Application of the Actiphage® Assay to Detect Viable Mycobacterium avium subsp. paratuberculosis Cells in Fresh Sheep and Goat Milk and Previously Frozen Milk and In-Line Milk Filters
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34708106
PubMed Central
PMC8542857
DOI
10.3389/fvets.2021.752834
Knihovny.cz E-zdroje
- Klíčová slova
- Actiphage, Mycobacterium avium subsp. paratuberculosis, frozen samples, milk, milk filter, paratuberculosis, phage-based detection, viability determination,
- Publikační typ
- časopisecké články MeSH
Mycobacterium avium subsp. paratuberculosis (MAP) is a well-known causative agent of paratuberculosis, a chronic infectious granulomatous enteritis of ruminants contributing to significant economic losses worldwide. Current conventional diagnostic tools are far from being sufficient to manage and control this disease. Therefore, increased attention has been paid to alternative approaches including phage-based assays employing lytic bacteriophage D29 to detect MAP cells. The aim of the present study was to assess the applicability and efficiency of the recently developed phage-based kit termed Actiphage® combined with IS900 real-time PCR (qPCR) for rapid detection and quantification of viable MAP in milk samples. We demonstrated that Actiphage® in combination with IS900 qPCR allows for rapid and sensitive detection and identification of viable MAP in milk samples with a limit of detection of 1 MAP per 50 ml milk. Using this method, the presence of viable MAP cells was successfully determined in 30.77% of fresh goat, sheep and cow milk samples originating from paratuberculosis-affected herds. We further used Actiphage assay to define the time-lapse aspect of testing naturally contaminated milk and milk filters frozen for various lengths of time by phage-based techniques. Viable MAP was detected in 13.04% of frozen milk samples and 28.57% of frozen milk filters using Actiphage-qPCR. The results suggest the ability to detect viable MAP in these samples following freezing for more than 1 year. The obtained results support the views of the beneficial role of this technology in the control or monitoring of paratuberculosis.
Department of Experimental Biology Faculty of Science Masaryk University Brno Czechia
Department of Microbiology and Antimicrobial Resistance Veterinary Research Institute Brno Czechia
Zobrazit více v PubMed
Botsaris G, Liapi M, Kakogiannis C, Dodd CER, Rees CED. Detection of Mycobacterium avium subsp paratuberculosis in bulk tank milk by combined phage-PCR assay: evidence that plaque number is a good predictor of MAP. Int J Food Microbiol. (2013) 164:76-80. 10.1016/j.ijfoodmicro.2013.03.023 PubMed DOI
Whittington RJ, Sergeant ES. Progress towards understanding the spread, detection and control of Mycobacterium avium subsp paratuberculosis in animal populations. Aust Vet J. (2001) 79:267-78. 10.1111/j.1751-0813.2001.tb11980.x PubMed DOI
Mortensen H, Nielsen SS, Berg P. Genetic variation and heritability of the antibody response to Mycobacterium avium subspecies paratuberculosis in Danish Holstein cows. J Dairy Sci. (2004) 87:2108-13. 10.3168/jds.S0022-0302(04)70029-6 PubMed DOI
Foddai A, Elliott CT, Grant IR. Optimization of a phage amplification assay to permit accurate enumeration of viable Mycobacterium avium subsp paratuberculosis cells. Appl Environ Microb. (2009) 75:3896-902. 10.1128/AEM.00294-09 PubMed DOI PMC
Beinhauerova M, Slana I. Phage amplification assay for detection of mycobacterial infection: a review. Microorganisms. (2021) 9:237. 10.3390/microorganisms9020237 PubMed DOI PMC
Rybniker J, Kramme S, Small PL. Host range of 14 mycobacteriophages in Mycobacterium ulcerans and seven other mycobacteria including Mycobacterium tuberculosis- application for identification and susceptibility testing. J Med Microbiol. (2006) 55:37-42. 10.1099/jmm.0.46238-0 PubMed DOI
Stanley EC, Mole RJ, Smith RJ, Glenn SM, Barer MR, McGowan M, et al. . Development of a new, combined rapid method using phage and PCR for detection and identification of viable Mycobacterium paratuberculosis bacteria within 48 hours. Appl Environ Microb. (2007) 73:1851-7. 10.1128/AEM.01722-06 PubMed DOI PMC
Foddai A, Strain S, Whitlock RH, Elliott CT, Grant IR. Application of a peptide-mediated magnetic separation-phage assay for detection of viable Mycobacterium avium subsp paratuberculosis to bovine bulk tank milk and fecessamples. J Clin Microbiol. (2011) 49:2017-9. 10.1128/JCM.00429-11 PubMed DOI PMC
Foddai AC, Grant IR. Sensitive and specific detection of viable Mycobacterium avium subsp. paratuberculosis in raw milk by the peptide-mediated magnetic separation-phage assay. J Appl Microbiol. (2017) 122:1357-67. 10.1111/jam.13425 PubMed DOI
O'Brien LM, McAloon CG, Stewart LD, Strain SAJ, Grant IR. Diagnostic potential of the peptide-mediated magnetic separation (PMS)-phage assay and PMS-culture to detect Mycobacterium avium subsp. paratuberculosis in bovine milk samples. Transbound Emerg Dis. (2018) 65:719-26. 10.1111/tbed.12794 PubMed DOI
Gerrard ZE, Swift BMC, Botsaris G, Davidson RS, Hutchings MR, Huxley JN, et al. . Survival of Mycobacterium avium subspecies paratuberculosis in retail pasteurised milk. Food Microbiol. (2018) 74:57-63. 10.1016/j.fm.2018.03.004 PubMed DOI
Botsaris G, Slana I, Liapi M, Dodd C, Economides C, Rees C, et al. . Rapid detection methods for viable Mycobacterium avium subspecies paratuberculosis in milk and cheese. Int J Food Microbiol. (2010) 141:S87-90. 10.1016/j.ijfoodmicro.2010.03.016 PubMed DOI
Grant IR, Foddai ACG, Tarrant JC, Kunkel B, Hartmann FA, McGuirk S, et al. . Viable Mycobacterium avium ssp paratuberculosis isolated from calf milk replacer. J Dairy Sci. (2017) 100:9723-35. 10.3168/jds.2017-13154 PubMed DOI
Botsaris G, Swift BMC, Slana I, Liapi M, Christodoulou M, Hatzitofi M, et al. . Detection of viable Mycobacterium avium subspecies paratuberculosis in powdered infant formula by phage-PCR and confirmed by culture. Int J Food Microbiol. (2016) 216:91-4. 10.1016/j.ijfoodmicro.2015.09.011 PubMed DOI
Swift BM, Denton EJ, Mahendran SA, Huxley JN, Rees CE. Development of a rapid phage-based method for the detection of viable Mycobacterium avium subsp. paratuberculosis in blood within 48 h. J Microbiol Methods. (2013) 94:175-9. 10.1016/j.mimet.2013.06.015 PubMed DOI PMC
Swift BMC, Huxley JN, Plain KM, Begg DJ, de Silva K, Purdie AC, et al. . Evaluation of the limitations and methods to improve rapid phage-based detection of viable Mycobacterium avium subsp paratuberculosis in the blood of experimentally infected cattle. BMC Vet Res. (2016) 12:115. 10.1186/s12917-016-0728-2 PubMed DOI PMC
Swift BMC, Meade N, Barron ES, Bennett M, Perehenic T, Hughes V, et al. . The development and use of Actiphage to detect viable mycobacteria from bovine tuberculosis and Johne's disease-infected animals. Microb Biotechnol. (2020) 13:738-46. 10.1111/1751-7915.13518 PubMed DOI PMC
Kralik P, Beran V, Pavlik I. Enumeration of Mycobacterium avium subsp. paratuberculosis by quantitative real-time PCR, culture on solid media and optical densitometry. BMC Res Notes. (2012) 5:114. 10.1186/1756-0500-5-114 PubMed DOI PMC
Slana I, Kralik P, Kralova A, Pavlik I. On-farm spread of Mycobacterium avium subsp paratuberculosis in raw milk studied by IS900 and F57 competitive real time quantitative PCR and culture examination. Int J Food Microbiol. (2008) 128:250-7. 10.1016/j.ijfoodmicro.2008.08.013 PubMed DOI
Sevilla IA, Molina E, Elguezabal N, Perez V, Garrido JM, Juste RA. Detection of mycobacteria, Mycobacterium avium subspecies, and Mycobacterium tuberculosis complex by a novel tetraplex real-time PCR assay. J Clin Microbiol. (2015) 53:930-40. 10.1128/JCM.03168-14 PubMed DOI PMC
Haas C, Potaufeux V, Caplain C, Dangien C, Meunier A, Sellal E, et al. . Detection of active infection of new-born calves by Mycobacterium avium subsp. paratuberculosis (MAP) in first days of life. In: 5th Congress of the European Association of Veterinary Laboratory DiagnosticiansMCE. Brussels: Business and Conference Centre; (2018) p. 14-17.
Verma R, Swift B, Handley-Hartill W, Lee J, Woltmann G, Rees C, et al. . A novel high sensitivity bacteriophage-based assay identifies low level M. tuberculosis bacteriaemia in immunocompetent patients with active and incipient TB. Clin Infect Dis. (2019) 70:933–6. 10.1093/cid/ciz548 PubMed DOI
Sharp SE, Lemes M, Sierra SG, Poniecka A, Poppiti RJ, Jr. Lowenstein-Jensen media. No longer necessary for mycobacterial isolation. Am J Clin Pathol. (2000) 113:770-3. 10.1309/JHDD-1HF4-2KCN-7ANP PubMed DOI
Akineden O, Weirich S, Abdulmawjood A, Failing K, Bulte M. Application of a fluorescence microscopy technique for detecting viable Mycobacterium avium ssp. paratuberculosis cells in milk. Food Anal Method. (2015) 8:499-506. 10.1007/s12161-014-9918-3 DOI
Bradner L, Robbe-Austerman S, Beitz DC, Stabel JR. Optimization of hexadecylpyridinium chloride decontamination for culture of Mycobacterium avium subsp paratuberculosis from milk. J Clin Microbiol. (2013) 51:1575-7. 10.1128/JCM.00333-13 PubMed DOI PMC
Grant IR, Ball HJ, Rowe MT. Isolation of Mycobacterium paratuberculosis from milk by immunomagnetic separation. Appl Environ Microbiol. (1998) 64:3153-8. 10.1128/AEM.64.9.3153-3158.1998 PubMed DOI PMC
Foddai ACG, Grant IR. An optimised milk testing protocol to ensure accurate enumeration of viable Mycobacterium avium subsp paratuberculosis by the PMS-phage assay. Int Dairy J. (2015) 51:16-23. 10.1016/j.idairyj.2015.07.004 DOI
Sweeney RW, Whitlock RH, Rosenberger AE. Mycobacterium paratuberculosis cultured from milk and supramammary lymph nodes of infected asymptomatic cows. J Clin Microbiol. (1992) 30:166-71. 10.1128/jcm.30.1.166-171.1992 PubMed DOI PMC
Streeter RN, Hoffsis GF, Bech-Nielsen S, Shulaw WP, Rings DM. Isolation of Mycobacterium paratuberculosis from colostrum and milk of subclinically infected cows. Am J Vet Res. (1995) 56:1322-4. PubMed
Stabel JR, Bradner L, Robbe-Austerman S, Beitz DC. Clinical disease and stage of lactation influence shedding of Mycobacterium avium subspecies paratuberculosis into milk and colostrum of naturally infected dairy cows. J Dairy Sci. (2014) 97:6296-304. 10.3168/jds.2014-8204 PubMed DOI
McAloon CG, Roche S, Ritter C, Barkema HW, Whyte P, More SJ, et al. . A review of paratuberculosis in dairy herds - part 1: epidemiology. Vet J. (2019) 246:59-65. 10.1016/j.tvjl.2019.01.010 PubMed DOI
Corbett CS, De Buck J, Barkema HW. Effects of freezing on ability to detect Mycobacterium avium subsp. paratuberculosis from bovine tissues following culture. J Vet Diagn Invest. (2018) 30:743-6. 10.1177/1040638718790781 PubMed DOI PMC