Genetic and Enzymatic Characteristics of CYP2A13 in Relation to Lung Damage

. 2021 Nov 14 ; 22 (22) : . [epub] 20211114

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34830188

Grantová podpora
NV19-05-00220 Czech Health Research Council

Cytochrome P450 2A13 is an omitted brother of CYP2A6 that has an important role in the drug metabolism of liver. Due to extrahepatic expression, it has gained less attention than CYP2A6, despite the fact that it plays a significant role in toxicant-induced pulmonary lesions and, therefore, lung cancer. The purpose of this mini-review is to summarize the basic knowledge about this enzyme in relation to the substrates, inhibitors, genetic polymorphisms, and transcriptional regulation that are known so far (September 2021).

Zobrazit více v PubMed

Omura T. Structural diversity of cytochrome P450 enzyme system. J. Biochem. 2010;147:297–306. doi: 10.1093/jb/mvq001. PubMed DOI

Tralau T., Luch A. The evolution of our understanding of endo-xenobiotic crosstalk and cytochrome P450 regulation and the therapeutic implications. Expert Opin. Drug Metab. Toxicol. 2013;9:1541–1554. doi: 10.1517/17425255.2013.828692. PubMed DOI

Podust L.M., Sherman D.H. Diversity of P450 enzymes in the biosynthesis of natural products. Nat. Prod. Rep. 2012;29:1251–1266. doi: 10.1039/c2np20020a. PubMed DOI PMC

Nebert D.W., Dalton T.P. The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nat. Rev. Cancer. 2006;6:947–960. doi: 10.1038/nrc2015. PubMed DOI

Nebert D.W., Wikvall K., Miller W.L. Human cytochromes P450 in health and disease. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013;368:20120431. doi: 10.1098/rstb.2012.0431. PubMed DOI PMC

Lewis D.F. 57 varieties: The human cytochromes P450. Pharmacogenomics. 2004;5:305–318. doi: 10.1517/phgs.5.3.305.29827. PubMed DOI

Fernandez-Salguero P., Hoffman S.M., Cholerton S., Mohrenweiser H., Raunio H., Rautio A., Pelkonen O., Huang J.D., Evans W.E., Idle J.R., et al. A genetic polymorphism in coumarin 7-hydroxylation: Sequence of the human CYP2A genes and identification of variant CYP2A6 alleles. Am. J. Hum. Genet. 1995;57:651–660. PubMed PMC

Zanger U.M., Schwab M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 2013;138:103–141. doi: 10.1016/j.pharmthera.2012.12.007. PubMed DOI

Su T., Bao Z., Zhang Q.Y., Smith T.J., Hong J.Y., Ding X. Human cytochrome P450 CYP2A13: Predominant expression in the respiratory tract and its high efficiency metabolic activation of a tobacco-specific carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Cancer Res. 2000;60:5074–5079. PubMed

Gu J., Su T., Chen Y., Zhang Q.Y., Ding X. Expression of biotransformation enzymes in human fetal olfactory mucosa: Potential roles in developmental toxicity. Toxicol. Appl. Pharmacol. 2000;165:158–162. doi: 10.1006/taap.2000.8923. PubMed DOI

Nakajima M., Itoh M., Sakai H., Fukami T., Katoh M., Yamazaki H., Kadlubar F.F., Imaoka S., Funae Y., Yokoi T. CYP2A13 expressed in human bladder metabolically activates 4-aminobiphenyl. Int. J. Cancer. 2006;119:2520–2526. doi: 10.1002/ijc.22136. PubMed DOI

Borlak J., Walles M., Levsen K., Thum T. Verapamil: Metabolism in cultures of primary human coronary arterial endothelial cells. Drug Metab. Dispos. 2003;31:888–891. doi: 10.1124/dmd.31.7.888. PubMed DOI

Zhang X., D’Agostino J., Wu H., Zhang Q.Y., von Weymarn L., Murphy S.E., Ding X. CYP2A13: Variable expression and role in human lung microsomal metabolic activation of the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. J. Pharmacol. Exp. Ther. 2007;323:570–578. doi: 10.1124/jpet.107.127068. PubMed DOI

Zhu L.R., Thomas P.E., Lu G., Reuhl K.R., Yang G.Y., Wang L.D., Wang S.L., Yang C.S., He X.Y., Hong J.Y. CYP2A13 in human respiratory tissues and lung cancers: An immunohistochemical study with a new peptide-specific antibody. Drug Metab. Dispos. 2006;34:1672–1676. doi: 10.1124/dmd.106.011049. PubMed DOI

Jia K., Li L., Liu Z., Hartog M., Kluetzman K., Zhang Q.Y., Ding X. Generation and characterization of a novel CYP2A13--transgenic mouse model. Drug Metab. Dispos. 2014;42:1341–1348. doi: 10.1124/dmd.114.059188. PubMed DOI PMC

Guo Y., Zhu L.R., Lu G., Wang H., Hong J.Y. Selective expression of CYP2A13 in human pancreatic alpha-islet cells. Drug Metab. Dispos. 2012;40:1878–1882. doi: 10.1124/dmd.112.046359. PubMed DOI PMC

Gandini S., Botteri E., Iodice S., Boniol M., Lowenfels A.B., Maisonneuve P., Boyle P. Tobacco smoking and cancer: A meta-analysis. Int. J. Cancer. 2008;122:155–164. doi: 10.1002/ijc.23033. PubMed DOI

Smith B.D., Sanders J.L., Porubsky P.R., Lushington G.H., Stout C.D., Scott E.E. Structure of the human lung cytochrome P450 2A13. J. Biol. Chem. 2007;282:17306–17313. doi: 10.1074/jbc.M702361200. PubMed DOI

He X.Y., Shen J., Hu W.Y., Ding X., Lu A.Y., Hong J.Y. Identification of Val117 and Arg372 as critical amino acid residues for the activity difference between human CYP2A6 and CYP2A13 in coumarin 7-hydroxylation. Arch. Biochem. Biophys. 2004;427:143–153. doi: 10.1016/j.abb.2004.03.016. PubMed DOI

Von Weymarn L.B., Murphy S.E. CYP2A13-catalysed coumarin metabolism: Comparison with CYP2A5 and CYP2A6. Xenobiotica. 2003;33:73–81. doi: 10.1080/0049825021000022302. PubMed DOI

Bao Z., He X.Y., Ding X., Prabhu S., Hong J.Y. Metabolism of nicotine and cotinine by human cytochrome P450 2A13. Drug Metab. Dispos. 2005;33:258–261. doi: 10.1124/dmd.104.002105. PubMed DOI

He X.Y., Shen J., Ding X., Lu A.Y., Hong J.Y. Identification of critical amino acid residues of human CYP2A13 for the metabolic activation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, a tobacco-specific carcinogen. Drug Metab. Dispos. 2004;32:1516–1521. doi: 10.1124/dmd.104.001370. PubMed DOI

Von Weymarn L.B., Zhang Q.Y., Ding X., Hollenberg P.F. Effects of 8-methoxypsoralen on cytochrome P450 2A13. Carcinogenesis. 2005;26:621–629. doi: 10.1093/carcin/bgh348. PubMed DOI

Liu X., Zhang J., Zhang C., Yang B., Wang L., Zhou J. The inhibition of cytochrome P450 2A13-catalyzed NNK metabolism by NAT, NAB and nicotine. Toxicol. Res. 2016;5:1115–1121. doi: 10.1039/C6TX00016A. PubMed DOI PMC

Kramlinger V.M., von Weymarn L.B., Murphy S.E. Inhibition and inactivation of cytochrome P450 2A6 and cytochrome P450 2A13 by menthofuran, beta-nicotyrine and menthol. Chem.-Biol. Interact. 2012;197:87–92. doi: 10.1016/j.cbi.2012.03.009. PubMed DOI PMC

Lopez-Abente G., Gonzalez C.A., Errezola M., Escolar A., Izarzugaza I., Nebot M., Riboli E. Tobacco smoke inhalation pattern, tobacco type, and bladder cancer in Spain. Am. J. Epidemiol. 1991;134:830–839. doi: 10.1093/oxfordjournals.aje.a116158. PubMed DOI

National Center for Chronic Disease Prevention and Health Promotion . The Health Consequences of Smoking-50 Years of Progress: A Report of the Surgeon General. National Center for Chronic Disease Prevention and Health Promotion; Atlanta, GA, USA: 2014.

Barbosa A.L.A., Vermeulen S., Aben K.K., Grotenhuis A.J., Vrieling A., Kiemeney L.A. Smoking intensity and bladder cancer aggressiveness at diagnosis. PLoS ONE. 2018;13:e0194039. PubMed PMC

Boonruang S., Prakobsri K., Pouyfung P., Srisook E., Prasopthum A., Rongnoparut P., Sarapusit S. Inhibition of human cytochromes P450 2A6 and 2A13 by flavonoids, acetylenic thiophenes and sesquiterpene lactones from Pluchea indica and Vernonia cinerea. J. Enzyme Inhib. Med. Chem. 2017;32:1136–1142. doi: 10.1080/14756366.2017.1363741. PubMed DOI PMC

Chougnet A., Woggon W.D., Locher E., Schilling B. Synthesis and in vitro activity of heterocyclic inhibitors of CYP2A6 and CYP2A13, two cytochrome P450 enzymes present in the respiratory tract. ChemBioChem. 2009;10:1562–1567. doi: 10.1002/cbic.200800712. PubMed DOI

Shimada T., Takenaka S., Kakimoto K., Murayama N., Lim Y.R., Kim D., Foroozesh M.K., Yamazaki H., Guengerich F.P., Komori M. Structure-function studies of naphthalene, phenanthrene, biphenyl, and their derivatives in interaction with and Oxidation by CYTOCHROMES P450 2A13 and 2A6. Chem. Res. Toxicol. 2016;29:1029–1040. doi: 10.1021/acs.chemrestox.6b00083. PubMed DOI PMC

Shimada T., Takenaka S., Murayama N., Kramlinger V.M., Kim J.H., Kim D., Liu J., Foroozesh M.K., Yamazaki H., Guengerich F.P., et al. Oxidation of pyrene, 1-hydroxypyrene, 1-nitropyrene and 1-acetylpyrene by human cytochrome P450 2A13. Xenobiotica. 2016;46:211–224. doi: 10.3109/00498254.2015.1069419. PubMed DOI PMC

Ji M., Zhang Z., Li N., Xia R., Wang C., Yu Y., Yao S., Shen J., Wang S.L. Identification of 5-hydroxymethylfurfural in cigarette smoke extract as a new substrate metabolically activated by human cytochrome P450 2A13. Toxicol. Appl. Pharmacol. 2018;359:108–117. doi: 10.1016/j.taap.2018.09.031. PubMed DOI

Fayyaz A., Makwinja S., Auriola S., Raunio H., Juvonen R.O. Comparison of In Vitro Hepatic Scoparone 7-O-Demethylation between Humans and Experimental Animals. Planta Med. 2018;84:320–328. doi: 10.1055/s-0043-119886. PubMed DOI

He X.Y., Tang L., Wang S.L., Cai Q.S., Wang J.S., Hong J.Y. Efficient activation of aflatoxin B1 by cytochrome P450 2A13, an enzyme predominantly expressed in human respiratory tract. Int. J. Cancer. 2006;118:2665–2671. doi: 10.1002/ijc.21665. PubMed DOI

D’Agostino J., Zhuo X., Shadid M., Morgan D.G., Zhang X., Humphreys W.G., Shu Y.Z., Yost G.S., Ding X. The pneumotoxin 3-methylindole is a substrate and a mechanism-based inactivator of CYP2A13, a human cytochrome P450 enzyme preferentially expressed in the respiratory tract. Drug Metab. Dispos. 2009;37:2018–2027. doi: 10.1124/dmd.109.027300. PubMed DOI PMC

Shimada T., Murayama N., Tanaka K., Takenaka S., Guengerich F.P., Yamazaki H., Komori M. Spectral modification and catalytic inhibition of human cytochromes P450 1A1, 1A2, 1B1, 2A6, and 2A13 by four chemopreventive organoselenium compounds. Chem. Res. Toxicol. 2011;24:1327–1337. doi: 10.1021/tx200218u. PubMed DOI PMC

Pouyfung P., Prasopthum A., Sarapusit S., Srisook E., Rongnoparut P. Mechanism-based inactivation of cytochrome P450 2A6 and 2A13 by Rhinacanthus nasutus constituents. Drug Metab. Pharmacokinet. 2014;29:75–82. doi: 10.2133/dmpk.DMPK-13-RG-048. PubMed DOI

Von Weymarn L.B., Chun J.A., Knudsen G.A., Hollenberg P.F. Effects of eleven isothiocyanates on P450 2A6- and 2A13-catalyzed coumarin 7-hydroxylation. Chem. Res. Toxicol. 2007;20:1252–1259. doi: 10.1021/tx700078v. PubMed DOI

Von Weymarn L.B., Chun J.A., Hollenberg P.F. Effects of benzyl and phenethyl isothiocyanate on P450s 2A6 and 2A13: Potential for chemoprevention in smokers. Carcinogenesis. 2006;27:782–790. doi: 10.1093/carcin/bgi301. PubMed DOI

Reddy B.S., Upadhyaya P., Simi B., Rao C.V. Evaluation of organoselenium compounds for potential chemopreventive properties in colon carcinogenesis. Anticancer Res. 1994;14:2509–2514. PubMed

Ip C., el-Bayoumy K., Upadhyaya P., Ganther H., Vadhanavikit S., Thompson H. Comparative effect of inorganic and organic selenocyanate derivatives in mammary cancer chemoprevention. Carcinogenesis. 1994;15:187–192. doi: 10.1093/carcin/15.2.187. PubMed DOI

Richie J.P., Jr., Kleinman W., Desai D.H., Das A., Amin S.G., Pinto J.T., El-Bayoumy K. The organoselenium compound 1,4-phenylenebis(methylene)selenocyanate inhibits 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced tumorgenesis and enhances glutathione-related antioxidant levels in A/J mouse lung. Chem.-Biol. Interact. 2006;161:93–103. doi: 10.1016/j.cbi.2006.03.005. PubMed DOI

Clayson D.B. Carcinogenic and Mutagenic N-substituted Aryl Compounds. National Institutes of Health and National Cancer Institute; Bethesda, MD, USA: 1981. Specific aromatic amines as occupational bladder carcinogens; pp. 15–19. PubMed

DeVore N.M., Smith B.D., Wang J.L., Lushington G.H., Scott E.E. Key residues controlling binding of diverse ligands to human cytochrome P450 2A enzymes. Drug Metab. Dispos. 2009;37:1319–1327. doi: 10.1124/dmd.109.026765. PubMed DOI PMC

DeVore N.M., Smith B.D., Urban M.J., Scott E.E. Key residues controlling phenacetin metabolism by human cytochrome P450 2A enzymes. Drug Metab. Dispos. 2008;36:2582–2590. doi: 10.1124/dmd.108.023770. PubMed DOI PMC

Shimada T., Murayama N., Yamazaki H., Tanaka K., Takenaka S., Komori M., Kim D., Guengerich F.P. Metabolic activation of polycyclic aromatic hydrocarbons and aryl and heterocyclic amines by human cytochromes P450 2A13 and 2A6. Chem. Res. Toxicol. 2013;26:529–537. doi: 10.1021/tx3004906. PubMed DOI PMC

Kakimoto K., Murayama N., Takenaka S., Nagayoshi H., Lim Y.R., Kim V., Kim D., Yamazaki H., Komori M., Guengerich F.P., et al. Cytochrome P450 2A6 and other human P450 enzymes in the oxidation of flavone and flavanone. Xenobiotica. 2019;49:131–142. doi: 10.1080/00498254.2018.1426133. PubMed DOI PMC

Li L., Carratt S., Hartog M., Kovalchik N., Jia K., Wang Y., Zhang Q.Y., Edwards P., Winkle L.V., Ding X. Human CYP2A13 and CYP2F1 Mediate Naphthalene Toxicity in the Lung and Nasal Mucosa of CYP2A13/2F1-Humanized Mice. Environ. Health Perspect. 2017;125:067004. doi: 10.1289/EHP844. PubMed DOI PMC

Toselli F., Matthias A., Bone K.M., Gillam E.M., Lehmann R.P. Metabolism of the major Echinacea alkylamide N-isobutyldodeca-2E,4E,8Z,10Z-tetraenamide by human recombinant cytochrome P450 enzymes and human liver microsomes. Phytother. Res. 2010;24:1195–1201. doi: 10.1002/ptr.3111. PubMed DOI

Rodu B., Cole P., Mandel J.S. Evaluation of the national toxicology program report on carcinogens. Regulat. Toxicol. Pharmacol. 2012;64:186–188. doi: 10.1016/j.yrtph.2012.07.002. PubMed DOI

Massey T.E. The 1995 Pharmacological Society of Canada Merck Frosst Award. Cellular and molecular targets in pulmonary chemical carcinogenesis: Studies with aflatoxin B1. Can. J. Physiol. Pharmacol. 1996;74:621–628. doi: 10.1139/y96-060. PubMed DOI

Sorenson W.G., Simpson J.P., Peach M.J., 3rd, Thedell T.D., Olenchock S.A. Aflatoxin in respirable corn dust particles. J. Toxicol. Environ. Health. 1981;7:669–672. doi: 10.1080/15287398109530009. PubMed DOI

Hayes R.B., van Nieuwenhuize J.P., Raatgever J.W., ten Kate F.J. Aflatoxin exposures in the industrial setting: An epidemiological study of mortality. Food Chem. Toxicol. 1984;22:39–43. doi: 10.1016/0278-6915(84)90050-4. PubMed DOI

Yang X., Zhang Z., Wang X., Wang Y., Zhang X., Lu H., Wang S.L. Cytochrome P450 2A13 enhances the sensitivity of human bronchial epithelial cells to aflatoxin B1-induced DNA damage. Toxicol. Appl. Pharmacol. 2013;270:114–121. doi: 10.1016/j.taap.2013.04.005. PubMed DOI

Zhang Z., Lu H., Huan F., Meghan C., Yang X., Wang Y., Wang X., Wang X., Wang S.L. Cytochrome P450 2A13 mediates the neoplastic transformation of human bronchial epithelial cells at a low concentration of aflatoxin B1. Int. J. Cancer. 2014;134:1539–1548. doi: 10.1002/ijc.28489. PubMed DOI

Zhang Z., Yang X., Wang Y., Wang X., Lu H., Zhang X., Xiao X., Li S., Wang X., Wang S.L. Cytochrome P450 2A13 is an efficient enzyme in metabolic activation of aflatoxin G1 in human bronchial epithelial cells. Arch. Toxicol. 2013;87:1697–1707. doi: 10.1007/s00204-013-1108-3. PubMed DOI

Megaraj V., Zhou X., Xie F., Liu Z., Yang W., Ding X. Role of CYP2A13 in the bioactivation and lung tumorigenicity of the tobacco-specific lung procarcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone: In vivo studies using a CYP2A13-humanized mouse model. Carcinogenesis. 2014;35:131–137. doi: 10.1093/carcin/bgt269. PubMed DOI PMC

Liu Z., Megaraj V., Li L., Sell S., Hu J., Ding X. Suppression of pulmonary CYP2A13 expression by carcinogen-induced lung tumorigenesis in a CYP2A13-humanized mouse model. Drug Metab. Dispos. 2015;43:698–702. doi: 10.1124/dmd.115.063305. PubMed DOI PMC

Ibuki Y., Shikata M., Toyooka T. Gamma-H2AX is a sensitive marker of DNA damage induced by metabolically activated 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Toxicol. Vitro. 2015;29:1831–1838. doi: 10.1016/j.tiv.2015.07.023. PubMed DOI

Gillam E.M., Notley L.M., Cai H., De Voss J.J., Guengerich F.P. Oxidation of indole by cytochrome P450 enzymes. Biochemistry. 2000;39:13817–13824. doi: 10.1021/bi001229u. PubMed DOI

Weems J.M., Lamb J.G., D’Agostino J., Ding X., Yost G.S. Potent mutagenicity of 3-methylindole requires pulmonary cytochrome P450-mediated bioactivation: A comparison to the prototype cigarette smoke mutagens B(a)P and NNK. Chemical Res. Toxicol. 2010;23:1682–1690. doi: 10.1021/tx100147z. PubMed DOI PMC

Wynder E.L., Hoffmann D. Experimental tobacco carcinogenesis. Science. 1968;162:862–871. doi: 10.1126/science.162.3856.862. PubMed DOI

Wang H., Donley K.M., Keeney D.S., Hoffman S.M. Organization and evolution of the Cyp2 gene cluster on mouse chromosome 7, and comparison with the syntenic human cluster. Environ. Health Perspect. 2003;111:1835–1842. doi: 10.1289/ehp.6546. PubMed DOI PMC

Cauffiez C., Pottier N., Tournel G., Lo-Guidice J.M., Allorge D., Chevalier D., Migot-Nabias F., Kenani A., Broly F. CYP2A13 genetic polymorphism in French Caucasian, Gabonese and Tunisian populations. Xenobiotica. 2005;35:661–669. doi: 10.1080/00498250500202171. PubMed DOI

Kim V., Yeom S., Lee Y., Park H.G., Cho M.A., Kim H., Kim D. In vitro functional analysis of human cytochrome P450 2A13 genetic variants: P450 2A13*2, *3, *4, and *10. J. Toxicol. Environ. Health Pt. A. 2018;81:493–501. doi: 10.1080/15287394.2018.1460784. PubMed DOI

Kumondai M., Hosono H., Maekawa M., Yamaguchi H., Mano N., Oda A., Hirasawa N., Hiratsuka M. Functional characterization of 9 CYP2A13 allelic variants by assessment of nicotine C-oxidation and coumarin 7-hydroxylation. Drug Metab. Pharmacokinet. 2018;33:82–89. doi: 10.1016/j.dmpk.2017.11.004. PubMed DOI

Verde Z., Santiago C., Rodriguez Gonzalez-Moro J.M., de Lucas Ramos P., Lopez Martin S., Bandres F., Lucia A., Gomez-Gallego F. ‘Smoking genes’: A genetic association study. PLoS ONE. 2011;6:e26668. doi: 10.1371/journal.pone.0026668. PubMed DOI PMC

Tamaki Y., Arai T., Sugimura H., Sasaki T., Honda M., Muroi Y., Matsubara Y., Kanno S., Ishikawa M., Hirasawa N., et al. Association between cancer risk and drug-metabolizing enzyme gene (CYP2A6, CYP2A13, CYP4B1, SULT1A1, GSTM1, and GSTT1) polymorphisms in cases of lung cancer in Japan. Drug Metab. Pharmacokinet. 2011;26:516–522. doi: 10.2133/dmpk.DMPK-11-RG-046. PubMed DOI

Kumondai M., Hosono H., Orikasa K., Arai Y., Arai T., Sugimura H., Ozono S., Sugiyama T., Takayama T., Sasaki T., et al. CYP2A13 genetic polymorphisms in relation to the risk of bladder cancer in Japanese smokers. Biol. Pharm. Bull. 2016;39:1683–1686. doi: 10.1248/bpb.b16-00422. PubMed DOI

Sharma R., Ahuja M., Panda N., Khullar M. Polymorphisms in CYP2A13 and UGT1A7 genes and head and neck cancer susceptibility in North Indians. Oral Dis. 2010;16:760–768. doi: 10.1111/j.1601-0825.2010.01683.x. PubMed DOI

Schlicht K.E., Michno N., Smith B.D., Scott E.E., Murphy S.E. Functional characterization of CYP2A13 polymorphisms. Xenobiotica. 2007;37:1439–1449. doi: 10.1080/00498250701666265. PubMed DOI

Liu T., Hong Y., Li Z., Hong J., Zeng S., Zheng M., Chen S. An investigation of the catalytic activity of CYP2A13*4 with coumarin and polymorphisms of CYP2A13 in a Chinese Han population. Drug Metab. Dispos. 2012;40:847–851. doi: 10.1124/dmd.111.044016. PubMed DOI

Wang H., Tan W., Hao B., Miao X., Zhou G., He F., Lin D. Substantial reduction in risk of lung adenocarcinoma associated with genetic polymorphism in CYP2A13, the most active cytochrome P450 for the metabolic activation of tobacco-specific carcinogen NNK. Cancer Res. 2003;63:8057–8061. PubMed

D’Agostino J., Zhang X., Wu H., Ling G., Wang S., Zhang Q.Y., Liu F., Ding X. Characterization of CYP2A13*2, a variant cytochrome P450 allele previously found to be associated with decreased incidences of lung adenocarcinoma in smokers. Drug Metab. Dispos. 2008;36:2316–2323. doi: 10.1124/dmd.108.022822. PubMed DOI PMC

Timofeeva M.N., Kropp S., Sauter W., Beckmann L., Rosenberger A., Illig T., Jager B., Mittelstrass K., Dienemann H., Consortium L., et al. CYP450 polymorphisms as risk factors for early-onset lung cancer: Gender-specific differences. Carcinogenesis. 2009;30:1161–1169. doi: 10.1093/carcin/bgp102. PubMed DOI

Wu H., Zhang X., Ling G., D’Agostino J., Ding X. Mechanisms of differential expression of the CYP2A13 7520C and 7520G alleles in human lung: Allelic expression analysis for CYP2A13 heterogeneous nuclear RNA, and evidence for the involvement of multiple cis-regulatory single nucleotide polymorphisms. Pharmacogenet. Genom. 2009;19:852–863. doi: 10.1097/FPC.0b013e3283313aa5. PubMed DOI PMC

Sun L., Fan X. Expression of cytochrome P450 2A13 in human non-small cell lung cancer and its clinical significance. J. Biomed. Res. 2013;27:202–207. PubMed PMC

Chiang H.C., Lee H., Chao H.R., Chiou Y.H., Tsou T.C. Pulmonary CYP2A13 levels are associated with early occurrence of lung cancer-Its implication in mutagenesis of non-small cell lung carcinoma. Cancer Epidemiol. 2013;37:653–659. doi: 10.1016/j.canep.2013.04.010. PubMed DOI

Fukami T., Nakajima M., Matsumoto I., Zen Y., Oda M., Yokoi T. Immunohistochemical analysis of CYP2A13 in various types of human lung cancers. Cancer Sci. 2010;101:1024–1028. doi: 10.1111/j.1349-7006.2009.01482.x. PubMed DOI PMC

Ling G., Wei Y., Ding X. Transcriptional regulation of human CYP2A13 expression in the respiratory tract by CCAAT/enhancer binding protein and epigenetic modulation. Mol. Pharmacol. 2007;71:807–816. doi: 10.1124/mol.106.031104. PubMed DOI

Wan H., Xu Y., Ikegami M., Stahlman M.T., Kaestner K.H., Ang S.L., Whitsett J.A. Foxa2 is required for transition to air breathing at birth. Proc. Natl. Acad. Sci. USA. 2004;101:14449–14454. doi: 10.1073/pnas.0404424101. PubMed DOI PMC

Xiang C., Wang J., Kou X., Chen X., Qin Z., Jiang Y., Sun C., Xu J., Tan W., Jin L., et al. Pulmonary expression of CYP2A13 and ABCB1 is regulated by FOXA2, and their genetic interaction is associated with lung cancer. FASEB J. 2015;29:1986–1998. doi: 10.1096/fj.14-264580. PubMed DOI

Parkin D.M., Bray F., Ferlay J., Pisani P. Global cancer statistics, 2002. CA Cancer J. Clin. 2005;55:74–108. doi: 10.3322/canjclin.55.2.74. PubMed DOI

Li Z., Tuteja G., Schug J., Kaestner K.H. Foxa1 and Foxa2 are essential for sexual dimorphism in liver cancer. Cell. 2012;148:72–83. doi: 10.1016/j.cell.2011.11.026. PubMed DOI PMC

Yu X., Gupta A., Wang Y., Suzuki K., Mirosevich J., Orgebin-Crist M.C., Matusik R.J. Foxa1 and Foxa2 interact with the androgen receptor to regulate prostate and epididymal genes differentially. Ann. N. Y. Acad. Sci. 2005;1061:77–93. doi: 10.1196/annals.1336.009. PubMed DOI

Wu H., Liu Z., Ling G., Lawrence D., Ding X. Transcriptional suppression of CYP2A13 expression by lipopolysaccharide in cultured human lung cells and the lungs of a CYP2A13-humanized mouse model. Toxicol. Sci. 2013;135:476–485. doi: 10.1093/toxsci/kft165. PubMed DOI PMC

Shao P., Guo N., Wang C., Zhao M., Yi L., Liu C., Kang L., Cao L., Lv P., Xing L., et al. Aflatoxin G1 induced TNF-alpha-dependent lung inflammation to enhance DNA damage in alveolar epithelial cells. J. Cell. Physiol. 2019;234:9194–9206. doi: 10.1002/jcp.27596. PubMed DOI

Sharma R., Panda N.K., Khullar M. Hypermethylation of carcinogen metabolism genes, CYP1A1, CYP2A13 and GSTM1 genes in head and neck cancer. Oral Dis. 2010;16:668–673. doi: 10.1111/j.1601-0825.2010.01676.x. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...