Understanding the Acid-Base Response to Respiratory Derangements: Finding, and Clinically Applying, the In Vivo Base Excess
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39691548
PubMed Central
PMC11651497
DOI
10.1097/cce.0000000000001191
PII: CCE-D-24-00373
Knihovny.cz E-zdroje
- Klíčová slova
- base deficit, buffer, carbon dioxide, metabolic, respiratory, resuscitation,
- MeSH
- acidobazická rovnováha * fyziologie MeSH
- dospělí MeSH
- hyperkapnie patofyziologie metabolismus MeSH
- koncentrace vodíkových iontů MeSH
- lidé MeSH
- oxid uhličitý * metabolismus MeSH
- poruchy acidobazické rovnováhy patofyziologie metabolismus MeSH
- psi MeSH
- umělé dýchání MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- psi MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- oxid uhličitý * MeSH
OBJECTIVES: To evaluate the base excess response during acute in vivo carbon dioxide changes. DESIGN: Secondary analysis of individual participant data from experimental studies. SETTING: Three experimental studies investigating the effect of acute in vivo respiratory derangements on acid-base variables. SUBJECTS: Eighty-nine (canine and human) carbon dioxide exposures. INTERVENTIONS: Arterial carbon dioxide titration through environmental chambers or mechanical ventilation. MEASUREMENTS AND MAIN RESULTS: For each subject, base excess was calculated using bicarbonate and pH using a fixed buffer power of 16.2. Analyses were performed using linear regression with arterial dioxide (predictor), base excess (outcome), and studies (interaction term). All studies show different baselines and slopes for base excess across carbon dioxide titrations methods. Individual subjects show substantial, and potentially clinically relevant, variations in base excess response across the hypercapnic range. Using a mathematical simulation of 10,000 buffer power coefficients we determined that a coefficient of 12.1 (95% CI, 9.1-15.1) instead of 16.2 facilitates a more conceptually appropriate in vivo base excess equation for general clinical application. CONCLUSIONS: In vivo changes in carbon dioxide leads to changes in base excess that may be clinically relevant for individual patients. A buffer power coefficient of 16.2 may not be appropriate in vivo and needs external validation in a range of clinical settings.
Department of Anesthesiology Amsterdam University Medical Centers Amsterdam The Netherlands
Department of Internal Medicine Curaçao Medical Center Willemstad Curaçao
Zobrazit více v PubMed
Heldeweg MLA, Stohlmann JAH, Loer SA: Base excess and lactate for guidance of peri-operative fluid management: A survey of anaesthetists, residents and intensive care physicians attending 2022 ESAIC in Milan. Eur J Anaesthesiol 2023; 40:610–612 PubMed
Berend K: Diagnostic use of base excess in acid-base disorders. N Engl J Med 2018; 378:1419–1428 PubMed
Morgan TJ, Clark C, Endre ZH: Accuracy of base excess—an in vitro evaluation of the Van Slyke equation. Crit Care Med 2000; 28:2932–2936 PubMed
Schwartz WB, Relman AS: A critique of the parameters used in the evaluation of acid-base disorders. “Whole-blood buffer base” and “standard bicarbonate” compared with blood pH and plasma bicarbonate concentration. N Engl J Med 1963; 268:1382–1388 PubMed
Schlichtig R, Grogono AW, Severinghaus JW: Human PaCO2 and standard base excess compensation for acid-base imbalance. Crit Care Med 1998; 26:1173–1179 PubMed
Zadek F, Danieli A, Brusatori S, et al. : Combining the physical-chemical approach with standard base excess to understand the compensation of respiratory acid-base derangements: An individual participant meta-analysis approach to data from multiple canine and human experiments. Anesthesiology 2024; 140:116–125 PubMed
Brackett NC, Jr, Cohen JJ, Schwartz WB: Carbon dioxide titration curve of normal man. Effect of increasing degrees of acute hypercapnia on acid-base equilibrium. N Engl J Med 1965; 272:6–12 PubMed
Kellum JA: Clinical review: Reunification of acid-base physiology. Crit Care 2005; 9:500–507 PubMed PMC
Park M, Maciel AT, Noritomi DT, et al. : Effect of PaCO2 variation on standard base excess value in critically ill patients. J Crit Care 2009; 24:484–491 PubMed
Krbec M, Waldauf P, Zadek F, et al. : Non-carbonic buffer power of whole blood is increased in experimental metabolic acidosis: An in-vitro study. Front Physiol 2022; 13:1009378. PubMed PMC
Understanding buffering of metabolic acidosis in critically ill: keep an open mind