Deep Membrane Proteome Profiling Reveals Overexpression of Prostate-Specific Membrane Antigen (PSMA) in High-Risk Human Paraganglioma and Pheochromocytoma, Suggesting New Theranostic Opportunity
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
AZV NV19-01-00083
The Czech Agency for Healthcare Research (AZV)
Progress Q26, SVV 260 521, UNCE/MED/016
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
34770976
PubMed Central
PMC8587166
DOI
10.3390/molecules26216567
PII: molecules26216567
Knihovny.cz E-zdroje
- Klíčová slova
- PSMA, Pitchfork, integral membrane proteins, mass spectrometry, membrane proteomics, neuroendocrine cancer, paraganglioma, pheochromocytoma, theranostics,
- MeSH
- antigeny povrchové genetika MeSH
- feochromocytom diagnóza genetika MeSH
- glutamátkarboxypeptidasa II genetika MeSH
- lidé MeSH
- nádory nadledvin diagnóza genetika MeSH
- paragangliom diagnóza genetika MeSH
- proteom genetika MeSH
- teranostická nanomedicína MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antigeny povrchové MeSH
- FOLH1 protein, human MeSH Prohlížeč
- glutamátkarboxypeptidasa II MeSH
- proteom MeSH
Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors arising from chromaffin cells of adrenal medulla or sympathetic or parasympathetic paraganglia, respectively. To identify new therapeutic targets, we performed a detailed membrane-focused proteomic analysis of five human paraganglioma (PGL) samples. Using the Pitchfork strategy, which combines specific enrichments of glycopeptides, hydrophobic transmembrane segments, and non-glycosylated extra-membrane peptides, we identified over 1800 integral membrane proteins (IMPs). We found 45 "tumor enriched" proteins, i.e., proteins identified in all five PGLs but not found in control chromaffin tissue. Among them, 18 IMPs were predicted to be localized on the cell surface, a preferred drug targeting site, including prostate-specific membrane antigen (PSMA), a well-established target for nuclear imaging and therapy of advanced prostate cancer. Using specific antibodies, we verified PSMA expression in 22 well-characterized human PPGL samples. Compared to control chromaffin tissue, PSMA was markedly overexpressed in high-risk PPGLs belonging to the established Cluster 1, which is characterized by worse clinical outcomes, pseudohypoxia, multiplicity, recurrence, and metastasis, specifically including SDHB, VHL, and EPAS1 mutations. Using immunohistochemistry, we localized PSMA expression to tumor vasculature. Our study provides the first direct evidence of PSMA overexpression in PPGLs which could translate to therapeutic and diagnostic applications of anti-PSMA radio-conjugates in high-risk PPGLs.
BIOCEV 1st Faculty of Medicine Charles University 25250 Vestec Czech Republic
Laboratory of Pathology National Cancer Institute NIH Bethesda MD 20892 USA
Zobrazit více v PubMed
Alrezk R., Suarez A., Tena I., Pacak K. Update of Pheochromocytoma Syndromes: Genetics, Biochemical Evaluation, and Imaging. Front. Endocrinol. 2018;9:515. doi: 10.3389/fendo.2018.00515. PubMed DOI PMC
Crona J., Taïeb D., Pacak K. New Perspectives on Pheochromocytoma and Paraganglioma: Toward a Molecular Classification. Endocr. Rev. 2017;38:489–515. doi: 10.1210/er.2017-00062. PubMed DOI PMC
Hadrava Vanova K., Pang Y., Krobova L., Kraus M., Nahacka Z., Boukalova S., Pack S.D., Zobalova R., Zhu J., Huynh T.T., et al. Germline SUCLG2 Variants in Patients with Pheochromocytoma and Paraganglioma. J. Natl. Cancer Inst. 2021:djab158. doi: 10.1093/jnci/djab158. PubMed DOI PMC
Fishbein L., Leshchiner I., Walter V., Danilova L., Robertson A.G., Johnson A.R., Lichtenberg T.M., Murray B.A., Ghayee H.K., Else T., et al. Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma. Cancer Cell. 2017;31:181–193. doi: 10.1016/j.ccell.2017.01.001. PubMed DOI PMC
Vit O., Petrak J. Integral membrane proteins in proteomics. How to break open the black box? J. Proteom. 2017;153:8–20. doi: 10.1016/j.jprot.2016.08.006. PubMed DOI
Vit O., Harant K., Klener P., Man P., Petrak J. A three-pronged “Pitchfork” strategy enables an extensive description of the human membrane proteome and the identification of missing proteins. J. Proteom. 2019;204:103411. doi: 10.1016/j.jprot.2019.103411. PubMed DOI
Zielinska D.F., Gnad F., Wiśniewski J.R., Mann M. Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell. 2010;141:897–907. doi: 10.1016/j.cell.2010.04.012. PubMed DOI
Tian Y., Zhou Y., Elliott S., Aebersold R., Zhang H. Solid-phase extraction of N-linked glycopeptides. Nat. Protoc. 2007;2:334–339. doi: 10.1038/nprot.2007.42. PubMed DOI PMC
Vit O., Man P., Kadek A., Hausner J., Sklenar J., Harant K., Novak P., Scigelova M., Woffendin G., Petrak J. Large-scale identification of membrane proteins based on analysis of trypsin-protected transmembrane segments. J. Proteom. 2016;149:15–22. doi: 10.1016/j.jprot.2016.03.016. PubMed DOI
Krogh A., Larsson B., von Heijne G., Sonnhammer E.L. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 2001;305:567–580. doi: 10.1006/jmbi.2000.4315. PubMed DOI
Waas M., Snarrenberg S.T., Littrell J., Jones Lipinski R.A., Hansen P.A., Corbett J.A., Gundry R.L. SurfaceGenie: A web-based application for prioritizing cell-type-specific marker candidates. Bioinformatics. 2020;36:3447–3456. doi: 10.1093/bioinformatics/btaa092. PubMed DOI PMC
Sartor O., de Bono J., Chi K.N., Fizazi K., Herrmann K., Rahbar K., Tagawa S.T., Nordquist L.T., Vaishampayan N., El-Haddad G., et al. Lutetium-177-PSMA-617 for Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2021;385:1091–1103. doi: 10.1056/NEJMoa2107322. PubMed DOI PMC
Parsi M., Desai M.H., Desai D., Singhal S., Khandwala P.M., Potdar R.R. PSMA: A game changer in the diagnosis and treatment of advanced prostate cancer. Med. Oncol. 2021;38:89. doi: 10.1007/s12032-021-01537-3. PubMed DOI
Omasits U., Ahrens C.H., Müller S., Wollscheid B. Protter: Interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics. 2014;30:884–886. doi: 10.1093/bioinformatics/btt607. PubMed DOI
Sácha P., Zámecník J., Barinka C., Hlouchová K., Vícha A., Mlcochová P., Hilgert I., Eckschlager T., Konvalinka J. Expression of glutamate carboxypeptidase II in human brain. Neuroscience. 2007;144:1361–1372. doi: 10.1016/j.neuroscience.2006.10.022. PubMed DOI
Liu H., Moy P., Kim S., Xia Y., Rajasekaran A., Navarro V., Knudsen B., Bander N.H. Monoclonal antibodies to the extracellular domain of prostate-specific membrane antigen also react with tumor vascular endothelium. Cancer Res. 1997;57:3629–3634. PubMed
Chang S.S., O’Keefe D.S., Bacich D.J., Reuter V.E., Heston W.D., Gaudin P.B. Prostate-specific membrane antigen is produced in tumor-associated neovasculature. Clin. Cancer Res. 1999;5:2674–2681. PubMed
Uijen M., Derks Y., Merkx R., Schilham M., Roosen J., Privé B.M., van Lith S., van Herpen C., Gotthardt M., Heskamp S., et al. PSMA radioligand therapy for solid tumors other than prostate cancer: Background, opportunities, challenges, and first clinical reports. [(accessed on 29 October 2021)];Eur. J. Nucl. Med. Mol. Imaging. 2021 doi: 10.1007/s00259-021-05433-w. Available online: https://link.springer.com/article/10.1007%2Fs00259-021-05433-w. PubMed DOI PMC
Van de Wiele C., Sathekge M., de Spiegeleer B., De Jonghe P.J., Debruyne P.R., Borms M., Beels L., Maes A. PSMA expression on neovasculature of solid tumors. Histol. Histopathol. 2020;35:919–927. doi: 10.14670/HH-18-215. PubMed DOI
Hyväkkä A., Virtanen V., Kemppainen J., Grönroos T.J., Minn H., Sundvall M. More Than Meets the Eye: Scientific Rationale behind Molecular Imaging and Therapeutic Targeting of Prostate-Specific Membrane Antigen (PSMA) in Metastatic Prostate Cancer and Beyond. Cancers. 2021;13:2244. doi: 10.3390/cancers13092244. PubMed DOI PMC
Singh D., Kumar R., Mittal B.R., Singh H., Bhattacharya A. 68Ga-Labeled Prostate-Specific Membrane Antigen Uptake in Pheochromocytoma: An Incidental Finding in PET/CT Scan. Clin. Nucl. Med. 2018;43:688–690. doi: 10.1097/RLU.0000000000002181. PubMed DOI
Parihar A.S., Vadi S.K., Mittal B.R., Kumar R., Bal A., Singh S.K. 68Ga-PSMA-HBED-CC-Avid Synchronous Urinary Bladder Paraganglioma in a Patient With Metastatic Prostate Carcinoma. Clin. Nucl. Med. 2018;43:e329–e330. doi: 10.1097/RLU.0000000000002172. PubMed DOI
Tyagi S., Singh S.K., Narain T.A., Singh H., Kumar R., Vadi S.K. Synchronous Paraganglioma Masquerading as 68Ga-PSMA PET/CT-Avid Metastasis in Carcinoma Prostate-How Specific Is 68Ga-PSMA PET/CT? Clin. Nucl. Med. 2019;44:e420–e422. doi: 10.1097/RLU.0000000000002589. PubMed DOI
Tripathy S., Tripathi M., Dattagupta S., Parida G.K., Shamim S.A. In Vivo PSMA Expression in Head and Neck Paragangliomas on 68Ga PSMA 11 PET/CT. Clin. Nucl. Med. 2019;44:e398–e400. doi: 10.1097/RLU.0000000000002581. PubMed DOI
Navalkissoor S., Grossman A. Targeted Alpha Particle Therapy for Neuroendocrine Tumours: The Next Generation of Peptide Receptor Radionuclide Therapy. Neuroendocrinology. 2019;108:256–264. doi: 10.1159/000494760. PubMed DOI
Turkova H., Prodanov T., Maly M., Martucci V., Adams K., Widimsky J., Jr., Chen C.C., Ling A., Kebebew E., Stratakis C.A., et al. Characteristics and Outcomes of Metastatic Sdhb and Sporadic Pheochromocytoma/paraganglioma: An National Institutes of Health Study. Endocr. Pract. 2016;22:302–314. doi: 10.4158/EP15725.OR. PubMed DOI PMC
Amar L., Baudin E., Burnichon N., Peyrard S., Silvera S., Bertherat J., Bertagna X., Schlumberger M., Jeunemaitre X., Gimenez-Roqueplo A.P., et al. Succinate dehydrogenase B gene mutations predict survival in patients with malignant pheochromocytomas or paragangliomas. J. Clin. Endocrinol. Metab. 2007;92:3822–3828. doi: 10.1210/jc.2007-0709. PubMed DOI
Gimenez-Roqueplo A.P., Favier J., Rustin P., Rieubland C., Crespin M., Nau V., Khau Van Kien P., Corvol P., Plouin P.F., Jeunemaitre X., et al. Mutations in the SDHB gene are associated with extra-adrenal and/or malignant phaeochromocytomas. Cancer Res. 2003;63:5615–5621. PubMed
Binderup M.L., Jensen A.M., Budtz-Jørgensen E., Bisgaard M.L. Survival and causes of death in patients with von Hippel-Lindau disease. J. Med. Genet. 2017;54:11–18. doi: 10.1136/jmedgenet-2016-104058. PubMed DOI
Janssen I., Blanchet E.M., Adams K., Chen C.C., Millo C.M., Herscovitch P., Taieb D., Kebebew E., Lehnert H., Fojo A.T., et al. Superiority of [68Ga]-DOTATATE PET/CT to Other Functional Imaging Modalities in the Localization of SDHB-Associated Metastatic Pheochromocytoma and Paraganglioma. Clin. Cancer Res. 2015;21:3888–3895. doi: 10.1158/1078-0432.CCR-14-2751. PubMed DOI PMC
Janssen I., Chen C.C., Millo C.M., Ling A., Taieb D., Lin F.I., Adams K.T., Wolf K.I., Herscovitch P., Fojo A.T., et al. PET/CT comparing (68)Ga-DOTATATE and other radiopharmaceuticals and in comparison with CT/MRI for the localization of sporadic metastatic pheochromocytoma and paraganglioma. Eur. J. Nucl. Med. Mol. Imaging. 2016;43:1784–1791. doi: 10.1007/s00259-016-3357-x. PubMed DOI PMC
Taïeb D., Hicks R.J., Hindié E., Guillet B.A., Avram A., Ghedini P., Timmers H.J., Scott A.T., Elojeimy S., Rubello D., et al. European Association of Nuclear Medicine Practice Guideline/Society of Nuclear Medicine and Molecular Imaging Procedure Standard 2019 for radionuclide imaging of phaeochromocytoma and paraganglioma. Eur. J. Nucl. Med. Mol. Imaging. 2019;46:2112–2137. doi: 10.1007/s00259-019-04398-1. PubMed DOI PMC
Jha A., Patel M., Carrasquillo J.A., Ling A., Millo C., Saboury B., Chen C.C., Wakim P., Gonzales M.K., Meuter L., et al. Sporadic Primary Pheochromocytoma: A Prospective Intra-Individual Comparison of Six Imaging Tests (CT, MRI, and PET/CT Using 68Ga-DOTATATE, FDG, 18F-FDOPA, and 18F-FDA) AJR Am. J. Rroentgenol. 2021 doi: 10.2214/AJR.21.26071. PubMed DOI PMC
Mesters J.R., Barinka C., Li W., Tsukamoto T., Majer P., Slusher B.S., Konvalinka J., Hilgenfeld R. Structure of glutamate carboxypeptidase II, a drug target in neuronal damage and prostate cancer. EMBO. J. 2006;25:1375–1384. doi: 10.1038/sj.emboj.7600969. PubMed DOI PMC
Halsted C.H. Jejunal brush-border folate hydrolase. A novel enzyme. West. J. Med. 1991;155:605–609. PubMed PMC
Sheehan B., Guo C., Neeb A., Paschalis A., Sandhu S., de Bono J.S. Prostate-specific Membrane Antigen Biology in Lethal Prostate Cancer and its Therapeutic Implications. [(accessed on 29 October 2021)];Eur. Urol. Focus. 2021 doi: 10.1016/j.euf.2021.06.006. Available online: https://linkinghub.elsevier.com/retrieve/pii/S2405-4569(21)00168-1. PubMed DOI
Yao V., Berkman C.E., Choi J.K., O’Keefe D.S., Bacich D.J. Expression of prostate-specific membrane antigen (PSMA), increases cell folate uptake and proliferation and suggests a novel role for PSMA in the uptake of the non-polyglutamated folate, folic acid. Prostate. 2010;70:305–316. doi: 10.1002/pros.21065. PubMed DOI
Conway R.E., Petrovic N., Li Z., Heston W., Wu D., Shapiro L.H. Prostate-specific membrane antigen regulates angiogenesis by modulating integrin signal transduction. Mol. Cell Biol. 2006;26:5310–5324. doi: 10.1128/MCB.00084-06. PubMed DOI PMC
Conway R.E., Joiner K., Patterson A., Bourgeois D., Rampp R., Hannah B.C., McReynolds S., Elder J.M., Gilfilen H., Shapiro L.H. Prostate specific membrane antigen produces pro-angiogenic laminin peptides downstream of matrix metalloprotease-2. Angiogenesis. 2013;16:847–860. doi: 10.1007/s10456-013-9360-y. PubMed DOI
Conway R.E., Rojas C., Alt J., Nováková Z., Richardson S.M., Rodrick T.C., Fuentes J.L., Richardson N.H., Attalla J., Stewart S., et al. Prostate-specific membrane antigen (PSMA)-mediated laminin proteolysis generates a pro-angiogenic peptide. Angiogenesis. 2016;19:487–500. doi: 10.1007/s10456-016-9521-x. PubMed DOI
Robinson J., Whitworth K., Jinks E., Nagy Z., Bicknell R., Lee S.P. An evaluation of the tumour endothelial marker CLEC14A as a therapeutic target in solid tumours. J. Pathol. Clin. Res. 2020;6:308–319. doi: 10.1002/cjp2.176. PubMed DOI PMC
Riether C., Radpour R., Kallen N.M., Bürgin D.T., Bachmann C., Schürch C.M., Lüthi U., Arambasic M., Hoppe S., Albers C.E., et al. Metoclopramide treatment blocks CD93-signaling-mediated self-renewal of chronic myeloid leukemia stem cells. Cell Rep. 2021;34:108663. doi: 10.1016/j.celrep.2020.108663. PubMed DOI
Sier V.Q., van der Vorst J.R., Quax P., de Vries M.R., Zonoobi E., Vahrmeijer A.L., Dekkers I.A., de Geus-Oei L.F., Smits A.M., Cai W., et al. Endoglin/CD105-Based Imaging of Cancer and Cardiovascular Diseases: A Systematic Review. Int. J. Mol. Sci. 2021;22:4804. doi: 10.3390/ijms22094804. PubMed DOI PMC
Petrovic K., Robinson J., Whitworth K., Jinks E., Shaaban A., Lee S.P. TEM8/ANTXR1-specific CAR T cells mediate toxicity in vivo. PLoS ONE. 2019;14:e0224015. doi: 10.1371/journal.pone.0224015. PubMed DOI PMC
Katchman B.A., Ocal I.T., Cunliffe H.E., Chang Y.H., Hostetter G., Watanabe A., LoBello J., Lake D.F. Expression of quiescin sulfhydryl oxidase 1 is associated with a highly invasive phenotype and correlates with a poor prognosis in Luminal B breast cancer. Breast Cancer Res. 2013;15:R28. doi: 10.1186/bcr3407. PubMed DOI PMC
Baek J.A., Song P.H., Ko Y., Gu M.J. High expression of QSOX1 is associated with tumor invasiveness and high grades groups in prostate cancer. Pathol. Res. Pract. 2018;214:964–967. doi: 10.1016/j.prp.2018.05.019. PubMed DOI
Feldman T., Grossman-Haham I., Elkis Y., Vilela P., Moskovits N., Barshack I., Salame T.M., Fass D., Ilani T. Inhibition of fibroblast secreted QSOX1 perturbs extracellular matrix in the tumor microenvironment and decreases tumor growth and metastasis in murine cancer models. Oncotarget. 2020;11:386–398. doi: 10.18632/oncotarget.27438. PubMed DOI PMC
Fifield A.L., Hanavan P.D., Faigel D.O., Sergienko E., Bobkov A., Meurice N., Petit J.L., Polito A., Caulfield T.R., Castle E.P., et al. Molecular Inhibitor of QSOX1 Suppresses Tumor Growth In Vivo. Mol. Cancer Ther. 2020;19:112–122. doi: 10.1158/1535-7163.MCT-19-0233. PubMed DOI PMC
Crona J., Lamarca A., Ghosal S., Welin S., Skogseid B., Pacak K. Genotype-phenotype correlations in pheochromocytoma and paraganglioma: A systematic review and individual patient meta-analysis. Endocr-Relat. Cancer. 2019;26:539–550. doi: 10.1530/ERC-19-0024. PubMed DOI PMC
Zelinka T., Eisenhofer G., Pacak K. Pheochromocytoma as a catecholamine producing tumor: Implications for clinical practice. Stress. 2007;10:195–203. doi: 10.1080/10253890701395896. PubMed DOI
Lenders J., Kerstens M.N., Amar L., Prejbisz A., Robledo M., Taieb D., Pacak K., Crona J., Zelinka T., Mannelli M., et al. Genetics, diagnosis, management and future directions of research of phaeochromocytoma and paraganglioma: A position statement and consensus of the Working Group on Endocrine Hypertension of the European Society of Hypertension. J. Hypertens. 2020;38:1443–1456. doi: 10.1097/HJH.0000000000002438. PubMed DOI PMC
Eisenhofer G., Lenders J.W., Siegert G., Bornstein S.R., Friberg P., Milosevic D., Mannelli M., Linehan W.M., Adams K., Timmers H.J., et al. Plasma methoxytyramine: A novel biomarker of metastatic pheochromocytoma and paraganglioma in relation to established risk factors of tumour size, location and SDHB mutation status. Eur. J. Cancer. 2012;48:1739–1749. doi: 10.1016/j.ejca.2011.07.016. PubMed DOI PMC
Nölting S., Ullrich M., Pietzsch J., Ziegler C.G., Eisenhofer G., Grossman A., Pacak K. Current Management of Pheochromocytoma/Paraganglioma: A Guide for the Practicing Clinician in the Era of Precision Medicine. Cancers. 2019;11:1505. doi: 10.3390/cancers11101505. PubMed DOI PMC
Masuda T., Tomita M., Ishihama Y. Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J. Proteome Res. 2008;7:731–740. doi: 10.1021/pr700658q. PubMed DOI
Sun Z., Qin H., Wang F., Cheng K., Dong M., Ye M., Zou H. Capture and dimethyl labeling of glycopeptides on hydrazide beads for quantitative glycoproteomics analysis. Anal. Chem. 2012;84:8452–8456. doi: 10.1021/ac302130r. PubMed DOI
Rey M., Mrázek H., Pompach P., Novák P., Pelosi L., Brandolin G., Forest E., Havlícek V., Man P. Effective removal of nonionic detergents in protein mass spectrometry, hydrogen/deuterium exchange, and proteomics. Anal. Chem. 2010;82:5107–5116. doi: 10.1021/ac100171m. PubMed DOI
Hebert A.S., Richards A.L., Bailey D.J., Ulbrich A., Coughlin E.E., Westphall M.S., Coon J.J. The one hour yeast proteome. Mol. Cell Proteom. 2014;13:339–347. doi: 10.1074/mcp.M113.034769. PubMed DOI PMC