Genetic and Enzymatic Characteristics of CYP2A13 in Relation to Lung Damage
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
NV19-05-00220
Czech Health Research Council
PubMed
34830188
PubMed Central
PMC8625632
DOI
10.3390/ijms222212306
PII: ijms222212306
Knihovny.cz E-zdroje
- Klíčová slova
- FOXA2, NNK, aflatoxin, lung cancer, polymorphism, regulation, skatole,
- MeSH
- aromatické hydroxylasy antagonisté a inhibitory genetika metabolismus MeSH
- lidé MeSH
- methoxsalen farmakologie MeSH
- nádory plic enzymologie genetika patologie MeSH
- plíce enzymologie metabolismus patologie MeSH
- polymorfismus genetický * MeSH
- regulace genové exprese enzymů * MeSH
- regulace genové exprese u nádorů * MeSH
- substrátová specifita MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- aromatické hydroxylasy MeSH
- CYP2A13 protein, human MeSH Prohlížeč
- methoxsalen MeSH
Cytochrome P450 2A13 is an omitted brother of CYP2A6 that has an important role in the drug metabolism of liver. Due to extrahepatic expression, it has gained less attention than CYP2A6, despite the fact that it plays a significant role in toxicant-induced pulmonary lesions and, therefore, lung cancer. The purpose of this mini-review is to summarize the basic knowledge about this enzyme in relation to the substrates, inhibitors, genetic polymorphisms, and transcriptional regulation that are known so far (September 2021).
Zobrazit více v PubMed
Omura T. Structural diversity of cytochrome P450 enzyme system. J. Biochem. 2010;147:297–306. doi: 10.1093/jb/mvq001. PubMed DOI
Tralau T., Luch A. The evolution of our understanding of endo-xenobiotic crosstalk and cytochrome P450 regulation and the therapeutic implications. Expert Opin. Drug Metab. Toxicol. 2013;9:1541–1554. doi: 10.1517/17425255.2013.828692. PubMed DOI
Podust L.M., Sherman D.H. Diversity of P450 enzymes in the biosynthesis of natural products. Nat. Prod. Rep. 2012;29:1251–1266. doi: 10.1039/c2np20020a. PubMed DOI PMC
Nebert D.W., Dalton T.P. The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nat. Rev. Cancer. 2006;6:947–960. doi: 10.1038/nrc2015. PubMed DOI
Nebert D.W., Wikvall K., Miller W.L. Human cytochromes P450 in health and disease. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013;368:20120431. doi: 10.1098/rstb.2012.0431. PubMed DOI PMC
Lewis D.F. 57 varieties: The human cytochromes P450. Pharmacogenomics. 2004;5:305–318. doi: 10.1517/phgs.5.3.305.29827. PubMed DOI
Fernandez-Salguero P., Hoffman S.M., Cholerton S., Mohrenweiser H., Raunio H., Rautio A., Pelkonen O., Huang J.D., Evans W.E., Idle J.R., et al. A genetic polymorphism in coumarin 7-hydroxylation: Sequence of the human CYP2A genes and identification of variant CYP2A6 alleles. Am. J. Hum. Genet. 1995;57:651–660. PubMed PMC
Zanger U.M., Schwab M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 2013;138:103–141. doi: 10.1016/j.pharmthera.2012.12.007. PubMed DOI
Su T., Bao Z., Zhang Q.Y., Smith T.J., Hong J.Y., Ding X. Human cytochrome P450 CYP2A13: Predominant expression in the respiratory tract and its high efficiency metabolic activation of a tobacco-specific carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Cancer Res. 2000;60:5074–5079. PubMed
Gu J., Su T., Chen Y., Zhang Q.Y., Ding X. Expression of biotransformation enzymes in human fetal olfactory mucosa: Potential roles in developmental toxicity. Toxicol. Appl. Pharmacol. 2000;165:158–162. doi: 10.1006/taap.2000.8923. PubMed DOI
Nakajima M., Itoh M., Sakai H., Fukami T., Katoh M., Yamazaki H., Kadlubar F.F., Imaoka S., Funae Y., Yokoi T. CYP2A13 expressed in human bladder metabolically activates 4-aminobiphenyl. Int. J. Cancer. 2006;119:2520–2526. doi: 10.1002/ijc.22136. PubMed DOI
Borlak J., Walles M., Levsen K., Thum T. Verapamil: Metabolism in cultures of primary human coronary arterial endothelial cells. Drug Metab. Dispos. 2003;31:888–891. doi: 10.1124/dmd.31.7.888. PubMed DOI
Zhang X., D’Agostino J., Wu H., Zhang Q.Y., von Weymarn L., Murphy S.E., Ding X. CYP2A13: Variable expression and role in human lung microsomal metabolic activation of the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. J. Pharmacol. Exp. Ther. 2007;323:570–578. doi: 10.1124/jpet.107.127068. PubMed DOI
Zhu L.R., Thomas P.E., Lu G., Reuhl K.R., Yang G.Y., Wang L.D., Wang S.L., Yang C.S., He X.Y., Hong J.Y. CYP2A13 in human respiratory tissues and lung cancers: An immunohistochemical study with a new peptide-specific antibody. Drug Metab. Dispos. 2006;34:1672–1676. doi: 10.1124/dmd.106.011049. PubMed DOI
Jia K., Li L., Liu Z., Hartog M., Kluetzman K., Zhang Q.Y., Ding X. Generation and characterization of a novel CYP2A13--transgenic mouse model. Drug Metab. Dispos. 2014;42:1341–1348. doi: 10.1124/dmd.114.059188. PubMed DOI PMC
Guo Y., Zhu L.R., Lu G., Wang H., Hong J.Y. Selective expression of CYP2A13 in human pancreatic alpha-islet cells. Drug Metab. Dispos. 2012;40:1878–1882. doi: 10.1124/dmd.112.046359. PubMed DOI PMC
Gandini S., Botteri E., Iodice S., Boniol M., Lowenfels A.B., Maisonneuve P., Boyle P. Tobacco smoking and cancer: A meta-analysis. Int. J. Cancer. 2008;122:155–164. doi: 10.1002/ijc.23033. PubMed DOI
Smith B.D., Sanders J.L., Porubsky P.R., Lushington G.H., Stout C.D., Scott E.E. Structure of the human lung cytochrome P450 2A13. J. Biol. Chem. 2007;282:17306–17313. doi: 10.1074/jbc.M702361200. PubMed DOI
He X.Y., Shen J., Hu W.Y., Ding X., Lu A.Y., Hong J.Y. Identification of Val117 and Arg372 as critical amino acid residues for the activity difference between human CYP2A6 and CYP2A13 in coumarin 7-hydroxylation. Arch. Biochem. Biophys. 2004;427:143–153. doi: 10.1016/j.abb.2004.03.016. PubMed DOI
Von Weymarn L.B., Murphy S.E. CYP2A13-catalysed coumarin metabolism: Comparison with CYP2A5 and CYP2A6. Xenobiotica. 2003;33:73–81. doi: 10.1080/0049825021000022302. PubMed DOI
Bao Z., He X.Y., Ding X., Prabhu S., Hong J.Y. Metabolism of nicotine and cotinine by human cytochrome P450 2A13. Drug Metab. Dispos. 2005;33:258–261. doi: 10.1124/dmd.104.002105. PubMed DOI
He X.Y., Shen J., Ding X., Lu A.Y., Hong J.Y. Identification of critical amino acid residues of human CYP2A13 for the metabolic activation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, a tobacco-specific carcinogen. Drug Metab. Dispos. 2004;32:1516–1521. doi: 10.1124/dmd.104.001370. PubMed DOI
Von Weymarn L.B., Zhang Q.Y., Ding X., Hollenberg P.F. Effects of 8-methoxypsoralen on cytochrome P450 2A13. Carcinogenesis. 2005;26:621–629. doi: 10.1093/carcin/bgh348. PubMed DOI
Liu X., Zhang J., Zhang C., Yang B., Wang L., Zhou J. The inhibition of cytochrome P450 2A13-catalyzed NNK metabolism by NAT, NAB and nicotine. Toxicol. Res. 2016;5:1115–1121. doi: 10.1039/C6TX00016A. PubMed DOI PMC
Kramlinger V.M., von Weymarn L.B., Murphy S.E. Inhibition and inactivation of cytochrome P450 2A6 and cytochrome P450 2A13 by menthofuran, beta-nicotyrine and menthol. Chem.-Biol. Interact. 2012;197:87–92. doi: 10.1016/j.cbi.2012.03.009. PubMed DOI PMC
Lopez-Abente G., Gonzalez C.A., Errezola M., Escolar A., Izarzugaza I., Nebot M., Riboli E. Tobacco smoke inhalation pattern, tobacco type, and bladder cancer in Spain. Am. J. Epidemiol. 1991;134:830–839. doi: 10.1093/oxfordjournals.aje.a116158. PubMed DOI
National Center for Chronic Disease Prevention and Health Promotion . The Health Consequences of Smoking-50 Years of Progress: A Report of the Surgeon General. National Center for Chronic Disease Prevention and Health Promotion; Atlanta, GA, USA: 2014.
Barbosa A.L.A., Vermeulen S., Aben K.K., Grotenhuis A.J., Vrieling A., Kiemeney L.A. Smoking intensity and bladder cancer aggressiveness at diagnosis. PLoS ONE. 2018;13:e0194039. PubMed PMC
Boonruang S., Prakobsri K., Pouyfung P., Srisook E., Prasopthum A., Rongnoparut P., Sarapusit S. Inhibition of human cytochromes P450 2A6 and 2A13 by flavonoids, acetylenic thiophenes and sesquiterpene lactones from Pluchea indica and Vernonia cinerea. J. Enzyme Inhib. Med. Chem. 2017;32:1136–1142. doi: 10.1080/14756366.2017.1363741. PubMed DOI PMC
Chougnet A., Woggon W.D., Locher E., Schilling B. Synthesis and in vitro activity of heterocyclic inhibitors of CYP2A6 and CYP2A13, two cytochrome P450 enzymes present in the respiratory tract. ChemBioChem. 2009;10:1562–1567. doi: 10.1002/cbic.200800712. PubMed DOI
Shimada T., Takenaka S., Kakimoto K., Murayama N., Lim Y.R., Kim D., Foroozesh M.K., Yamazaki H., Guengerich F.P., Komori M. Structure-function studies of naphthalene, phenanthrene, biphenyl, and their derivatives in interaction with and Oxidation by CYTOCHROMES P450 2A13 and 2A6. Chem. Res. Toxicol. 2016;29:1029–1040. doi: 10.1021/acs.chemrestox.6b00083. PubMed DOI PMC
Shimada T., Takenaka S., Murayama N., Kramlinger V.M., Kim J.H., Kim D., Liu J., Foroozesh M.K., Yamazaki H., Guengerich F.P., et al. Oxidation of pyrene, 1-hydroxypyrene, 1-nitropyrene and 1-acetylpyrene by human cytochrome P450 2A13. Xenobiotica. 2016;46:211–224. doi: 10.3109/00498254.2015.1069419. PubMed DOI PMC
Ji M., Zhang Z., Li N., Xia R., Wang C., Yu Y., Yao S., Shen J., Wang S.L. Identification of 5-hydroxymethylfurfural in cigarette smoke extract as a new substrate metabolically activated by human cytochrome P450 2A13. Toxicol. Appl. Pharmacol. 2018;359:108–117. doi: 10.1016/j.taap.2018.09.031. PubMed DOI
Fayyaz A., Makwinja S., Auriola S., Raunio H., Juvonen R.O. Comparison of In Vitro Hepatic Scoparone 7-O-Demethylation between Humans and Experimental Animals. Planta Med. 2018;84:320–328. doi: 10.1055/s-0043-119886. PubMed DOI
He X.Y., Tang L., Wang S.L., Cai Q.S., Wang J.S., Hong J.Y. Efficient activation of aflatoxin B1 by cytochrome P450 2A13, an enzyme predominantly expressed in human respiratory tract. Int. J. Cancer. 2006;118:2665–2671. doi: 10.1002/ijc.21665. PubMed DOI
D’Agostino J., Zhuo X., Shadid M., Morgan D.G., Zhang X., Humphreys W.G., Shu Y.Z., Yost G.S., Ding X. The pneumotoxin 3-methylindole is a substrate and a mechanism-based inactivator of CYP2A13, a human cytochrome P450 enzyme preferentially expressed in the respiratory tract. Drug Metab. Dispos. 2009;37:2018–2027. doi: 10.1124/dmd.109.027300. PubMed DOI PMC
Shimada T., Murayama N., Tanaka K., Takenaka S., Guengerich F.P., Yamazaki H., Komori M. Spectral modification and catalytic inhibition of human cytochromes P450 1A1, 1A2, 1B1, 2A6, and 2A13 by four chemopreventive organoselenium compounds. Chem. Res. Toxicol. 2011;24:1327–1337. doi: 10.1021/tx200218u. PubMed DOI PMC
Pouyfung P., Prasopthum A., Sarapusit S., Srisook E., Rongnoparut P. Mechanism-based inactivation of cytochrome P450 2A6 and 2A13 by Rhinacanthus nasutus constituents. Drug Metab. Pharmacokinet. 2014;29:75–82. doi: 10.2133/dmpk.DMPK-13-RG-048. PubMed DOI
Von Weymarn L.B., Chun J.A., Knudsen G.A., Hollenberg P.F. Effects of eleven isothiocyanates on P450 2A6- and 2A13-catalyzed coumarin 7-hydroxylation. Chem. Res. Toxicol. 2007;20:1252–1259. doi: 10.1021/tx700078v. PubMed DOI
Von Weymarn L.B., Chun J.A., Hollenberg P.F. Effects of benzyl and phenethyl isothiocyanate on P450s 2A6 and 2A13: Potential for chemoprevention in smokers. Carcinogenesis. 2006;27:782–790. doi: 10.1093/carcin/bgi301. PubMed DOI
Reddy B.S., Upadhyaya P., Simi B., Rao C.V. Evaluation of organoselenium compounds for potential chemopreventive properties in colon carcinogenesis. Anticancer Res. 1994;14:2509–2514. PubMed
Ip C., el-Bayoumy K., Upadhyaya P., Ganther H., Vadhanavikit S., Thompson H. Comparative effect of inorganic and organic selenocyanate derivatives in mammary cancer chemoprevention. Carcinogenesis. 1994;15:187–192. doi: 10.1093/carcin/15.2.187. PubMed DOI
Richie J.P., Jr., Kleinman W., Desai D.H., Das A., Amin S.G., Pinto J.T., El-Bayoumy K. The organoselenium compound 1,4-phenylenebis(methylene)selenocyanate inhibits 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced tumorgenesis and enhances glutathione-related antioxidant levels in A/J mouse lung. Chem.-Biol. Interact. 2006;161:93–103. doi: 10.1016/j.cbi.2006.03.005. PubMed DOI
Clayson D.B. Carcinogenic and Mutagenic N-substituted Aryl Compounds. National Institutes of Health and National Cancer Institute; Bethesda, MD, USA: 1981. Specific aromatic amines as occupational bladder carcinogens; pp. 15–19. PubMed
DeVore N.M., Smith B.D., Wang J.L., Lushington G.H., Scott E.E. Key residues controlling binding of diverse ligands to human cytochrome P450 2A enzymes. Drug Metab. Dispos. 2009;37:1319–1327. doi: 10.1124/dmd.109.026765. PubMed DOI PMC
DeVore N.M., Smith B.D., Urban M.J., Scott E.E. Key residues controlling phenacetin metabolism by human cytochrome P450 2A enzymes. Drug Metab. Dispos. 2008;36:2582–2590. doi: 10.1124/dmd.108.023770. PubMed DOI PMC
Shimada T., Murayama N., Yamazaki H., Tanaka K., Takenaka S., Komori M., Kim D., Guengerich F.P. Metabolic activation of polycyclic aromatic hydrocarbons and aryl and heterocyclic amines by human cytochromes P450 2A13 and 2A6. Chem. Res. Toxicol. 2013;26:529–537. doi: 10.1021/tx3004906. PubMed DOI PMC
Kakimoto K., Murayama N., Takenaka S., Nagayoshi H., Lim Y.R., Kim V., Kim D., Yamazaki H., Komori M., Guengerich F.P., et al. Cytochrome P450 2A6 and other human P450 enzymes in the oxidation of flavone and flavanone. Xenobiotica. 2019;49:131–142. doi: 10.1080/00498254.2018.1426133. PubMed DOI PMC
Li L., Carratt S., Hartog M., Kovalchik N., Jia K., Wang Y., Zhang Q.Y., Edwards P., Winkle L.V., Ding X. Human CYP2A13 and CYP2F1 Mediate Naphthalene Toxicity in the Lung and Nasal Mucosa of CYP2A13/2F1-Humanized Mice. Environ. Health Perspect. 2017;125:067004. doi: 10.1289/EHP844. PubMed DOI PMC
Toselli F., Matthias A., Bone K.M., Gillam E.M., Lehmann R.P. Metabolism of the major Echinacea alkylamide N-isobutyldodeca-2E,4E,8Z,10Z-tetraenamide by human recombinant cytochrome P450 enzymes and human liver microsomes. Phytother. Res. 2010;24:1195–1201. doi: 10.1002/ptr.3111. PubMed DOI
Rodu B., Cole P., Mandel J.S. Evaluation of the national toxicology program report on carcinogens. Regulat. Toxicol. Pharmacol. 2012;64:186–188. doi: 10.1016/j.yrtph.2012.07.002. PubMed DOI
Massey T.E. The 1995 Pharmacological Society of Canada Merck Frosst Award. Cellular and molecular targets in pulmonary chemical carcinogenesis: Studies with aflatoxin B1. Can. J. Physiol. Pharmacol. 1996;74:621–628. doi: 10.1139/y96-060. PubMed DOI
Sorenson W.G., Simpson J.P., Peach M.J., 3rd, Thedell T.D., Olenchock S.A. Aflatoxin in respirable corn dust particles. J. Toxicol. Environ. Health. 1981;7:669–672. doi: 10.1080/15287398109530009. PubMed DOI
Hayes R.B., van Nieuwenhuize J.P., Raatgever J.W., ten Kate F.J. Aflatoxin exposures in the industrial setting: An epidemiological study of mortality. Food Chem. Toxicol. 1984;22:39–43. doi: 10.1016/0278-6915(84)90050-4. PubMed DOI
Yang X., Zhang Z., Wang X., Wang Y., Zhang X., Lu H., Wang S.L. Cytochrome P450 2A13 enhances the sensitivity of human bronchial epithelial cells to aflatoxin B1-induced DNA damage. Toxicol. Appl. Pharmacol. 2013;270:114–121. doi: 10.1016/j.taap.2013.04.005. PubMed DOI
Zhang Z., Lu H., Huan F., Meghan C., Yang X., Wang Y., Wang X., Wang X., Wang S.L. Cytochrome P450 2A13 mediates the neoplastic transformation of human bronchial epithelial cells at a low concentration of aflatoxin B1. Int. J. Cancer. 2014;134:1539–1548. doi: 10.1002/ijc.28489. PubMed DOI
Zhang Z., Yang X., Wang Y., Wang X., Lu H., Zhang X., Xiao X., Li S., Wang X., Wang S.L. Cytochrome P450 2A13 is an efficient enzyme in metabolic activation of aflatoxin G1 in human bronchial epithelial cells. Arch. Toxicol. 2013;87:1697–1707. doi: 10.1007/s00204-013-1108-3. PubMed DOI
Megaraj V., Zhou X., Xie F., Liu Z., Yang W., Ding X. Role of CYP2A13 in the bioactivation and lung tumorigenicity of the tobacco-specific lung procarcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone: In vivo studies using a CYP2A13-humanized mouse model. Carcinogenesis. 2014;35:131–137. doi: 10.1093/carcin/bgt269. PubMed DOI PMC
Liu Z., Megaraj V., Li L., Sell S., Hu J., Ding X. Suppression of pulmonary CYP2A13 expression by carcinogen-induced lung tumorigenesis in a CYP2A13-humanized mouse model. Drug Metab. Dispos. 2015;43:698–702. doi: 10.1124/dmd.115.063305. PubMed DOI PMC
Ibuki Y., Shikata M., Toyooka T. Gamma-H2AX is a sensitive marker of DNA damage induced by metabolically activated 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Toxicol. Vitro. 2015;29:1831–1838. doi: 10.1016/j.tiv.2015.07.023. PubMed DOI
Gillam E.M., Notley L.M., Cai H., De Voss J.J., Guengerich F.P. Oxidation of indole by cytochrome P450 enzymes. Biochemistry. 2000;39:13817–13824. doi: 10.1021/bi001229u. PubMed DOI
Weems J.M., Lamb J.G., D’Agostino J., Ding X., Yost G.S. Potent mutagenicity of 3-methylindole requires pulmonary cytochrome P450-mediated bioactivation: A comparison to the prototype cigarette smoke mutagens B(a)P and NNK. Chemical Res. Toxicol. 2010;23:1682–1690. doi: 10.1021/tx100147z. PubMed DOI PMC
Wynder E.L., Hoffmann D. Experimental tobacco carcinogenesis. Science. 1968;162:862–871. doi: 10.1126/science.162.3856.862. PubMed DOI
Wang H., Donley K.M., Keeney D.S., Hoffman S.M. Organization and evolution of the Cyp2 gene cluster on mouse chromosome 7, and comparison with the syntenic human cluster. Environ. Health Perspect. 2003;111:1835–1842. doi: 10.1289/ehp.6546. PubMed DOI PMC
Cauffiez C., Pottier N., Tournel G., Lo-Guidice J.M., Allorge D., Chevalier D., Migot-Nabias F., Kenani A., Broly F. CYP2A13 genetic polymorphism in French Caucasian, Gabonese and Tunisian populations. Xenobiotica. 2005;35:661–669. doi: 10.1080/00498250500202171. PubMed DOI
Kim V., Yeom S., Lee Y., Park H.G., Cho M.A., Kim H., Kim D. In vitro functional analysis of human cytochrome P450 2A13 genetic variants: P450 2A13*2, *3, *4, and *10. J. Toxicol. Environ. Health Pt. A. 2018;81:493–501. doi: 10.1080/15287394.2018.1460784. PubMed DOI
Kumondai M., Hosono H., Maekawa M., Yamaguchi H., Mano N., Oda A., Hirasawa N., Hiratsuka M. Functional characterization of 9 CYP2A13 allelic variants by assessment of nicotine C-oxidation and coumarin 7-hydroxylation. Drug Metab. Pharmacokinet. 2018;33:82–89. doi: 10.1016/j.dmpk.2017.11.004. PubMed DOI
Verde Z., Santiago C., Rodriguez Gonzalez-Moro J.M., de Lucas Ramos P., Lopez Martin S., Bandres F., Lucia A., Gomez-Gallego F. ‘Smoking genes’: A genetic association study. PLoS ONE. 2011;6:e26668. doi: 10.1371/journal.pone.0026668. PubMed DOI PMC
Tamaki Y., Arai T., Sugimura H., Sasaki T., Honda M., Muroi Y., Matsubara Y., Kanno S., Ishikawa M., Hirasawa N., et al. Association between cancer risk and drug-metabolizing enzyme gene (CYP2A6, CYP2A13, CYP4B1, SULT1A1, GSTM1, and GSTT1) polymorphisms in cases of lung cancer in Japan. Drug Metab. Pharmacokinet. 2011;26:516–522. doi: 10.2133/dmpk.DMPK-11-RG-046. PubMed DOI
Kumondai M., Hosono H., Orikasa K., Arai Y., Arai T., Sugimura H., Ozono S., Sugiyama T., Takayama T., Sasaki T., et al. CYP2A13 genetic polymorphisms in relation to the risk of bladder cancer in Japanese smokers. Biol. Pharm. Bull. 2016;39:1683–1686. doi: 10.1248/bpb.b16-00422. PubMed DOI
Sharma R., Ahuja M., Panda N., Khullar M. Polymorphisms in CYP2A13 and UGT1A7 genes and head and neck cancer susceptibility in North Indians. Oral Dis. 2010;16:760–768. doi: 10.1111/j.1601-0825.2010.01683.x. PubMed DOI
Schlicht K.E., Michno N., Smith B.D., Scott E.E., Murphy S.E. Functional characterization of CYP2A13 polymorphisms. Xenobiotica. 2007;37:1439–1449. doi: 10.1080/00498250701666265. PubMed DOI
Liu T., Hong Y., Li Z., Hong J., Zeng S., Zheng M., Chen S. An investigation of the catalytic activity of CYP2A13*4 with coumarin and polymorphisms of CYP2A13 in a Chinese Han population. Drug Metab. Dispos. 2012;40:847–851. doi: 10.1124/dmd.111.044016. PubMed DOI
Wang H., Tan W., Hao B., Miao X., Zhou G., He F., Lin D. Substantial reduction in risk of lung adenocarcinoma associated with genetic polymorphism in CYP2A13, the most active cytochrome P450 for the metabolic activation of tobacco-specific carcinogen NNK. Cancer Res. 2003;63:8057–8061. PubMed
D’Agostino J., Zhang X., Wu H., Ling G., Wang S., Zhang Q.Y., Liu F., Ding X. Characterization of CYP2A13*2, a variant cytochrome P450 allele previously found to be associated with decreased incidences of lung adenocarcinoma in smokers. Drug Metab. Dispos. 2008;36:2316–2323. doi: 10.1124/dmd.108.022822. PubMed DOI PMC
Timofeeva M.N., Kropp S., Sauter W., Beckmann L., Rosenberger A., Illig T., Jager B., Mittelstrass K., Dienemann H., Consortium L., et al. CYP450 polymorphisms as risk factors for early-onset lung cancer: Gender-specific differences. Carcinogenesis. 2009;30:1161–1169. doi: 10.1093/carcin/bgp102. PubMed DOI
Wu H., Zhang X., Ling G., D’Agostino J., Ding X. Mechanisms of differential expression of the CYP2A13 7520C and 7520G alleles in human lung: Allelic expression analysis for CYP2A13 heterogeneous nuclear RNA, and evidence for the involvement of multiple cis-regulatory single nucleotide polymorphisms. Pharmacogenet. Genom. 2009;19:852–863. doi: 10.1097/FPC.0b013e3283313aa5. PubMed DOI PMC
Sun L., Fan X. Expression of cytochrome P450 2A13 in human non-small cell lung cancer and its clinical significance. J. Biomed. Res. 2013;27:202–207. PubMed PMC
Chiang H.C., Lee H., Chao H.R., Chiou Y.H., Tsou T.C. Pulmonary CYP2A13 levels are associated with early occurrence of lung cancer-Its implication in mutagenesis of non-small cell lung carcinoma. Cancer Epidemiol. 2013;37:653–659. doi: 10.1016/j.canep.2013.04.010. PubMed DOI
Fukami T., Nakajima M., Matsumoto I., Zen Y., Oda M., Yokoi T. Immunohistochemical analysis of CYP2A13 in various types of human lung cancers. Cancer Sci. 2010;101:1024–1028. doi: 10.1111/j.1349-7006.2009.01482.x. PubMed DOI PMC
Ling G., Wei Y., Ding X. Transcriptional regulation of human CYP2A13 expression in the respiratory tract by CCAAT/enhancer binding protein and epigenetic modulation. Mol. Pharmacol. 2007;71:807–816. doi: 10.1124/mol.106.031104. PubMed DOI
Wan H., Xu Y., Ikegami M., Stahlman M.T., Kaestner K.H., Ang S.L., Whitsett J.A. Foxa2 is required for transition to air breathing at birth. Proc. Natl. Acad. Sci. USA. 2004;101:14449–14454. doi: 10.1073/pnas.0404424101. PubMed DOI PMC
Xiang C., Wang J., Kou X., Chen X., Qin Z., Jiang Y., Sun C., Xu J., Tan W., Jin L., et al. Pulmonary expression of CYP2A13 and ABCB1 is regulated by FOXA2, and their genetic interaction is associated with lung cancer. FASEB J. 2015;29:1986–1998. doi: 10.1096/fj.14-264580. PubMed DOI
Parkin D.M., Bray F., Ferlay J., Pisani P. Global cancer statistics, 2002. CA Cancer J. Clin. 2005;55:74–108. doi: 10.3322/canjclin.55.2.74. PubMed DOI
Li Z., Tuteja G., Schug J., Kaestner K.H. Foxa1 and Foxa2 are essential for sexual dimorphism in liver cancer. Cell. 2012;148:72–83. doi: 10.1016/j.cell.2011.11.026. PubMed DOI PMC
Yu X., Gupta A., Wang Y., Suzuki K., Mirosevich J., Orgebin-Crist M.C., Matusik R.J. Foxa1 and Foxa2 interact with the androgen receptor to regulate prostate and epididymal genes differentially. Ann. N. Y. Acad. Sci. 2005;1061:77–93. doi: 10.1196/annals.1336.009. PubMed DOI
Wu H., Liu Z., Ling G., Lawrence D., Ding X. Transcriptional suppression of CYP2A13 expression by lipopolysaccharide in cultured human lung cells and the lungs of a CYP2A13-humanized mouse model. Toxicol. Sci. 2013;135:476–485. doi: 10.1093/toxsci/kft165. PubMed DOI PMC
Shao P., Guo N., Wang C., Zhao M., Yi L., Liu C., Kang L., Cao L., Lv P., Xing L., et al. Aflatoxin G1 induced TNF-alpha-dependent lung inflammation to enhance DNA damage in alveolar epithelial cells. J. Cell. Physiol. 2019;234:9194–9206. doi: 10.1002/jcp.27596. PubMed DOI
Sharma R., Panda N.K., Khullar M. Hypermethylation of carcinogen metabolism genes, CYP1A1, CYP2A13 and GSTM1 genes in head and neck cancer. Oral Dis. 2010;16:668–673. doi: 10.1111/j.1601-0825.2010.01676.x. PubMed DOI