Phage Amplification Assay for Detection of Mycobacterial Infection: A Review

. 2021 Jan 23 ; 9 (2) : . [epub] 20210123

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33498792

Grantová podpora
QK1910082 Ministerstvo Zemědělství
RVO0518 Ministerstvo Zemědělství

Odkazy

PubMed 33498792
PubMed Central PMC7912421
DOI 10.3390/microorganisms9020237
PII: microorganisms9020237
Knihovny.cz E-zdroje

An important prerequisite for the effective control, timely diagnosis, and successful treatment of mycobacterial infections in both humans and animals is a rapid, specific, and sensitive detection technique. Culture is still considered the gold standard in the detection of viable mycobacteria; however, mycobacteria are extremely fastidious and slow-growing microorganisms, and therefore cultivation requires a very long incubation period to obtain results. Polymerase Chain Reaction (PCR) methods are also frequently used in the diagnosis of mycobacterial infections, providing faster and more accurate results, but are unable to distinguish between a viable and non-viable microorganism, which results in an inability to determine the success of tuberculosis patient treatment or to differentiate between an active and passive infection of animals. One suitable technique that overcomes these shortcomings mentioned is the phage amplification assay (PA). PA specifically detects viable mycobacteria present in a sample within 48 h using a lytic bacteriophage isolated from the environment. Nowadays, an alternative approach to PA, a commercial kit called Actiphage™, is also employed, providing the result within 6-8 h. In this approach, the bacteriophage is used to lyse mycobacterial cells present in the sample, and the released DNA is subsequently detected by PCR. The objective of this review is to summarize information based on the PA used for detection of mycobacteria significant in both human and veterinary medicine from various kinds of matrices.

Zobrazit více v PubMed

Smith R.L., Schukken Y.H., Pradhan A.K., Smith J.M., Whitlock R.H., Van Kessel J.S., Wolfgang D.R., Grohn Y.T. Environmental contamination with Mycobacterium avium subsp. paratuberculosis in endemically infected dairy herds. Prev. Vet. Med. 2011;102:1–9. doi: 10.1016/j.prevetmed.2011.06.009. PubMed DOI

Nielsen S.S., Toft N. A review of prevalences of paratuberculosis in farmed animals in Europe. Prev. Vet. Med. 2009;88:1–14. doi: 10.1016/j.prevetmed.2008.07.003. PubMed DOI

Crawshaw T. Wildlife hosts for Mycobacterium bovis. Vet. Rec. 2013;173:164–165. doi: 10.1136/vr.f5053. PubMed DOI

World Health Organization . Global Tuberculosis Report 2020. World Health Organization; Geneva, Switzerland: 2020.

Alcaide F., Gali N., Dominguez J., Berlanga P., Blanco S., Orus P., Martin R. Usefulness of a new mycobacteriophage-based technique for rapid diagnosis of pulmonary tuberculosis. J. Clin. Microbiol. 2003;41:2867–2871. doi: 10.1128/JCM.41.7.2867-2871.2003. PubMed DOI PMC

Kalantri S., Pai M., Pascopella L., Riley L., Reingold A. Bacteriophage-based tests for the detection of Mycobacterium tuberculosis in clinical specimens: A systematic review and meta-analysis. BMC Infect. Dis. 2005;5:59. doi: 10.1186/1471-2334-5-59. PubMed DOI PMC

Bonnet M., Gagnidze L., Varaine F., Ramsay A., Githui W., Guerin P.J. Evaluation of FASTPlaqueTB™ to diagnose smear-negative tuberculosis in a peripheral clinic in Kenya. Int. J. Tuberc. Lung Dis. 2009;13:1112–1118. PubMed

Prakash S., Katiyar S.K., Purwar S., Singh J.P. Clinical evaluation of the mycobacteriophage-based assay in rapid detection of Mycobacterium tuberculosis in respiratory specimens. Indian J. Med. Microbiol. 2009;27:134–138. doi: 10.4103/0255-0857.49426. PubMed DOI

Sharp S.E., Lemes M., Sierra S.G., Poniecka A., Poppiti R.J., Jr. Lowenstein-Jensen media. No longer necessary for mycobacterial isolation. Am. J. Clin. Pathol. 2000;113:770–773. doi: 10.1309/JHDD-1HF4-2KCN-7ANP. PubMed DOI

Leitritz L., Schubert S., Bucherl B., Masch A., Heesemann J., Roggenkamp A. Evaluation of BACTEC MGIT 960 AND BACTEC 460TB systems for recovery of mycobacteria from clinical specimens of a university hospital with low incidence of tuberculosis. J. Clin. Microbiol. 2001;39:3764–3767. doi: 10.1128/JCM.39.10.3764-3767.2001. PubMed DOI PMC

Shenai S., Rodrigues C., Mehta A. Newer rapid diagnostic method for tuberculosis: A preliminary experience. Indian J. Tuberc. 2004;51:219–230.

Albert H., Heydenrych A., Brookes R., Mole R.J., Harley B., Subotsky E., Henry R., Azevedo V. Performance of a rapid phage-based test, FASTPlaqueTB™,to diagnose pulmonary tuberculosis from sputurn specimens in South Africa. Int. J. Tuberc. Lung Dis. 2002;6:529–537. doi: 10.5588/09640569513057. PubMed DOI

Muzaffar R., Batool S., Aziz F., Naqvi A., Rizvi A. Evaluation of the FASTPlaqueTB assay for direct detection of Mycobacterium tuberculosis in sputum specimens. Int. J. Tuberc. Lung Dis. 2002;6:635–640. PubMed

Marei A.M., El-Behedy E.M., Mohtady H.A., Afify A.F. Evaluation of a rapid bacteriophage-based method for the detection of Mycobacterium tuberculosis in clinical samples. J. Med. Microbiol. 2003;52:331–335. doi: 10.1099/jmm.0.05091-0. PubMed DOI

Slana I., Kralik P., Kralova A., Pavlik I. On-farm spread of Mycobacterium avium subsp. paratuberculosis in raw milk studied by IS900 and F57 competitive real time quantitative PCR and culture examination. Int. J. Food Microbiol. 2008;128:250–257. doi: 10.1016/j.ijfoodmicro.2008.08.013. PubMed DOI

Smartt A.E., Xu T.T., Jegier P., Carswell J.J., Blount S.A., Sayler G.S., Ripp S. Pathogen detection using engineered bacteriophages. Anal. Bioanal. Chem. 2012;402:3127–3146. doi: 10.1007/s00216-011-5555-5. PubMed DOI

Leite F.L., Stokes K.D., Robbe-Austerman S., Stabel J.R. Comparison of fecal DNA extraction kits for the detection of Mycobacterium avium subsp. paratuberculosis by polymerase chain reaction. J. Vet. Diagn. Investig. 2013;25:27–34. doi: 10.1177/1040638712466395. PubMed DOI

Olsen I., Sigurgardottir G., Djonne B. Paratuberculosis with special reference to cattle. A review. Vet. Q. 2002;24:12–28. doi: 10.1080/01652176.2002.9695120. PubMed DOI

Nielsen S.S., Toft N. Age-specific characteristics of ELISA and fecal culture for purpose-specific testing for paratuberculosis. J. Dairy Sci. 2006;89:569–579. doi: 10.3168/jds.S0022-0302(06)72120-8. PubMed DOI

Tiwari R.P., Hattikudur N.S., Bharmal R.N., Kartikeyan S., Deshmukh N.M., Bisen P.S. Modern approaches to a rapid diagnosis of tuberculosis: Promises and challenges ahead. Tuberculosis. 2007;87:193–201. doi: 10.1016/j.tube.2006.07.005. PubMed DOI

Stella E.J., De la Iglesia A.I., Morbidoni H.R. Mycobacteriophages as versatile tools for genetic manipulation of mycobacteria and development of simple methods for diagnosis of mycobacterial diseases. Rev. Argent. Microbiol. 2009;41:45–55. PubMed

Pai M., Kalantri S., Pascopella L., Riley L.W., Reingold A.L. Bacteriophage-based assays for the rapid detection of rifampicin resistance in Mycobacterium tuberculosis: A meta-analysis. J. Infect. 2005;51:175–187. doi: 10.1016/j.jinf.2005.05.017. PubMed DOI

Minion J., Pai M. Bacteriophage assays for rifampicin resistance detection in Mycobacterium tuberculosis: Updated meta-analysis. Int. J. Tuberc. Lung Dis. 2010;14:941–951. PubMed

Gardner G.M., Weiser R.S. A bacteriophage for Mycobacterium smegmatis. Proc. Soc. Exp. Biol Med. 1947;66:205–206. doi: 10.3181/00379727-66-16037. PubMed DOI

Tokunaga T., Sellers M.I. Streptomycin induction of premature lysis of bacteriophage-infected mycobacteria. J. Bacteriol. 1965;89:537–538. doi: 10.1128/JB.89.2.537-538.1965. PubMed DOI PMC

Hirsh D.C., Martin L.D. Rapid detection of Salmonella spp. by using Felix-O1 bacteriophage and high-performance liquid chromatography. Appl. Environ. Microbiol. 1983;45:260–264. doi: 10.1128/AEM.45.1.260-264.1983. PubMed DOI PMC

Hirsh D.C., Martin L.D. Detection of Salmonella spp. in milk by using Felix-O1 bacteriophage and high-pressure liquid chromatography. Appl. Environ. Microbiol. 1983;46:1243–1245. doi: 10.1128/AEM.46.5.1243-1245.1983. PubMed DOI PMC

Jassim S.A.A., Griffiths M.W. Evaluation of a rapid microbial detection method via phage lytic amplification assay coupled with live/dead fluorochromic stains. Lett. Appl. Microbiol. 2007;44:673–678. doi: 10.1111/j.1472-765X.2007.02115.x. PubMed DOI

Sergueev K.V., He Y., Borschel R.H., Nikolich M.P., Filippov A.A. Rapid and sensitive detection of Yersinia pestis using amplification of plague diagnostic bacteriophages monitored by real-time PCR. PLoS ONE. 2010;5:e11337. doi: 10.1371/journal.pone.0011337. PubMed DOI PMC

Rees J.C., Barr J.R. Detection of methicillin-resistant Staphylococcus aureus using phage amplification combined with matrix-assisted laser desorption/ionization mass spectrometry. Anal. Bioanal. Chem. 2017;409:1379–1386. doi: 10.1007/s00216-016-0070-3. PubMed DOI PMC

Pearson R.E., Jurgensen S., Sarkis G.J., Hatfull G.F., Jacobs W.R. Construction of D29 shuttle phasmids and luciferase reporter phages for detection of mycobacteria. Gene. 1996;183:129–136. doi: 10.1016/S0378-1119(96)00530-6. PubMed DOI

Goodridge L., Griffiths M. Reporter bacteriophage assays as a means to detect foodborne pathogenic bacteria. Food Res. Int. 2002;35:863–870. doi: 10.1016/S0963-9969(02)00094-7. DOI

Bardarov S., Dou H., Eisenach K., Banaiee N., Ya S., Chan J., Jacobs W.R., Riska P.F. Detection and drug-susceptibility testing of M. tuberculosis from sputum samples using luciferase reporter phage: Comparison with the Mycobacteria Growth Indicator Tube (MGIT) system. Diagn. Microbiol. Infec. Dis. 2003;45:53–61. doi: 10.1016/S0732-8893(02)00478-9. PubMed DOI

Piuri M., Jacobs W.R., Hatfull G.F. Fluoromycobacteriophages for rapid, specific, and sensitive antibiotic susceptibility testing of Mycobacterium tuberculosis. PLoS ONE. 2009;4:e4870. doi: 10.1371/journal.pone.0004870. PubMed DOI PMC

McNerney R., Wilson S.M., Sidhu A.M., Harley V.S., al Suwaidi Z., Nye P.M., Parish T., Stoker N.G. Inactivation of mycobacteriophage D29 using ferrous ammonium sulphate as a tool for the detection of viable Mycobacterium smegmatis and M. tuberculosis. Res. Microbiol. 1998;149:487–495. doi: 10.1016/S0923-2508(98)80003-X. PubMed DOI

Froman S., Will D.W., Bogen E. Bacteriophage active against virulent Mycobacterium tuberculosis I. Isolation and activity. Am. J. Public Health. 1954;44:1326–1333. doi: 10.2105/AJPH.44.10.1326. PubMed DOI PMC

McNerney R., Kambashi B.S., Kinkese J., Tembwe R., Godfrey-Faussett P. Development of a bacteriophage phage replication assay for diagnosis of pulmonary tuberculosis. J. Clin. Microbiol. 2004;42:2115–2120. doi: 10.1128/JCM.42.5.2115-2120.2004. PubMed DOI PMC

Rees C., Botsaris G. The use of phage for detection, antibiotic sensitivity testing and enumeration. In: Cardona P.-J., editor. Understanding Tuberculosis—Global Experiences and Innovative Approaches to the Diagnosis. IntechOpen; London, UK: 2012. pp. 293–306.

Hatfull G.F. Molecular genetics of mycobacteriophages. Microbiol. Spectr. 2014;2:1–36. doi: 10.1128/microbiolspec.MGM2-0032-2013. PubMed DOI PMC

Lazraq R., Moniz-Pereira J., Clavel-Seres S., Clement F., David H.L. Restriction map of mycobacteriophage D29 and its deletion mutant F5. Acta Leprol. 1989;7:234–238. PubMed

Ford M.E., Sarkis G.J., Belanger A.E., Hendrix R.W., Hatfull G.F. Genome structure of mycobacteriophage D29: Implications for phage evolution. J. Mol. Biol. 1998;279:143–164. doi: 10.1006/jmbi.1997.1610. PubMed DOI

Rybniker J., Kramme S., Small P.L. Host range of 14 mycobacteriophages in Mycobacterium ulcerans and seven other mycobacteria including Mycobacterium tuberculosis—Application for identification and susceptibility testing. J. Med. Microbiol. 2006;55:37–42. doi: 10.1099/jmm.0.46238-0. PubMed DOI

Foddai A.C.G., Grant I.R. Sensitive and specific detection of viable Mycobacterium avium subsp. paratuberculosis in raw milk by the peptide-mediated magnetic separation-phage assay. J. Appl. Microbiol. 2017;122:1357–1367. doi: 10.1111/jam.13425. PubMed DOI

Albert H., Heydenrych A., Mole R., Trollip A., Blumberg L. Evaluation of FASTPlaqueTB-RIF™, a rapid, manual test for the determination of rifampicin resistance from Mycobacterium tuberculosis cultures. Int. J. Tuberc. Lung Dis. 2001;5:906–911. PubMed

Chauca J.A., Palomino J.C., Guerra H. Evaluation of rifampicin and isoniazid susceptibility testing of Mycobacterium tuberculosis by a mycobacteriophage D29-based assay. J. Med. Microbiol. 2007;56:360–364. doi: 10.1099/jmm.0.46622-0. PubMed DOI

Stanley E.C., Mole R.J., Smith R.J., Glenn S.M., Barer M.R., McGowan M., Rees C.E.D. Development of a new, combined rapid method using phage and PCR for detection and identification of viable Mycobacterium paratuberculosis bacteria within 48 hours. Appl. Environ. Microb. 2007;73:1851–1857. doi: 10.1128/AEM.01722-06. PubMed DOI PMC

Grant I.R., Foddai A.C.G., Tarrant J.C., Kunkel B., Hartmann F.A., McGuirk S., Hansen C., Talaat A.M., Collins M.T. Viable Mycobacterium avium ssp. paratuberculosis isolated from calf milk replacer. J. Dairy Sci. 2017;100:9723–9735. doi: 10.3168/jds.2017-13154. PubMed DOI

Botsaris G., Liapi M., Kakogiannis C., Dodd C.E.R., Rees C.E.D. Detection of Mycobacterium avium subsp. paratuberculosis in bulk tank milk by combined phage-PCR assay: Evidence that plaque number is a good predictor of MAP. Int. J. Food Microbiol. 2013;164:76–80. doi: 10.1016/j.ijfoodmicro.2013.03.023. PubMed DOI

Swift B.M.C., Convery T.W., Rees C.E.D. Evidence of Mycobacterium tuberculosis complex bacteraemia in intradermal skin test positive cattle detected using phage-RPA. Virulence. 2016;7:779–788. doi: 10.1080/21505594.2016.1191729. PubMed DOI PMC

Samaddar S., Grewal R.K., Sinha S., Ghosh S., Roy S., Das Gupta S.K. Dynamics of mycobacteriophage-mycobacterial host interaction: Evidence for secondary mechanisms for host lethality. Appl. Environ. Microbiol. 2016;82:124–133. doi: 10.1128/AEM.02700-15. PubMed DOI PMC

Swift B.M.C., Meade N., Barron E.S., Bennett M., Perehenic T., Hughes V., Stevenson K., Rees C.E.D. The development and use of Actiphage to detect viable mycobacteria from bovine tuberculosis and Johne’s disease-infected animals. Microb. Biotechnol. 2020;13:738–746. doi: 10.1111/1751-7915.13518. PubMed DOI PMC

Shenai S., Rodrigues C., Mehta A.P. Evaluation of a new phage amplification technology for rapid diagnosis of tuberculosis. Indian J. Med. Microbiol. 2002;20:194–199. PubMed

Verma R., Swift B., Handley-Hartill W., Lee J., Woltmann G., Rees C., Haldar P. A novel high sensitivity bacteriophage-based assay identifies low level M. tuberculosis bacteriaemia in immunocompetent patients with active and incipient TB. Clin. Infect. Dis. 2019;70:933–936. PubMed

Mbulo G.M., Kambashi B.S., Kinkese J., Tembwe R., Shumba B., Godfrey-Faussett P., McNerney R. Comparison of two bacteriophage tests and nucleic acid amplification for the diagnosis of pulmonary tuberculosis in sub-saharan Africa. Int. J. Tuberc. Lung Dis. 2004;8:1342–1347. PubMed

Park D.J., Drobniewski F.A., Meyer A., Wilson S.M. Use of a phage-based assay for phenotypic detection of mycobacteria directly from sputum. J. Clin. Microbiol. 2003;41:680–688. doi: 10.1128/JCM.41.2.680-688.2003. PubMed DOI PMC

Cavusoglu C., Guneri S., Suntur M., Bilgic A. Clinical evaluation of the FASTPlaqueTB for the rapid diagnosis of pulmonary tuberculosis. Turk. J. Med. Sci. 2002;32:487–492.

Albay A., Kisa O., Baylan O., Doganci L. The evaluation of FASTPlaqueTB™ test for the rapid diagnosis of tuberculosis. Diagn. Microbiol. Infec. Dis. 2003;46:211–215. doi: 10.1016/S0732-8893(03)00048-8. PubMed DOI

Butt T., Ahmad R.N., Kazmi S.Y., Mahmood A. Rapid diagnosis of pulmonary tuberculosis by mycobacteriophage assay. Int. J. Tuberc. Lung Dis. 2004;8:899–902. PubMed

Biswas D., Deb A., Gupta P., Prasad R., Negi K.S. Evaluation of the usefulness of phage amplification technology in the diagnosis of patients with paucibacillary tuberculosis. Indian J. Med. Microbiol. 2008;26:75–78. doi: 10.4103/0255-0857.38865. PubMed DOI

Singh S., Saluja T.P., Kaur M., Khilnani G.C. Comparative evaluation of FASTPlaque assay with PCR and other conventional In Vitro diagnostic methods for the early detection of pulmonary tuberculosis. J. Clin. Lab. Anal. 2008;22:367–374. doi: 10.1002/jcla.20264. PubMed DOI PMC

Trollip A.P., Albert H., Mole R., Marshall T., van Cutsem G., Coetzee D. Performance of FASTPlaqueTB™ and a modified protocol in a high HIV prevalence community in South Africa. Int. J. Tuberc. Lung Dis. 2009;13:791–793. PubMed

Bellen A.L., Ang C.F., Montoya J.C., Mendoza M.T. Accuracy of a bacteriophage-based assay in the rapid diagnosis of pulmonary tuberculosis. J. Microbiol. Infect. Dis. 2003;32:1–10.

Zhu C.T., Cui Z.L., Zheng R.J., Yang H., Jin R.L., Qin L.H., Liu Z.H., Wang J., Hu Z.Y. A multi-center study to evaluate the performance of phage amplified biologically assay for detecting TB in sputum in the pulmonary TB patients. PLoS ONE. 2011;6:e24435. doi: 10.1371/journal.pone.0024435. PubMed DOI PMC

Zhao N., Sun J.Y., Xu H.P., Sun F.Y. Early diagnosis of tuberculosis-associated IgA nephropathy with ESAT-6. Tohoku J. Exp. Med. 2017;241:271–279. doi: 10.1620/tjem.241.271. PubMed DOI

Falkinham J.O. Epidemiology of infection by nontuberculous mycobacteria. Clin. Microbiol Rev. 1996;9:177–215. doi: 10.1128/CMR.9.2.177. PubMed DOI PMC

Takiff H., Heifets L. In search of rapid diagnosis and drug-resistance detection tools: Is the FASTPlaqueTB test the answer? Int. J Tuberc. Lung Dis. 2002;6:560–561. PubMed

Swift B.M.C., Gerrard Z.E., Huxley J.N., Rees C.E.D. Factors affecting phage D29 infection: A tool to investigate different growth states of mycobacteria. PLoS ONE. 2014;9:e106690. doi: 10.1371/journal.pone.0106690. PubMed DOI PMC

Foddai A., Elliott C.T., Grant I.R. Optimization of a phage amplification assay to permit accurate enumeration of viable Mycobacterium avium subsp. paratuberculosis cells. Appl. Environ. Microb. 2009;75:3896–3902. doi: 10.1128/AEM.00294-09. PubMed DOI PMC

Botsaris G., Slana I., Liapi M., Dodd C., Economides C., Rees C., Pavlik I. Rapid detection methods for viable Mycobacterium avium subspecies paratuberculosis in milk and cheese. Int. J. Food Microbiol. 2010;141:S87–S90. doi: 10.1016/j.ijfoodmicro.2010.03.016. PubMed DOI

Botsaris G., Swift B.M.C., Slana I., Liapi M., Christodoulou M., Hatzitofi M., Christodoulou V., Rees C.E.D. Detection of viable Mycobacterium avium subspecies paratuberculosis in powdered infant formula by phage-PCR and confirmed by culture. Int. J. Food Microbiol. 2016;216:91–94. doi: 10.1016/j.ijfoodmicro.2015.09.011. PubMed DOI

Gerrard Z.E., Swift B.M.C., Botsaris G., Davidson R.S., Hutchings M.R., Huxley J.N., Rees C.E.D. Survival of Mycobacterium avium subspecies paratuberculosis in retail pasteurised milk. Food Microbiol. 2018;74:57–63. doi: 10.1016/j.fm.2018.03.004. PubMed DOI

Altic L.C., Rowe M.T., Grant I.R. UV light inactivation of Mycobacterium avium subsp. paratuberculosis in milk as assessed by FASTPlaqueTB phage assay and culture. Appl. Environ. Microb. 2007;73:3728–3733. doi: 10.1128/AEM.00057-07. PubMed DOI PMC

Donaghy J., Keyser M., Johnston J., Cilliers F.P., Gouws P.A., Rowe M.T. Inactivation of Mycobacterium avium ssp. paratuberculosis in milk by UV treatment. Lett. Appl. Microbiol. 2009;49:217–221. doi: 10.1111/j.1472-765X.2009.02644.x. PubMed DOI

Akineden O., Weirich S., Abdulmawjood A., Failing K., Bulte M. Application of a fluorescence microscopy technique for detecting viable Mycobacterium avium ssp. paratuberculosis cells in milk. Food Anal. Method. 2015;8:499–506. doi: 10.1007/s12161-014-9918-3. DOI

Foddai A., Elliott C.T., Grant I.R. Rapid assessment of the viability of Mycobacterium avium subsp. paratuberculosis cells after heat treatment, using an optimized phage amplification assay. Appl. Environ. Microb. 2010;76:1777–1782. doi: 10.1128/AEM.02625-09. PubMed DOI PMC

Swift B.M.C., Denton E.J., Mahendran S.A., Huxley J.N., Rees C.E.D. Development of a rapid phage-based method for the detection of viable Mycobacterium avium subsp. paratuberculosis in blood within 48 h. J. Microbiol. Meth. 2013;94:175–179. doi: 10.1016/j.mimet.2013.06.015. PubMed DOI PMC

Boyle D.S., Lehman D.A., Lillis L., Peterson D., Singhal M., Armes N., Parker M., Piepenburg O., Overbaugh J. Rapid detection of HIV-1 proviral DNA for early infant diagnosis using recombinase polymerase amplification. Mbio. 2013;4:e00135–e00213. doi: 10.1128/mBio.00135-13. PubMed DOI PMC

Slana I., Liapi M., Moravkova M., Kralova A., Pavlik I. Mycobacterium avium subsp. paratuberculosis in cow bulk tank milk in Cyprus detected by culture and quantitative IS900 and F57 real-time PCR. Prev. Vet. Med. 2009;89:223–226. doi: 10.1016/j.prevetmed.2009.02.020. PubMed DOI

Bradner L., Robbe-Austerman S., Beitz D.C., Stabel J.R. Optimization of hexadecylpyridinium chloride decontamination for culture of Mycobacterium avium subsp. paratuberculosis from milk. J. Clin. Microbiol. 2013;51:1575–1577. doi: 10.1128/JCM.00333-13. PubMed DOI PMC

Slana I., Paolicchi F., Janstova B., Navratilova P., Pavlik I. Detection methods for Mycobacterium avium subsp. paratuberculosis in milk and milk products: A review. Vet. Med. Czech. 2008;53:283–306. doi: 10.17221/1859-VETMED. DOI

Atreya R., Bulte M., Gerlach G.F., Goethe R., Hornef M.W., Kohler H., Meens J., Mobius P., Roeb E., Weiss S., et al. Facts, myths and hypotheses on the zoonotic nature of Mycobacterium avium subspecies paratuberculosis. Int. J. Med. Microbiol. 2014;304:858–867. doi: 10.1016/j.ijmm.2014.07.006. PubMed DOI

Millar D., Ford J., Sanderson J., Withey S., Tizard M., Doran T., Hermon-Taylor J. IS900 PCR to detect Mycobacterium paratuberculosis in retail supplies of whole pasteurized cows’ milk in England and Wales. Appl. Environ. Microbiol. 1996;62:3446–3452. doi: 10.1128/AEM.62.9.3446-3452.1996. PubMed DOI PMC

Ayele W.Y., Svastova P., Roubal P., Bartos M., Pavlik I. Mycobacterium avium subspecies paratuberculosis cultured from locally and commercially pasteurized cow’s milk in the Czech Republic. Appl. Environ. Microb. 2005;71:1210–1214. doi: 10.1128/AEM.71.3.1210-1214.2005. PubMed DOI PMC

Dundee L., Grant I.R., Ball H.J., Rowe M.T. Comparative evaluation of four decontamination protocols for the isolation of Mycobacterium avium subsp. paratuberculosis from milk. Lett. Appl. Microbiol. 2001;33:173–177. doi: 10.1046/j.1472-765x.2001.00979.x. PubMed DOI

Gao A., Mutharia L., Raymond M., Odumeru J. Improved template DNA preparation procedure for detection of Mycobacterium avium subsp. paratuberculosis in milk by PCR. J. Microbiol. Meth. 2007;69:417–420. doi: 10.1016/j.mimet.2006.10.019. PubMed DOI

Hruska K., Slana I., Kralik P., Pavlik I. Mycobacterium avium subsp. paratuberculosis in powdered infant milk: F57 competitive real time PCR. Vet. Med. Czech. 2011;56:226–230. doi: 10.17221/1563-VETMED. DOI

Maggioli M.F. A bloody evidence: Is Mycobacterium bovis bacteraemia frequent in cattle?! Virulence. 2016;7:748–750. doi: 10.1080/21505594.2016.1213477. PubMed DOI PMC

Haas C., Potaufeux V., Caplain C., Dangien C., Meunier A., Sellal E., Pelletier C., Rees C., Swift B. Detection of active infection of new-born calves by Mycobacterium avium subsp. paratuberculosis (MAP) in first days of life; Proceedings of the 5th Congress of the European Association of Veterinary Laboratory Diagnosticians; Brussels, Belgium. 14–17 October 2018.

Karch H., JanetzkiMittmann C., Aleksic S., Datz M. Isolation of enterohemorrhagic Escherichia coli O157 strains from patients with hemolytic-uremic syndrome by using immunomagnetic separation, DNA-based methods, and direct culture. J. Clin. Microbiol. 1996;34:516–519. doi: 10.1128/JCM.34.3.516-519.1996. PubMed DOI PMC

Rijpens N., Herman L., Vereccken F., Jannes G., De Smedt J., De Zutter L. Rapid detection of stressed Salmonella spp. in dairy and egg products using immunomagnetic separation and PCR. Int. J. Food Microbiol. 1999;46:37–44. doi: 10.1016/S0168-1605(98)00171-8. PubMed DOI

Foddai A., Elliott C.T., Grant I.R. Maximizing capture efficiency and specificity of magnetic separation for Mycobacterium avium subsp. paratuberculosis cells. Appl. Environ. Microb. 2010;76:7550–7558. doi: 10.1128/AEM.01432-10. PubMed DOI PMC

Foddai A.C.G., Grant I.R. An optimised milk testing protocol to ensure accurate enumeration of viable Mycobacterium avium subsp. paratuberculosis by the PMS-phage assay. Int. Dairy J. 2015;51:16–23. doi: 10.1016/j.idairyj.2015.07.004. DOI

Swift B.M.C., Huxley J.N., Plain K.M., Begg D.J., de Silva K., Purdie A.C., Whittington R.J., Rees C.E.D. Evaluation of the limitations and methods to improve rapid phage-based detection of viable Mycobacterium avium subsp. paratuberculosis in the blood of experimentally infected cattle. BMC Vet. Res. 2016;12:1–8. doi: 10.1186/s12917-016-0728-2. PubMed DOI PMC

Butot S., Ricchi M., Sevilla I.A., Michot L., Molina E., Tello M., Russo S., Arrigoni N., Garrido J.M., Tomas D. Estimation of performance characteristics of analytical methods for Mycobacterium avium subsp. paratuberculosis detection in dairy products. Front. Microbiol. 2019;10:509. doi: 10.3389/fmicb.2019.00509. PubMed DOI PMC

Stewart L.D., Foddai A., Elliott C.T., Grant I.R. Development of a novel phage-mediated immunoassay for the rapid detection of viable Mycobacterium avium subsp. paratuberculosis. J. Appl. Microbiol. 2013;115:808–817. doi: 10.1111/jam.12275. PubMed DOI

Foddai A., Strain S., Whitlock R.H., Elliott C.T., Grant I.R. Application of a peptide-mediated magnetic separation-phage assay for detection of viable Mycobacterium avium subsp. paratuberculosis to bovine bulk tank milk and feces samples. J. Clin. Microbiol. 2011;49:2017–2019. doi: 10.1128/JCM.00429-11. PubMed DOI PMC

O’Brien L.M., McAloon C.G., Stewart L.D., Strain S.A.J., Grant I.R. Diagnostic potential of the peptide-mediated magnetic separation (PMS)-phage assay and PMS-culture to detect Mycobacterium avium subsp. paratuberculosis in bovine milk samples. Transbound. Emerg. Dis. 2018;65:719–726. doi: 10.1111/tbed.12794. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace