Quantitative analysis of neuronal mitochondrial movement reveals patterns resulting from neurotoxicity of rotenone and 6-hydroxydopamine

. 2021 Dec ; 35 (12) : e22024.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34751984

Alterations in mitochondrial dynamics, including their intracellular trafficking, are common early manifestations of neuronal degeneration. However, current methodologies used to study mitochondrial trafficking events rely on parameters that are primarily altered in later stages of neurodegeneration. Our objective was to establish a reliable applied statistical analysis to detect early alterations in neuronal mitochondrial trafficking. We propose a novel quantitative analysis of mitochondria trajectories based on innovative movement descriptors, including straightness, efficiency, anisotropy, and kurtosis. We evaluated time- and dose-dependent alterations in trajectory descriptors using biological data from differentiated SH-SY5Y cells treated with the mitochondrial toxicants 6-hydroxydopamine and rotenone. MitoTracker Red CMXRos-labelled mitochondria movement was analyzed by total internal reflection fluorescence microscopy followed by computational modelling to describe the process. Based on the aforementioned trajectory descriptors, this innovative analysis of mitochondria trajectories provides insights into mitochondrial movement characteristics and can be a consistent and sensitive method to detect alterations in mitochondrial trafficking occurring in the earliest time points of neurodegeneration.

Zobrazit více v PubMed

Sheng ZH, Cai Q. Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nat Rev Neurosci. 2012;13:77-93. doi:10.1038/nrn3156

Saxton WM, Hollenbeck PJ. The axonal transport of mitochondria. J Cell Sci. 2012;125:2095-2104. doi:10.1242/jcs.053850

Sheng ZH. Mitochondrial trafficking and anchoring in neurons: new insight and implications. J Cell Biol. 2014;204:1087-1098. doi:10.1083/jcb.201312123

Attwell D, Laughlin SB. An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab. 2001;21:1133-1145. doi:10.1097/00004647-200110000-00001

Harris JJ, Jolivet R, Attwell D. Synaptic energy use and supply. Neuron. 2012;75:762-777. doi:10.1016/j.neuron.2012.08.019

Sun T, Qiao H, Pan PY, Chen Y, Sheng ZH. Motile axonal mitochondria contribute to the variability of presynaptic strength. Cell Rep. 2013;4:413-419. doi:10.1016/j.celrep.2013.06.040

Billups B, Forsythe ID. Presynaptic mitochondrial calcium sequestration influences transmission at mammalian central synapses. J Neurosci. 2002;22:5840-5847. doi:10.1523/JNEUROSCI.22-14-05840.2002

Medler K, Gleason EL. Mitochondrial Ca(2+) buffering regulates synaptic transmission between retinal amacrine cells. J Neurophysiol. 2002;87:1426-1439. doi:10.1152/jn.00627.2001

Schwarz TL. Mitochondrial trafficking in neurons. Cold Spring Harb Perspect Biol. 2013;5:a011304. doi:10.1101/cshperspect.a011304

Morris RL, Hollenbeck PJ. The regulation of bidirectional mitochondrial transport is coordinated with axonal outgrowth. J Cell Sci. 1993;104(Pt 3):917-927.

Pilling AD, Horiuchi D, Lively CM, Saxton WM. Kinesin-1 and Dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Mol Biol Cell. 2006;17:2057-2068. doi:10.1091/mbc.e05-06-0526

Hirokawa N, Niwa S, Tanaka Y. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron. 2010;68:610-638. doi:10.1016/j.neuron.2010.09.039

Kapitein LC, Hoogenraad CC. Building the neuronal microtubule cytoskeleton. Neuron. 2015;87:492-506. doi:10.1016/j.neuron.2015.05.046

Nguyen MM, Stone MC, Rolls MM. Microtubules are organized independently of the centrosome in Drosophila neurons. Neural Dev. 2011;6:38. doi:10.1186/1749-8104-6-38

Yau KW, Schatzle P, Tortosa E, et al. Dendrites in vitro and in vivo contain microtubules of opposite polarity and axon formation correlates with uniform plus-end-out microtubule orientation. J Neurosci. 2016;36:1071-1085. doi:10.1523/JNEUROSCI.2430-15.2016

MacAskill AF, Brickley K, Stephenson FA, Kittler JT. GTPase dependent recruitment of Grif-1 by Miro1 regulates mitochondrial trafficking in hippocampal neurons. Mol Cell Neurosci. 2009;40:301-312. doi:10.1016/j.mcn.2008.10.016

Brickley K, Stephenson FA. Trafficking kinesin protein (TRAK)-mediated transport of mitochondria in axons of hippocampal neurons. J Biol Chem. 2011;286:18079-18092. doi:10.1074/jbc.M111.236018

King SJ, Schroer TA. Dynactin increases the processivity of the cytoplasmic dynein motor. Nat Cell Biol. 2000;2:20-24. doi:10.1038/71338

Ligon LA, Steward O. Movement of mitochondria in the axons and dendrites of cultured hippocampal neurons. J Comp Neurol. 2000;427:340-350. doi:10.1002/1096-9861(20001120)427:3<340:aid-cne2>3.0.co;2-y

Misgeld T, Kerschensteiner M, Bareyre FM, Burgess RW, Lichtman JW. Imaging axonal transport of mitochondria in vivo. Nat Methods. 2007;4:559-561. doi:10.1038/nmeth1055

Fang C, Bourdette D, Banker G. Oxidative stress inhibits axonal transport: implications for neurodegenerative diseases. Mol Neurodegener. 2012;7:29. doi:10.1186/1750-1326-7-29

Bros H, Millward JM, Paul F, Niesner R, Infante-Duarte C. Oxidative damage to mitochondria at the nodes of Ranvier precedes axon degeneration in ex vivo transected axons. Exp Neurol. 2014;261:127-135. doi:10.1016/j.expneurol.2014.06.018

Bros H, Hauser A, Paul F, Niesner R, Infante-Duarte C. Assessing mitochondrial movement within neurons: manual versus automated tracking methods. Traffic. 2015;16:906-917. doi:10.1111/tra.12291

Chen M, Li Y, Yang M, et al. A new method for quantifying mitochondrial axonal transport. Protein Cell. 2016;7:804-819. doi:10.1007/s13238-016-0268-3

Coutu DL, Schroeder T. Probing cellular processes by long-term live imaging-historic problems and current solutions. J Cell Sci. 2013;126:3805-3815. doi:10.1242/jcs.118349

Gerencser AA, Nicholls DG. Measurement of instantaneous velocity vectors of organelle transport: mitochondrial transport and bioenergetics in hippocampal neurons. Biophys J. 2008;95:3079-3099. doi:10.1529/biophysj.108.135657

Chang DT, Rintoul GL, Pandipati S, Reynolds IJ. Mutant huntingtin aggregates impair mitochondrial movement and trafficking in cortical neurons. Neurobiol Dis. 2006;22:388-400. doi:10.1016/j.nbd.2005.12.007

Axelrod D. Chapter 7: Total internal reflection fluorescence microscopy. Methods Cell Biol. 2008;89:169-221. doi:10.1016/S0091-679X(08)00607-9

Mattheyses AL, Simon SM, Rappoport JZ. Imaging with total internal reflection fluorescence microscopy for the cell biologist. J Cell Sci. 2010;123:3621-3628. doi:10.1242/jcs.056218

Poulter NS, Pitkeathly WT, Smith PJ, Rappoport JZ. The physical basis of total internal reflection fluorescence (TIRF) microscopy and its cellular applications. Methods Mol Biol. 2015;1251:1-23. doi:10.1007/978-1-4939-2080-8_1

Simões RF, Ferrão R, Silva MR, et al. Refinement of a differentiation protocol using neuroblastoma SH-SY5Y cells for use in neurotoxicology research. Food Chem Toxicol. 2021;149:111967. doi:10.1016/j.fct.2021.111967

Kandel J, Chou P, Eckmann DM. Automated detection of whole-cell mitochondrial motility and its dependence on cytoarchitectural integrity. Biotechnol Bioeng. 2015;112:1395-1405. doi:10.1002/bit.25563

Trajpy v. 1.3.1. Zenode; 2020.

Moreira-Soares M, Cunha SP, Bordin JR, Travasso RDM. Adhesion modulates cell morphology and migration within dense fibrous networks. J Phys Condens Matter. 2020;32:314001. doi:10.1088/1361-648x/ab7c17

Theodorou DN, Suter UW. Shape of unperturbed linear polymers: polypropylene. Macromolecules. 1985;18:1206-1214. doi:10.1021/ma00148a028

Arkin H, Janke W. Gyration tensor based analysis of the shapes of polymer chains in an attractive spherical cage. J Chem Phys. 2013;138:054904. doi:10.1063/1.4788616

Helmuth JA, Burckhardt CJ, Koumoutsakos P, Greber UF, Sbalzarini IF. A novel supervised trajectory segmentation algorithm identifies distinct types of human adenovirus motion in host cells. J Struct Biol. 2007;159:347-358. doi:10.1016/j.jsb.2007.04.003

R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing; 2020. http://www.r-project.org/index.html

Friendly M, Monette G, Fox J. Elliptical insights: understanding statistical methods through elliptical geometry. Statist. Sci. 2013;28:1-39. doi:10.1214/12-STS402

MacAskill AF, Kittler JT. Control of mitochondrial transport and localization in neurons. Trends Cell Biol. 2010;20:102-112. doi:10.1016/j.tcb.2009.11.002

Crouch SP, Kozlowski R, Slater KJ, Fletcher J. The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity. J Immunol Methods. 1993;160:81-88. doi:10.1016/0022-1759(93)90011-u

Sumantran VN. Cellular chemosensitivity assays: an overview. Methods Mol Biol. 2011;731:219-236. doi:10.1007/978-1-61779-080-5_19

Lee BJ, Mace EM. Acquisition of cell migration defines NK cell differentiation from hematopoietic stem cell precursors. Mol Biol Cell. 2017;28:3573-3581. doi:10.1091/mbc.E17-08-0508

Wagner T, Kroll A, Haramagatti CR, Lipinski HG, Wiemann M. Classification and segmentation of nanoparticle diffusion trajectories in cellular micro environments. PLoS One. 2017;12:e0170165. doi:10.1371/journal.pone.0170165

Lu X, Kim-Han JS, Harmon S, Sakiyama-Elbert SE, O'Malley KL. The Parkinsonian mimetic, 6-OHDA, impairs axonal transport in dopaminergic axons. Mol Neurodegener. 2014;9:17. doi:10.1186/1750-1326-9-17

Stępkowski TM, Męczyńska-Wielgosz S, Kruszewski M. mitoLUHMES: an engineered neuronal cell line for the analysis of the motility of mitochondria. Cell Mol Neurobiol. 2017;37:1055-1066. doi:10.1007/s10571-016-0438-0

Blum D, Torch S, Lambeng N, et al. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson's disease. Prog Neurogibol. 2001;65:135-172. doi:10.1016/s0301-0082(01)00003-x

Betarbet R, Sherer TB, Greenamyre JT. Animal models of Parkinson's disease. BioEssays. 2002;24:308-318. doi:10.1002/bies.10067

Glinka YY, Youdim MBH. Inhibition of mitochondrial complexes I and IV by 6-hydroxydopamine. Eur J Pharmacol Environ Toxicol Pharm. 1995;292:329-332. doi:10.1016/0926-6917(95)90040-3

Patel VP, DeFranco DB, Chu CT. Altered transcription factor trafficking in oxidatively-stressed neuronal cells. Biochim Biophys Acta. 2012;1822:1773-1782. doi:10.1016/j.bbadis.2012.08.002

Schuler F, Casida JE. Functional coupling of PSST and ND1 subunits in NADH:ubiquinone oxidoreductase established by photoaffinity labeling. Biochim Biophys Acta. 2001;1506:79-87. doi:10.1016/s0005-2728(01)00183-9

Degli Esposti M. Inhibitors of NADH-ubiquinone reductase: an overview. Biochim Biophys Acta. 1998;1364:222-235. doi:10.1016/s0005-2728(98)00029-2

Lummen P. Complex I inhibitors as insecticides and acaricides. Biochim Biophys Acta. 1998;1364:287-296. doi:10.1016/s0005-2728(98)00034-6

Sanders LH, Timothy Greenamyre J. Oxidative damage to macromolecules in human Parkinson disease and the rotenone model. Free Radic Biol Med. 2013;62:111-120. doi:10.1016/j.freeradbiomed.2013.01.003

Sherer TB, Betarbet R, Testa CM, et al. Mechanism of toxicity in rotenone models of Parkinson's disease. J Neurosci. 2003;23:10756-10764.

Uversky VN. Neurotoxicant-induced animal models of Parkinson's disease: understanding the role of rotenone, maneb and paraquat in neurodegeneration. Cell Tissue Res. 2004;318:225-241. doi:10.1007/s00441-004-0937-z

Borland MK, Trimmer PA, Rubinstein JD, et al. Chronic, low-dose rotenone reproduces Lewy neurites found in early stages of Parkinson's disease, reduces mitochondrial movement and slowly kills differentiated SH-SY5Y neural cells. Mol Neurodegener. 2008;3:21. doi:10.1186/1750-1326-3-21

Jiang Q, Yan Z, Feng J. Neurotrophic factors stabilize microtubules and protect against rotenone toxicity on dopaminergic neurons. J Biol Chem. 2006;281:29391-29400. doi:10.1074/jbc.M602740200

Ren Y, Liu W, Jiang H, Jiang Q, Feng J. Selective vulnerability of dopaminergic neurons to microtubule depolymerization. J Biol Chem. 2005;280:34105-34112. doi:10.1074/jbc.M503483200

Srivastava AS, Feng Z, Mishra R, et al. Embryonic stem cells ameliorate piroxicam-induced colitis in IL10-/- KO mice. Biochem Biophys Res Commun. 2007;361:953-959. doi:10.1016/j.bbrc.2007.07.139

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...