Utilisation of Actiphage in combination with IS900 qPCR as a diagnostic tool for rapid determination of paratuberculosis infection status in small ruminant herds
Status PubMed-not-MEDLINE Jazyk angličtina Země Polsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37786842
PubMed Central
PMC10541669
DOI
10.2478/jvetres-2023-0041
PII: jvetres-2023-0041
Knihovny.cz E-zdroje
- Klíčová slova
- phage amplification assay, Actiphage-qPCR, Mycobacterium avium subsp. paratuberculosis, environmental samples, small ruminants.,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of paratuberculosis, a chronic infectious intestinal disease occurring in domestic and wild ruminants. Early diagnosis of infected herds enabling timely adoption of control measures is tremendously important in view of the fact that the disease has a significant economic impact on farmers. The aim of this study was to evaluate the possibility of rapid detection of viable MAP on small ruminant farms based on environmental sample examination using a novel phage-based test named Actiphage. MATERIAL AND METHODS: A total of 9 fresh and 28 frozen (8 or 11 years at -70°C) environmental samples originating from paratuberculosis-affected farms were analysed for the presence of MAP by four different diagnostic methods: Actiphage combined with real-time PCR targeting insertion sequence 900 (IS900 qPCR), conventional phage amplification assay, culture (frozen samples only), and direct ĪS900 qPCR. RESULTS: Viable MAP was detected in one fresh environmental sample using Actiphage-IS900 qPCR. None of the frozen samples tested positive using this diagnostic approach, which was consistent with the results of culture examination also providing information on viability. CONCLUSION: This study describes other possible and innovative uses of phage-based methods in paratuberculosis control strategies. The Actiphage-qPCR was found to be less laborious than culture and provided results within six hours, suggesting that it may be a valuable tool for rapid initial determination of the infectious status of farmed animals based on environmental sample examination.
Zobrazit více v PubMed
Aly S.S., Anderson R.J., Whitlock R.H., Fyock T.L., McAdam S., Adaska J.M., Jiang J., Gardner I.A. Reliability of environmental sampling to quantify Mycobacterium avium subspecies paratuberculosis on California free-stall dairies J Dairy Sci. 2009;92:3634. doi: 10.3168/jds.2008-1680. : . , , –. , doi: . PubMed DOI
Beinhauerova M., Slana I. Phage amplification assay for detection of mycobacterial infection: a review Microorganisms. 2021;9:237. doi: 10.3390/microorganisms9020237. : . , , , doi: . PubMed DOI PMC
Berghaus R.D., Farver T.B., Anderson R.J., Jaravata C.C., Gardner I.A. Environmental sampling for detection of Mycobacterium avium ssp. paratuberculosis on large California dairies J Dairy Sci. 2006;89:963. doi: 10.3168/jds.S0022-0302(06)72161-0. : . , , –. , doi: . PubMed DOI
Corbett C.S., Buck J.D., Barkema H.W. Effects of freezing on ability to detect Mycobacterium avium subsp. paratuberculosis from bovine tissues following culture J Vet Diagn Invest. 2018;30:743. doi: 10.1177/1040638718790781. : . , , –. , doi: . PubMed DOI PMC
Eisenberg S.W.F., Nielen M., Santema W., Houwers D.J., Heederik D., Koets A.P. Detection of spatial and temporal spread of Mycobacterium avium subsp. paratuberculosis in the environment of a cattle farm through bio-aerosols Vet Microbiol. 2010;143:284. doi: 10.1016/j.vetmic.2009.11.033. : . , , –. , doi: . PubMed DOI
Foddai A., Elliott C.T., Grant I.R. Optimization of a phage amplification assay to permit accurate enumeration of viable Mycobacterium avium subsp. paratuberculosis cells Appl Environ Microbiol. 2009;75:3896. doi: 10.1128/AEM.00294-09. : . , , –. , doi: . PubMed DOI PMC
Hahn N., Failing K., Eisenberg T., Schlez K., Zschöck P.-M., Donat K., Einax E., Köhler H. Evaluation of different diagnostic methods for the detection of Mycobacterium avium subsp. paratuberculosis in boot swabs and liquid manure samples BMC Vet Res. 2017;13:259. doi: 10.1186/s12917-017-1173-6. : . , , , doi: . PubMed DOI PMC
Halstrom S., Price P., Thomson R. Review: Environmental mycobacteria as a cause of human infection Int J Mycobacteriol. 2015;4:81. doi: 10.1016/j.ijmyco.2015.03.002. : . , , –. , doi: . PubMed DOI
Kopecna M., Parmova I., Dvorska-Bartosova L., Moravkova M., Babak V., Pavlik I. Distribution and transmission of Mycobacterium avium subspecies paratuberculosis in farmed red deer (Cervus elaphus) studied by faecal culture, serology and IS900 FRLP examinations Vet Med. 2008;53:510. doi: 10.17221/1980-VETMED. : . , , –. , doi: . DOI
Kralik P., Pribylova-Dziedzinska R., Kralova A., Kovarcik K., Slana I. Evidence of passive faecal shedding of Mycobacterium avium subsp. paratuberculosis in a Limousin cattle herd Vet J. 2014;201:91. doi: 10.1016/j.tvjl.2014.02.011. : . , , –. , doi: . PubMed DOI
Leite F.L., Stokes K.D., Robbe-Austerman S., Stabel J.R. Comparison of fecal DNA extraction kits for the detection of Mycobacterium avium subsp. paratuberculosis by polymerase chain reaction J Vet Diagn Invest. 2013;25:27. doi: 10.1177/1040638712466395. : . , , –. , doi: . PubMed DOI
Marcé C., Ezanno P., Seegers H., Pfeiffer D.U., Fourichon C. Within-herd contact structure and transmission of Mycobacterium avium subspecies paratuberculosis in a persistently infected dairy cattle herd Prev Vet Med. 2011;100:116. doi: 10.1016/j.prevetmed.2011.02.004. : . , , –. , doi: . PubMed DOI
Mortensen H., Nielsen S.S., Berg P. Genetic variation and heritability of the antibody response to Mycobacterium avium subspecies paratuberculosis in Danish Holstein cows J Dairy Sci. 2004;87:2108. doi: 10.3168/jds.S0022-0302(04)70029-6. : . , , –. , doi: . PubMed DOI
Pelletier C., Haas C., Dangien C., Meunier A., Caplain C., Pez F., Potaufeux V., Clarke B., Rees C., Swift B., Sellal E. Detection of active infection of new-born calves by Mycobacterium avium subsp. paratuberculosis (MAP) in first days of life; Proceedings of the 5th Congress of the European Association of Veterinary Laboratory Diagnosticians; Brussels, Belgium. 14th–17th October 2018; pp. 18–19. : . , , , –. .
Rybniker J., Kramme S., Small P.L. Host range of 14 mycobacteriophages in Mycobacterium ulcerans and seven other mycobacteria including Mycobacterium tuberculosis – Application for identification and susceptibility testing J Med Microbiol. 2006;55:37. doi: 10.1099/jmm.0.46238-0. : . , , –. , doi: . PubMed DOI
Sevilla I.A., Molina E., Elguezabal N., Perez V., Garrido J.M., Juste R.A. Detection of mycobacteria, Mycobacterium avium subspecies and Mycobacterium tuberculosis complex by a novel tetraplex real-time PCR J Clin Microbiol. 2015;53:930. doi: 10.1128/JCM.03168-14. : . , , –. , doi: . PubMed DOI PMC
Sharp S.E., Lemes M., Sierra S.G., Poniecka A., Poppiti R.J. Löwenstein-Jensen media. No longer necessary for mycobacterial isolation Am J Clin Pathol. 2000;113:770. doi: 10.1309/JHDD-1HF4-2KCN-7ANP. : . , , –. , doi: . PubMed DOI
Slana I., Kralik P., Kralova A., Pavlik I. On-farm spread of Mycobacterium avium subsp. paratuberculosis in raw milk studied by IS900 and F57 competitive real time quantitative PCR and culture examination Int J Food Microbiol. 2008;128:250. doi: 10.1016/j.ijfoodmicro.2008.08.013. : . , , –. , doi: . PubMed DOI
Stanley E.C., Mole R.J., Smith R.J., Glenn S.M., Barer M.R., McGowan M., Rees C.E.D. Development of a new, combined rapid method using phage and PCR for detection and identification of viable Mycobacterium paratuberculosis bacteria within 48 hours Appl Environ Microbiol. 2007;73:1851. doi: 10.1128/AEM.01722-06. : . , , –. , doi: . PubMed DOI PMC
Swift B.M.C., Meade N., Barron E.S., Bennett M., Perehenic T., Hughes V., Stevenson K., Rees C.E.D. The development and use of Actiphage® to detect viable mycobacteria from bovine tuberculosis and Johne’s disease-infected animals Microb Biotechnol. 2020;13:738. doi: 10.1111/1751-7915.13518. : . , , –. , doi: . PubMed DOI PMC
Tavornpanich S., Munoz-Zanzi C.A., Wells S.J., Raizman E.A., Carpenter T.E., Johnson W.O., Gardner I.A. Simulation model for evaluation of testing strategies for detection of paratuberculosis in Midwestern US dairy herds Prev Vet Med. 2008;83:65. doi: 10.1016/j.prevetmed.2007.06.010. : . , , –. , doi: . PubMed DOI
Verma R., Swift B., Handley-Hartill W., Lee J., Woltmann G., Rees C., Haldar P. A novel high sensitivity bacteriophage based assay identifies low level M. tuberculosis bacteremia in immunocompetent patients with active and incipient TB Clin Infect Dis. 2020;70:933. doi: 10.1093/cid/ciz548. : . , , –. , doi: . PubMed DOI
Whittington R.J., Marshall D.J., Nicholls P.J., Marsh A.B., Reddacliff L.A. Survival and dormancy of Mycobacterium avium subsp. paratuberculosis in the environment Appl Environ Microbiol. 2004;70:2989. doi: 10.1128/AEM.70.5.2989-3004.2004. : . , , –. , doi: . PubMed DOI PMC
Whittington R.J., Sergeant E. Progress towards understanding the spread, detection and control of Mycobacterium avium subsp. paratuberculosis in animal populations Aust Vet J. 2001;79:267–278. doi: 10.1111/j.1751-0813.2001.tb11980.x. : . , , , doi: . PubMed DOI
Wolf R., Barkema H.W., De Buck J., Orsel K. Sampling location, herd size, and season influence Mycobacterium avium ssp. paratuberculosis environmental culture results J Dairy Sci. 2015;98:275. doi: 10.3168/jds.2014-8676. : . , , –. , doi: . PubMed DOI