dec 1998;55(6):556–63. doi:10.1159/000011912 PubMed DOI

Pfister S, Remke M, Benner A, et al. Outcome prediction in pediatric medulloblastoma based on DNA copy-number aberrations of chromosomes 6q and 17q and the MYC and MYCN loci. J Clin Oncol. Apr 1 2009;27(10):1627–36. doi:10.1200/jco.2008.17.9432 PubMed DOI

Chen H, Liu H, Qing G. Targeting oncogenic Myc as a strategy for cancer treatment. Signal Transduct Target Ther. 2018;3:5. doi:10.1038/s41392-018-0008-7 PubMed DOI PMC

Dang CV, O’Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li F. The c-Myc target gene network. Semin Cancer Biol. Aug 2006;16(4):253–64. doi:10.1016/j.semcancer.2006.07.014 PubMed DOI

Arvanitis C, Felsher DW. Conditional transgenic models define how MYC initiates and maintains tumorigenesis. Semin Cancer Biol. Aug 2006;16(4):313–7. doi:10.1016/j.semcancer.2006.07.012 PubMed DOI

Berg T, Cohen SB, Desharnais J, et al. Small-molecule antagonists of Myc/Max dimerization inhibit Myc-induced transformation of chicken embryo fibroblasts. Proc Natl Acad Sci U S A. Mar 19 2002;99(6):3830–5. doi:10.1073/pnas.062036999 PubMed DOI PMC

Delmore JE, Issa GC, Lemieux ME, et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell. Sep 16 2011;146(6):904–17. doi:10.1016/j.cell.2011.08.017 PubMed DOI PMC

Tavana O, Li D, Dai C, et al. HAUSP deubiquitinates and stabilizes N-Myc in neuroblastoma. Nat Med. Oct 2016;22(10):1180–1186. doi:10.1038/nm.4180 PubMed DOI PMC

Rickman DS, Schulte JH, Eilers M. The Expanding World of N-MYC-Driven Tumors. Cancer Discov. Feb 2018;8(2):150–163. doi:10.1158/2159-8290.Cd-17-0273 PubMed DOI

Carter DR, Murray J, Cheung BB, et al. Therapeutic targeting of the MYC signal by inhibition of histone chaperone FACT in neuroblastoma. Sci Transl Med. Nov 4 2015;7(312):312ra176. doi:10.1126/scitranslmed.aab1803 PubMed DOI PMC

Huang M, Weiss WA. Neuroblastoma and MYCN. Cold Spring Harb Perspect Med. Oct 1 2013;3(10):a014415. doi:10.1101/cshperspect.a014415 PubMed DOI PMC

Bates CM, Kharzai S, Erwin T, Rossant J, Parada LF. Role of N-myc in the developing mouse kidney. Dev Biol. Jun 15 2000;222(2):317–25. doi:10.1006/dbio.2000.9716 PubMed DOI

Jain M, Arvanitis C, Chu K, et al. Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science. Jul 5 2002;297(5578):102–4. doi:10.1126/science.1071489 PubMed DOI

Tefft M, D’Angio GJ, Grant W 3rd. Postoperative radiation therapy for residual Wilm’s tumor. Review of Group III patients in the National Wilm’s Tumor Study. Cancer. Jun 1976;37(6):2768–72. doi:10.1002/1097-0142(197606)37:6<2768::aid-cncr2820370630>3.0.co;2-w PubMed DOI

Yang Z, Yik JH, Chen R, et al. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol Cell. Aug 19 2005;19(4):535–45. doi:10.1016/j.molcel.2005.06.029 PubMed DOI

Nucera C A novel combined targeted therapy with bromodomain antagonist and MEK inhibitor in anaplastic thyroid cancer. Oncotarget. Jan 22 2019;10(7):686–687. doi:10.18632/oncotarget.26591 PubMed DOI PMC

Lovén J, Hoke HA, Lin CY, et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell. Apr 11 2013;153(2):320–34. doi:10.1016/j.cell.2013.03.036 PubMed DOI PMC

Zuber J, Shi J, Wang E, et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature. Aug 3 2011;478(7370):524–8. doi:10.1038/nature10334 PubMed DOI PMC

Chapuy B, McKeown MR, Lin CY, et al. Discovery and characterization of super-enhancer-associated dependencies in diffuse large B cell lymphoma. Cancer Cell. Dec 9 2013;24(6):777–90. doi:10.1016/j.ccr.2013.11.003 PubMed DOI PMC

Asangani IA, Dommeti VL, Wang X, et al. Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature. Jun 12 2014;510(7504):278–82. doi:10.1038/nature13229 PubMed DOI PMC

Shu S, Lin CY, He HH, et al. Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer. Nature. Jan 21 2016;529(7586):413–417. doi:10.1038/nature16508 PubMed DOI PMC

Puissant A, Frumm SM, Alexe G, et al. Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer Discov. Mar 2013;3(3):308–23. doi:10.1158/2159-8290.Cd-12-0418 PubMed DOI PMC

Wyce A, Ganji G, Smitheman KN, et al. BET inhibition silences expression of MYCN and BCL2 and induces cytotoxicity in neuroblastoma tumor models. PLoS One. 2013;8(8):e72967. doi:10.1371/journal.pone.0072967 PubMed DOI PMC

Henssen A, Althoff K, Odersky A, et al. Targeting MYCN-Driven Transcription By BET-Bromodomain Inhibition. Clin Cancer Res. May 15 2016;22(10):2470–81. doi:10.1158/1078-0432.Ccr-15-1449 PubMed DOI

Lee S, Rellinger EJ, Kim KW, et al. Bromodomain and extraterminal inhibition blocks tumor progression and promotes differentiation in neuroblastoma. Surgery. Sep 2015;158(3):819–26. doi:10.1016/j.surg.2015.04.017 PubMed DOI PMC

Baker EK, Taylor S, Gupte A, et al. BET inhibitors induce apoptosis through a MYC independent mechanism and synergise with CDK inhibitors to kill osteosarcoma cells. Sci Rep. May 6 2015;5:10120. doi:10.1038/srep10120 PubMed DOI PMC

Lamoureux F, Baud’huin M, Rodriguez Calleja L, et al. Selective inhibition of BET bromodomain epigenetic signalling interferes with the bone-associated tumour vicious cycle. Nat Commun. Mar 19 2014;5:3511. doi:10.1038/ncomms4511 PubMed DOI

Jacques C, Lamoureux F, Baud’huin M, et al. Targeting the epigenetic readers in Ewing sarcoma inhibits the oncogenic transcription factor EWS/Fli1. Oncotarget. Apr 26 2016;7(17):24125–40. doi:10.18632/oncotarget.8214 PubMed DOI PMC

Patel AJ, Liao CP, Chen Z, Liu C, Wang Y, Le LQ. BET bromodomain inhibition triggers apoptosis of NF1-associated malignant peripheral nerve sheath tumors through Bim induction. Cell Rep. Jan 16 2014;6(1):81–92. doi:10.1016/j.celrep.2013.12.001 PubMed DOI PMC

Henssen A, Thor T, Odersky A, et al. BET bromodomain protein inhibition is a therapeutic option for medulloblastoma. Oncotarget. Nov 2013;4(11):2080–95. doi:10.18632/oncotarget.1534 PubMed DOI PMC

Venkataraman S, Alimova I, Balakrishnan I, et al. Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. May 15 2014;5(9):2355–71. doi:10.18632/oncotarget.1659 PubMed DOI PMC

Bandopadhayay P, Bergthold G, Nguyen B, et al. BET bromodomain inhibition of MYC-amplified medulloblastoma. Clin Cancer Res. Feb 15 2014;20(4):912–25. doi:10.1158/1078-0432.Ccr-13-2281 PubMed DOI PMC

Ge JY, Shu S, Kwon M, et al. Acquired resistance to combined BET and CDK4/6 inhibition in triple-negative breast cancer. Nat Commun. May 11 2020;11(1):2350. doi:10.1038/s41467-020-16170-3 PubMed DOI PMC

Roderick JE, Tesell J, Shultz LD, et al. c-Myc inhibition prevents leukemia initiation in mice and impairs the growth of relapsed and induction failure pediatric T-ALL cells. Blood. Feb 13 2014;123(7):1040–50. doi:10.1182/blood-2013-08-522698 PubMed DOI PMC

Rhyasen GW, Hattersley MM, Yao Y, et al. AZD5153: A Novel Bivalent BET Bromodomain Inhibitor Highly Active against Hematologic Malignancies. Mol Cancer Ther. Nov 2016;15(11):2563–2574. doi:10.1158/1535-7163.Mct-16-0141 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...