Deep Membrane Proteome Profiling Reveals Overexpression of Prostate-Specific Membrane Antigen (PSMA) in High-Risk Human Paraganglioma and Pheochromocytoma, Suggesting New Theranostic Opportunity

. 2021 Oct 29 ; 26 (21) : . [epub] 20211029

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34770976

Grantová podpora
AZV NV19-01-00083 The Czech Agency for Healthcare Research (AZV)
Progress Q26, SVV 260 521, UNCE/MED/016 Ministry of Education, Youth and Sports of the Czech Republic

Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors arising from chromaffin cells of adrenal medulla or sympathetic or parasympathetic paraganglia, respectively. To identify new therapeutic targets, we performed a detailed membrane-focused proteomic analysis of five human paraganglioma (PGL) samples. Using the Pitchfork strategy, which combines specific enrichments of glycopeptides, hydrophobic transmembrane segments, and non-glycosylated extra-membrane peptides, we identified over 1800 integral membrane proteins (IMPs). We found 45 "tumor enriched" proteins, i.e., proteins identified in all five PGLs but not found in control chromaffin tissue. Among them, 18 IMPs were predicted to be localized on the cell surface, a preferred drug targeting site, including prostate-specific membrane antigen (PSMA), a well-established target for nuclear imaging and therapy of advanced prostate cancer. Using specific antibodies, we verified PSMA expression in 22 well-characterized human PPGL samples. Compared to control chromaffin tissue, PSMA was markedly overexpressed in high-risk PPGLs belonging to the established Cluster 1, which is characterized by worse clinical outcomes, pseudohypoxia, multiplicity, recurrence, and metastasis, specifically including SDHB, VHL, and EPAS1 mutations. Using immunohistochemistry, we localized PSMA expression to tumor vasculature. Our study provides the first direct evidence of PSMA overexpression in PPGLs which could translate to therapeutic and diagnostic applications of anti-PSMA radio-conjugates in high-risk PPGLs.

Zobrazit více v PubMed

Alrezk R., Suarez A., Tena I., Pacak K. Update of Pheochromocytoma Syndromes: Genetics, Biochemical Evaluation, and Imaging. Front. Endocrinol. 2018;9:515. doi: 10.3389/fendo.2018.00515. PubMed DOI PMC

Crona J., Taïeb D., Pacak K. New Perspectives on Pheochromocytoma and Paraganglioma: Toward a Molecular Classification. Endocr. Rev. 2017;38:489–515. doi: 10.1210/er.2017-00062. PubMed DOI PMC

Hadrava Vanova K., Pang Y., Krobova L., Kraus M., Nahacka Z., Boukalova S., Pack S.D., Zobalova R., Zhu J., Huynh T.T., et al. Germline SUCLG2 Variants in Patients with Pheochromocytoma and Paraganglioma. J. Natl. Cancer Inst. 2021:djab158. doi: 10.1093/jnci/djab158. PubMed DOI PMC

Fishbein L., Leshchiner I., Walter V., Danilova L., Robertson A.G., Johnson A.R., Lichtenberg T.M., Murray B.A., Ghayee H.K., Else T., et al. Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma. Cancer Cell. 2017;31:181–193. doi: 10.1016/j.ccell.2017.01.001. PubMed DOI PMC

Vit O., Petrak J. Integral membrane proteins in proteomics. How to break open the black box? J. Proteom. 2017;153:8–20. doi: 10.1016/j.jprot.2016.08.006. PubMed DOI

Vit O., Harant K., Klener P., Man P., Petrak J. A three-pronged “Pitchfork” strategy enables an extensive description of the human membrane proteome and the identification of missing proteins. J. Proteom. 2019;204:103411. doi: 10.1016/j.jprot.2019.103411. PubMed DOI

Zielinska D.F., Gnad F., Wiśniewski J.R., Mann M. Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell. 2010;141:897–907. doi: 10.1016/j.cell.2010.04.012. PubMed DOI

Tian Y., Zhou Y., Elliott S., Aebersold R., Zhang H. Solid-phase extraction of N-linked glycopeptides. Nat. Protoc. 2007;2:334–339. doi: 10.1038/nprot.2007.42. PubMed DOI PMC

Vit O., Man P., Kadek A., Hausner J., Sklenar J., Harant K., Novak P., Scigelova M., Woffendin G., Petrak J. Large-scale identification of membrane proteins based on analysis of trypsin-protected transmembrane segments. J. Proteom. 2016;149:15–22. doi: 10.1016/j.jprot.2016.03.016. PubMed DOI

Krogh A., Larsson B., von Heijne G., Sonnhammer E.L. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 2001;305:567–580. doi: 10.1006/jmbi.2000.4315. PubMed DOI

Waas M., Snarrenberg S.T., Littrell J., Jones Lipinski R.A., Hansen P.A., Corbett J.A., Gundry R.L. SurfaceGenie: A web-based application for prioritizing cell-type-specific marker candidates. Bioinformatics. 2020;36:3447–3456. doi: 10.1093/bioinformatics/btaa092. PubMed DOI PMC

Sartor O., de Bono J., Chi K.N., Fizazi K., Herrmann K., Rahbar K., Tagawa S.T., Nordquist L.T., Vaishampayan N., El-Haddad G., et al. Lutetium-177-PSMA-617 for Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2021;385:1091–1103. doi: 10.1056/NEJMoa2107322. PubMed DOI PMC

Parsi M., Desai M.H., Desai D., Singhal S., Khandwala P.M., Potdar R.R. PSMA: A game changer in the diagnosis and treatment of advanced prostate cancer. Med. Oncol. 2021;38:89. doi: 10.1007/s12032-021-01537-3. PubMed DOI

Omasits U., Ahrens C.H., Müller S., Wollscheid B. Protter: Interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics. 2014;30:884–886. doi: 10.1093/bioinformatics/btt607. PubMed DOI

Sácha P., Zámecník J., Barinka C., Hlouchová K., Vícha A., Mlcochová P., Hilgert I., Eckschlager T., Konvalinka J. Expression of glutamate carboxypeptidase II in human brain. Neuroscience. 2007;144:1361–1372. doi: 10.1016/j.neuroscience.2006.10.022. PubMed DOI

Liu H., Moy P., Kim S., Xia Y., Rajasekaran A., Navarro V., Knudsen B., Bander N.H. Monoclonal antibodies to the extracellular domain of prostate-specific membrane antigen also react with tumor vascular endothelium. Cancer Res. 1997;57:3629–3634. PubMed

Chang S.S., O’Keefe D.S., Bacich D.J., Reuter V.E., Heston W.D., Gaudin P.B. Prostate-specific membrane antigen is produced in tumor-associated neovasculature. Clin. Cancer Res. 1999;5:2674–2681. PubMed

Uijen M., Derks Y., Merkx R., Schilham M., Roosen J., Privé B.M., van Lith S., van Herpen C., Gotthardt M., Heskamp S., et al. PSMA radioligand therapy for solid tumors other than prostate cancer: Background, opportunities, challenges, and first clinical reports. [(accessed on 29 October 2021)];Eur. J. Nucl. Med. Mol. Imaging. 2021 doi: 10.1007/s00259-021-05433-w. Available online: https://link.springer.com/article/10.1007%2Fs00259-021-05433-w. PubMed DOI PMC

Van de Wiele C., Sathekge M., de Spiegeleer B., De Jonghe P.J., Debruyne P.R., Borms M., Beels L., Maes A. PSMA expression on neovasculature of solid tumors. Histol. Histopathol. 2020;35:919–927. doi: 10.14670/HH-18-215. PubMed DOI

Hyväkkä A., Virtanen V., Kemppainen J., Grönroos T.J., Minn H., Sundvall M. More Than Meets the Eye: Scientific Rationale behind Molecular Imaging and Therapeutic Targeting of Prostate-Specific Membrane Antigen (PSMA) in Metastatic Prostate Cancer and Beyond. Cancers. 2021;13:2244. doi: 10.3390/cancers13092244. PubMed DOI PMC

Singh D., Kumar R., Mittal B.R., Singh H., Bhattacharya A. 68Ga-Labeled Prostate-Specific Membrane Antigen Uptake in Pheochromocytoma: An Incidental Finding in PET/CT Scan. Clin. Nucl. Med. 2018;43:688–690. doi: 10.1097/RLU.0000000000002181. PubMed DOI

Parihar A.S., Vadi S.K., Mittal B.R., Kumar R., Bal A., Singh S.K. 68Ga-PSMA-HBED-CC-Avid Synchronous Urinary Bladder Paraganglioma in a Patient With Metastatic Prostate Carcinoma. Clin. Nucl. Med. 2018;43:e329–e330. doi: 10.1097/RLU.0000000000002172. PubMed DOI

Tyagi S., Singh S.K., Narain T.A., Singh H., Kumar R., Vadi S.K. Synchronous Paraganglioma Masquerading as 68Ga-PSMA PET/CT-Avid Metastasis in Carcinoma Prostate-How Specific Is 68Ga-PSMA PET/CT? Clin. Nucl. Med. 2019;44:e420–e422. doi: 10.1097/RLU.0000000000002589. PubMed DOI

Tripathy S., Tripathi M., Dattagupta S., Parida G.K., Shamim S.A. In Vivo PSMA Expression in Head and Neck Paragangliomas on 68Ga PSMA 11 PET/CT. Clin. Nucl. Med. 2019;44:e398–e400. doi: 10.1097/RLU.0000000000002581. PubMed DOI

Navalkissoor S., Grossman A. Targeted Alpha Particle Therapy for Neuroendocrine Tumours: The Next Generation of Peptide Receptor Radionuclide Therapy. Neuroendocrinology. 2019;108:256–264. doi: 10.1159/000494760. PubMed DOI

Turkova H., Prodanov T., Maly M., Martucci V., Adams K., Widimsky J., Jr., Chen C.C., Ling A., Kebebew E., Stratakis C.A., et al. Characteristics and Outcomes of Metastatic Sdhb and Sporadic Pheochromocytoma/paraganglioma: An National Institutes of Health Study. Endocr. Pract. 2016;22:302–314. doi: 10.4158/EP15725.OR. PubMed DOI PMC

Amar L., Baudin E., Burnichon N., Peyrard S., Silvera S., Bertherat J., Bertagna X., Schlumberger M., Jeunemaitre X., Gimenez-Roqueplo A.P., et al. Succinate dehydrogenase B gene mutations predict survival in patients with malignant pheochromocytomas or paragangliomas. J. Clin. Endocrinol. Metab. 2007;92:3822–3828. doi: 10.1210/jc.2007-0709. PubMed DOI

Gimenez-Roqueplo A.P., Favier J., Rustin P., Rieubland C., Crespin M., Nau V., Khau Van Kien P., Corvol P., Plouin P.F., Jeunemaitre X., et al. Mutations in the SDHB gene are associated with extra-adrenal and/or malignant phaeochromocytomas. Cancer Res. 2003;63:5615–5621. PubMed

Binderup M.L., Jensen A.M., Budtz-Jørgensen E., Bisgaard M.L. Survival and causes of death in patients with von Hippel-Lindau disease. J. Med. Genet. 2017;54:11–18. doi: 10.1136/jmedgenet-2016-104058. PubMed DOI

Janssen I., Blanchet E.M., Adams K., Chen C.C., Millo C.M., Herscovitch P., Taieb D., Kebebew E., Lehnert H., Fojo A.T., et al. Superiority of [68Ga]-DOTATATE PET/CT to Other Functional Imaging Modalities in the Localization of SDHB-Associated Metastatic Pheochromocytoma and Paraganglioma. Clin. Cancer Res. 2015;21:3888–3895. doi: 10.1158/1078-0432.CCR-14-2751. PubMed DOI PMC

Janssen I., Chen C.C., Millo C.M., Ling A., Taieb D., Lin F.I., Adams K.T., Wolf K.I., Herscovitch P., Fojo A.T., et al. PET/CT comparing (68)Ga-DOTATATE and other radiopharmaceuticals and in comparison with CT/MRI for the localization of sporadic metastatic pheochromocytoma and paraganglioma. Eur. J. Nucl. Med. Mol. Imaging. 2016;43:1784–1791. doi: 10.1007/s00259-016-3357-x. PubMed DOI PMC

Taïeb D., Hicks R.J., Hindié E., Guillet B.A., Avram A., Ghedini P., Timmers H.J., Scott A.T., Elojeimy S., Rubello D., et al. European Association of Nuclear Medicine Practice Guideline/Society of Nuclear Medicine and Molecular Imaging Procedure Standard 2019 for radionuclide imaging of phaeochromocytoma and paraganglioma. Eur. J. Nucl. Med. Mol. Imaging. 2019;46:2112–2137. doi: 10.1007/s00259-019-04398-1. PubMed DOI PMC

Jha A., Patel M., Carrasquillo J.A., Ling A., Millo C., Saboury B., Chen C.C., Wakim P., Gonzales M.K., Meuter L., et al. Sporadic Primary Pheochromocytoma: A Prospective Intra-Individual Comparison of Six Imaging Tests (CT, MRI, and PET/CT Using 68Ga-DOTATATE, FDG, 18F-FDOPA, and 18F-FDA) AJR Am. J. Rroentgenol. 2021 doi: 10.2214/AJR.21.26071. PubMed DOI PMC

Mesters J.R., Barinka C., Li W., Tsukamoto T., Majer P., Slusher B.S., Konvalinka J., Hilgenfeld R. Structure of glutamate carboxypeptidase II, a drug target in neuronal damage and prostate cancer. EMBO. J. 2006;25:1375–1384. doi: 10.1038/sj.emboj.7600969. PubMed DOI PMC

Halsted C.H. Jejunal brush-border folate hydrolase. A novel enzyme. West. J. Med. 1991;155:605–609. PubMed PMC

Sheehan B., Guo C., Neeb A., Paschalis A., Sandhu S., de Bono J.S. Prostate-specific Membrane Antigen Biology in Lethal Prostate Cancer and its Therapeutic Implications. [(accessed on 29 October 2021)];Eur. Urol. Focus. 2021 doi: 10.1016/j.euf.2021.06.006. Available online: https://linkinghub.elsevier.com/retrieve/pii/S2405-4569(21)00168-1. PubMed DOI

Yao V., Berkman C.E., Choi J.K., O’Keefe D.S., Bacich D.J. Expression of prostate-specific membrane antigen (PSMA), increases cell folate uptake and proliferation and suggests a novel role for PSMA in the uptake of the non-polyglutamated folate, folic acid. Prostate. 2010;70:305–316. doi: 10.1002/pros.21065. PubMed DOI

Conway R.E., Petrovic N., Li Z., Heston W., Wu D., Shapiro L.H. Prostate-specific membrane antigen regulates angiogenesis by modulating integrin signal transduction. Mol. Cell Biol. 2006;26:5310–5324. doi: 10.1128/MCB.00084-06. PubMed DOI PMC

Conway R.E., Joiner K., Patterson A., Bourgeois D., Rampp R., Hannah B.C., McReynolds S., Elder J.M., Gilfilen H., Shapiro L.H. Prostate specific membrane antigen produces pro-angiogenic laminin peptides downstream of matrix metalloprotease-2. Angiogenesis. 2013;16:847–860. doi: 10.1007/s10456-013-9360-y. PubMed DOI

Conway R.E., Rojas C., Alt J., Nováková Z., Richardson S.M., Rodrick T.C., Fuentes J.L., Richardson N.H., Attalla J., Stewart S., et al. Prostate-specific membrane antigen (PSMA)-mediated laminin proteolysis generates a pro-angiogenic peptide. Angiogenesis. 2016;19:487–500. doi: 10.1007/s10456-016-9521-x. PubMed DOI

Robinson J., Whitworth K., Jinks E., Nagy Z., Bicknell R., Lee S.P. An evaluation of the tumour endothelial marker CLEC14A as a therapeutic target in solid tumours. J. Pathol. Clin. Res. 2020;6:308–319. doi: 10.1002/cjp2.176. PubMed DOI PMC

Riether C., Radpour R., Kallen N.M., Bürgin D.T., Bachmann C., Schürch C.M., Lüthi U., Arambasic M., Hoppe S., Albers C.E., et al. Metoclopramide treatment blocks CD93-signaling-mediated self-renewal of chronic myeloid leukemia stem cells. Cell Rep. 2021;34:108663. doi: 10.1016/j.celrep.2020.108663. PubMed DOI

Sier V.Q., van der Vorst J.R., Quax P., de Vries M.R., Zonoobi E., Vahrmeijer A.L., Dekkers I.A., de Geus-Oei L.F., Smits A.M., Cai W., et al. Endoglin/CD105-Based Imaging of Cancer and Cardiovascular Diseases: A Systematic Review. Int. J. Mol. Sci. 2021;22:4804. doi: 10.3390/ijms22094804. PubMed DOI PMC

Petrovic K., Robinson J., Whitworth K., Jinks E., Shaaban A., Lee S.P. TEM8/ANTXR1-specific CAR T cells mediate toxicity in vivo. PLoS ONE. 2019;14:e0224015. doi: 10.1371/journal.pone.0224015. PubMed DOI PMC

Katchman B.A., Ocal I.T., Cunliffe H.E., Chang Y.H., Hostetter G., Watanabe A., LoBello J., Lake D.F. Expression of quiescin sulfhydryl oxidase 1 is associated with a highly invasive phenotype and correlates with a poor prognosis in Luminal B breast cancer. Breast Cancer Res. 2013;15:R28. doi: 10.1186/bcr3407. PubMed DOI PMC

Baek J.A., Song P.H., Ko Y., Gu M.J. High expression of QSOX1 is associated with tumor invasiveness and high grades groups in prostate cancer. Pathol. Res. Pract. 2018;214:964–967. doi: 10.1016/j.prp.2018.05.019. PubMed DOI

Feldman T., Grossman-Haham I., Elkis Y., Vilela P., Moskovits N., Barshack I., Salame T.M., Fass D., Ilani T. Inhibition of fibroblast secreted QSOX1 perturbs extracellular matrix in the tumor microenvironment and decreases tumor growth and metastasis in murine cancer models. Oncotarget. 2020;11:386–398. doi: 10.18632/oncotarget.27438. PubMed DOI PMC

Fifield A.L., Hanavan P.D., Faigel D.O., Sergienko E., Bobkov A., Meurice N., Petit J.L., Polito A., Caulfield T.R., Castle E.P., et al. Molecular Inhibitor of QSOX1 Suppresses Tumor Growth In Vivo. Mol. Cancer Ther. 2020;19:112–122. doi: 10.1158/1535-7163.MCT-19-0233. PubMed DOI PMC

Crona J., Lamarca A., Ghosal S., Welin S., Skogseid B., Pacak K. Genotype-phenotype correlations in pheochromocytoma and paraganglioma: A systematic review and individual patient meta-analysis. Endocr-Relat. Cancer. 2019;26:539–550. doi: 10.1530/ERC-19-0024. PubMed DOI PMC

Zelinka T., Eisenhofer G., Pacak K. Pheochromocytoma as a catecholamine producing tumor: Implications for clinical practice. Stress. 2007;10:195–203. doi: 10.1080/10253890701395896. PubMed DOI

Lenders J., Kerstens M.N., Amar L., Prejbisz A., Robledo M., Taieb D., Pacak K., Crona J., Zelinka T., Mannelli M., et al. Genetics, diagnosis, management and future directions of research of phaeochromocytoma and paraganglioma: A position statement and consensus of the Working Group on Endocrine Hypertension of the European Society of Hypertension. J. Hypertens. 2020;38:1443–1456. doi: 10.1097/HJH.0000000000002438. PubMed DOI PMC

Eisenhofer G., Lenders J.W., Siegert G., Bornstein S.R., Friberg P., Milosevic D., Mannelli M., Linehan W.M., Adams K., Timmers H.J., et al. Plasma methoxytyramine: A novel biomarker of metastatic pheochromocytoma and paraganglioma in relation to established risk factors of tumour size, location and SDHB mutation status. Eur. J. Cancer. 2012;48:1739–1749. doi: 10.1016/j.ejca.2011.07.016. PubMed DOI PMC

Nölting S., Ullrich M., Pietzsch J., Ziegler C.G., Eisenhofer G., Grossman A., Pacak K. Current Management of Pheochromocytoma/Paraganglioma: A Guide for the Practicing Clinician in the Era of Precision Medicine. Cancers. 2019;11:1505. doi: 10.3390/cancers11101505. PubMed DOI PMC

Masuda T., Tomita M., Ishihama Y. Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J. Proteome Res. 2008;7:731–740. doi: 10.1021/pr700658q. PubMed DOI

Sun Z., Qin H., Wang F., Cheng K., Dong M., Ye M., Zou H. Capture and dimethyl labeling of glycopeptides on hydrazide beads for quantitative glycoproteomics analysis. Anal. Chem. 2012;84:8452–8456. doi: 10.1021/ac302130r. PubMed DOI

Rey M., Mrázek H., Pompach P., Novák P., Pelosi L., Brandolin G., Forest E., Havlícek V., Man P. Effective removal of nonionic detergents in protein mass spectrometry, hydrogen/deuterium exchange, and proteomics. Anal. Chem. 2010;82:5107–5116. doi: 10.1021/ac100171m. PubMed DOI

Hebert A.S., Richards A.L., Bailey D.J., Ulbrich A., Coughlin E.E., Westphall M.S., Coon J.J. The one hour yeast proteome. Mol. Cell Proteom. 2014;13:339–347. doi: 10.1074/mcp.M113.034769. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...