Evaluation of the Predictive Role of Blood-Based Biomarkers in the Context of Suspicious Prostate MRI in Patients Undergoing Prostate Biopsy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34834583
PubMed Central
PMC8625876
DOI
10.3390/jpm11111231
PII: jpm11111231
Knihovny.cz E-zdroje
- Klíčová slova
- MRI, NLR, PNI, biopsy, dNLR, prostate cancer,
- Publikační typ
- časopisecké články MeSH
The aim of this study was to assess the predictive value of pre-biopsy blood-based markers in patients undergoing a fusion biopsy for suspicious prostate magnetic resonance imaging (MRI). We identified 365 consecutive patients who underwent MRI-targeted and systematic prostate biopsy for an MRI scored Prostate Imaging-Reporting and Data System Version (PI-RADS) ≥ 3. We evaluated the neutrophil/lymphocyte ratio (NLR), derived neutrophil/lymphocyte ratio (dNLR), platelet/lymphocyte ratio (PLR), systemic immune inflammation index (SII), lymphocyte/monocyte ratio (LMR,) de Ritis ratio, modified Glasgow Prognostic Score (mGPS), and prognostic nutrition index (PNI). Uni- and multivariable logistic models were used to analyze the association of the biomarkers with biopsy findings. The clinical benefits of biomarkers implemented in clinical decision-making were assessed using decision curve analysis (DCA). In total, 69% and 58% of patients were diagnosed with any prostate cancer and Gleason Grade (GG) ≥ 2, respectively. On multivariable analysis, only high dNLR (odds ratio (OR) 2.61, 95% confidence interval (CI) 1.23-5.56, p = 0.02) and low PNI (OR 0.48, 95% CI 0.26-0.88, p = 0.02) remained independent predictors for GG ≥ 2. The logistic regression models with biomarkers reached AUCs of 0.824-0.849 for GG ≥ 2. The addition of dNLR and PNI did not enhance the net benefit of a standard clinical model. Finally, we created the nomogram that may help guide biopsy avoidance in patients with suspicious MRI. In patients with PI-RADS ≥ 3 lesions undergoing MRI-targeted and systematic biopsy, a high dNLR and low PNI were associated with unfavorable biopsy outcomes. Pre-biopsy blood-based biomarkers did not, however, significantly improve the discriminatory power and failed to add a clinical benefit beyond standard clinical factors.
Department of Special Surgery Jordan University Hospital The University of Jordan Amman 11942 Jordan
Department of Urology 2nd Faculty of Medicine Charles University 150 06 Prague Czech Republic
Department of Urology King Fahad Specialist Hospital Dammam 32253 Saudi Arabia
Department of Urology Luzerner Kantonsspital 6000 Lucerne Switzerland
Department of Urology Medical University of Silesia 41 800 Zabrze Poland
Department of Urology Medical University of Vienna 1090 Vienna Austria
Department of Urology The Jikei University School of Medicine Tokyo 105 8461 Japan
Department of Urology University Hospital Zurich 8091 Zurich Switzerland
Department of Urology University Medical Center Hamburg Eppendorf 20251 Hamburg Germany
Department of Urology University of Texas Southwestern Dallas TX 75390 USA
Department of Urology Weill Cornell Medical College New York NY 10065 USA
Institute for Urology and Reproductive Health Sechenov University 19435 Moscow Russia
Karl Landsteiner Institute of Urology and Andrology 1010 Vienna Austria
Working Group for Diagnostic Imaging in Urology 1090 Vienna Austria
Zobrazit více v PubMed
Mottet N., van den Bergh R.C., Briers E., van den Broeck T., Cumberbatch M.G., De Santis M., Fanti S., Fossati N., Gandaglia G., Gillessen S., et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer—2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2021;79:243–262. doi: 10.1016/j.eururo.2020.09.042. PubMed DOI
Rajwa P., Pradere B., Quhal F., Mori K., Laukhtina E., Huebner N.A., D’Andrea D., Krzywon A., Shim S.R., Baltzer P.A., et al. Reliability of Serial Prostate Magnetic Resonance Imaging to Detect Prostate Cancer Progression During Active Surveillance: A Systematic Review and Meta-analysis. Eur. Urol. 2021;80:549–563. doi: 10.1016/j.eururo.2021.05.001. PubMed DOI
Ahdoot M., Wilbur A.R., Reese S.E., Lebastchi A.H., Mehralivand S., Gomella P., Bloom J., Gurram S., Siddiqui M., Pinsky P., et al. MRI-Targeted, Systematic, and Combined Biopsy for Prostate Cancer Diagnosis. N. Engl. J. Med. 2020;382:917–928. doi: 10.1056/NEJMoa1910038. PubMed DOI PMC
Klotz L., Chin J., Black P.C., Finelli A., Anidjar M., Bladou F., Mercado A., Levental M., Ghai S., Chang S.D., et al. Comparison of Multiparametric Magnetic Resonance Imaging–Targeted Biopsy With Systematic Transrectal Ultrasonography Biopsy for Biopsy-Naive Men at Risk for Prostate Cancer: A Phase 3 Randomized Clinical Trial. JAMA Oncol. 2021;7:534. doi: 10.1001/jamaoncol.2020.7589. PubMed DOI PMC
Klotz L., Pond G., Loblaw A., Sugar L., Moussa M., Berman D., Van der Kwast T., Vesprini D., Milot L., Kebabdjian M., et al. Randomized Study of Systematic Biopsy Versus Magnetic Resonance Imaging and Targeted and Systematic Biopsy in Men on Active Surveillance (ASIST): 2-year Postbiopsy Follow-up. Eur. Urol. 2020;77:311–317. doi: 10.1016/j.eururo.2019.10.007. PubMed DOI
Padhani A., Weinreb J., Rosenkrantz A.B., Villeirs G., Turkbey B., Barentsz J. Prostate Imaging-Reporting and Data System Steering Committee: PI-RADS v2 Status Update and Future Directions. Eur. Urol. 2019;75:385–396. doi: 10.1016/j.eururo.2018.05.035. PubMed DOI PMC
Park K.J., Choi S.H., Lee J.S., Kim J.K., Kim M.-H., Jeong I.G. Risk Stratification of Prostate Cancer According to PI-RADS® Version 2 Categories: Meta-Analysis for Prospective Studies. J. Urol. 2020;204:1141–1149. doi: 10.1097/JU.0000000000001306. PubMed DOI
Distler F.A., Radtke J.P., Bonekamp D., Kesch C., Schlemmer H.-P., Wieczorek K., Kirchner M., Pahernik S., Hohenfellner M., Hadaschik B. The Value of PSA Density in Combination with PI-RADS™ for the Accuracy of Prostate Cancer Prediction. J. Urol. 2017;198:575–582. doi: 10.1016/j.juro.2017.03.130. PubMed DOI
Falagario U.G., Lantz A., Jambor I., Martini A., Ratnani P., Wagaskar V., Treacy P., Veccia A., Bravi C.A., Bashorun H.O., et al. Using biomarkers in patients with positive multiparametric magnetic resonance imaging: 4Kscore predicts the presence of cancer outside the index lesion. Int. J. Urol. 2020;28:47–52. doi: 10.1111/iju.14385. PubMed DOI
Hendriks R.J., Van Der Leest M.M.G., Dijkstra S., Barentsz J.O., Van Criekinge W., De Kaa C.A.H.-V., Schalken J.A., Mulders P.F.A., Van Oort I.M. A urinary biomarker-based risk score correlates with multiparametric MRI for prostate cancer detection. Prostate. 2017;77:1401–1407. doi: 10.1002/pros.23401. PubMed DOI
Rajwa P., Syed J., Leapman M.S. How Should Radiologists Incorporate Non-Imaging Prostate Cancer Biomarkers Into Daily Practice? Abdom. Radiol. 2020;45:4031–4039. doi: 10.1007/s00261-020-02496-5. PubMed DOI PMC
Rajwa P., Schuettfort V.M., D’Andrea D., Quhal F., Mori K., Katayama S., Laukhtina E., Pradere B., Motlagh R.S., Mostafaei H., et al. Impact of systemic Immune–inflammation Index on oncologic outcomes in patients treated with radical prostatectomy for clinically nonmetastatic prostate cancer. Urol. Oncol. Semin. Orig. Investig. 2021;39:785.e19–785.e27. doi: 10.1016/j.urolonc.2021.05.002. PubMed DOI
Ferro M., Musi G., Serino A., Cozzi G., Mistretta F.A., Costa B., Bianchi R., Cordima G., Luzzago S., Di Trapani E., et al. Neutrophil, Platelets, and Eosinophil to Lymphocyte Ratios Predict Gleason Score Upgrading in Low-Risk Prostate Cancer Patients. Urol. Int. 2018;102:43–50. doi: 10.1159/000494259. PubMed DOI
Van Soest R.J., Templeton A.J., Vera-Badillo F.E., Mercier F., Sonpavde G., Amir E., Tombal B., Rosenthal M., Eisenberger M.A., Tannock I.F., et al. Neutrophil-to-lymphocyte ratio as a prognostic biomarker for men with metastatic castration-resistant prostate cancer receiving first-line chemotherapy: Data from two randomized phase III trials. Ann. Oncol. 2015;26:743–749. doi: 10.1093/annonc/mdu569. PubMed DOI
Epstein J.I., Zelefsky M., Sjoberg D.D., Nelson J.B., Egevad L., Magi-Galluzzi C., Vickers A.J., Parwani A.V., Reuter V.E., Fine S.W., et al. A Contemporary Prostate Cancer Grading System: A Validated Alternative to the Gleason Score. Eur. Urol. 2016;69:428–435. doi: 10.1016/j.eururo.2015.06.046. PubMed DOI PMC
Rajwa P., Życzkowski M., Paradysz A., Slabon-Turska M., Suliga K., Bujak K., Bryniarski P. Novel hematological biomarkers predict survival in renal cell carcinoma patients treated with nephrectomy. Arch. Med Sci. 2020;16:1062–1071. doi: 10.5114/aoms.2017.70250. PubMed DOI PMC
Laukhtina E., Pradere B., D’Andrea D., Rosiello G., Luzzago S., Pecoraro A., Palumbo C., Knipper S., Karakiewicz P.I., Margulis V., et al. Association of preoperative serum De Ritis ratio with oncological outcomes in patients treated with cytoreductive nephrectomy for metastatic renal cell carcinoma. Urol. Oncol. Semin. Orig. Investig. 2020;38:936.e7–936.e14. doi: 10.1016/j.urolonc.2020.08.013. PubMed DOI
Schuettfort V.M., Gust K., D’Andrea D., Quhal F., Mostafaei H., Laukhtina E., Mori K., Rink M., Abufaraj M., Karakiewicz P.I., et al. Impact of the preoperative modified glasgow prognostic score on disease outcome after radical cystectomy for urothelial carcinoma of the bladder. Minerva Urol. Nephrol. 2021 doi: 10.23736/S2724-6051.21.04216-6. PubMed DOI
Falagario U.G., Martini A., Wajswol E., Treacy P.-J., Ratnani P., Jambor I., Anastos H., Lewis S., Haines K., Cormio L., et al. Avoiding Unnecessary Magnetic Resonance Imaging (MRI) and Biopsies: Negative and Positive Predictive Value of MRI According to Prostate-specific Antigen Density, 4Kscore and Risk Calculators. Eur. Urol. Oncol. 2020;3:700–704. doi: 10.1016/j.euo.2019.08.015. PubMed DOI
Maggi M., Del Giudice F., Falagario U., Cocci A., Russo G., Di Mauro M., Sepe G., Galasso F., Leonardi R., Iacona G., et al. SelectMDx and Multiparametric Magnetic Resonance Imaging of the Prostate for Men Undergoing Primary Prostate Biopsy: A Prospective Assessment in a Multi-Institutional Study. Cancers. 2021;13:2047. doi: 10.3390/cancers13092047. PubMed DOI PMC
Loeb S., Vellekoop A., Ahmed H.U., Catto J., Emberton M., Nam R., Rosario D.J., Scattoni V., Lotan Y. Systematic Review of Complications of Prostate Biopsy. Eur. Urol. 2013;64:876–892. doi: 10.1016/j.eururo.2013.05.049. PubMed DOI
De Rooij M., Crienen S., Witjes J.A., Barentsz J.O., Rovers M.M., Grutters J.P. Cost-effectiveness of Magnetic Resonance (MR) Imaging and MR-guided Targeted Biopsy Versus Systematic Transrectal Ultrasound–Guided Biopsy in Diagnosing Prostate Cancer: A Modelling Study from a Health Care Perspective. Eur. Urol. 2014;66:430–436. doi: 10.1016/j.eururo.2013.12.012. PubMed DOI
Barnett C.L., Davenport M.S., Montgomery J.S., Wei J.T., Montie J.E., Denton B.T. Cost-effectiveness of magnetic resonance imaging and targeted fusion biopsy for early detection of prostate cancer. BJU Int. 2018;122:50–58. doi: 10.1111/bju.14151. PubMed DOI
Deniffel D., Healy G.M., Dong X., Ghai S., Salinas-Miranda E., Fleshner N., Hamilton R., Kulkarni G., Toi A., van der Kwast T., et al. Avoiding Unnecessary Biopsy: MRI-based Risk Models versus a PI-RADS and PSA Density Strategy for Clinically Significant Prostate Cancer. Radiology. 2021;300:369–379. doi: 10.1148/radiol.2021204112. PubMed DOI
Wajswol E., Winoker J.S., Anastos H., Falagario U., Okhawere K., Martini A., Treacy P., Voutsinas N., Knauer C.J., Sfakianos J.P., et al. A cohort of transperineal electromagnetically tracked magnetic resonance imaging/ultrasonography fusion-guided biopsy: Assessing the impact of inter-reader variability on cancer detection. BJU Int. 2020;125:531–540. doi: 10.1111/bju.14957. PubMed DOI
Msc I.M.P., Merisaari H., Jambor I., Ettala O., Taimen P., Knaapila J., Kekki H., Khan F.L., Syrjälä E., Steiner A., et al. Detection of Prostate Cancer Using Biparametric Prostate MRI, Radiomics, and Kallikreins: A Retrospective Multicenter Study of Men With a Clinical Suspicion of Prostate Cancer. J. Magn. Reson. Imaging. 2021 doi: 10.1002/jmri.27811. PubMed DOI
Tătaru O., Vartolomei M., Rassweiler J., Virgil O., Lucarelli G., Porpiglia F., Amparore D., Manfredi M., Carrieri G., Falagario U., et al. Artificial Intelligence and Machine Learning in Prostate Cancer Patient Management—Current Trends and Future Perspectives. Diagnostics. 2021;11:354. doi: 10.3390/diagnostics11020354. PubMed DOI PMC
Coffelt S.B., Wellenstein M.D., De Visser K.E. Neutrophils in cancer: Neutral no more. Nat. Rev. Cancer. 2016;16:431–446. doi: 10.1038/nrc.2016.52. PubMed DOI
Ray-Coquard I., Cropet C., Van Glabbeke M., Sebban C., Le Cesne A., Judson I., Tredan O., Verweij J., Biron P., Labidi-Galy S.I., et al. Lymphopenia as a Prognostic Factor for Overall Survival in Advanced Carcinomas, Sarcomas, and Lymphomas. Cancer Res. 2009;69:5383–5391. doi: 10.1158/0008-5472.CAN-08-3845. PubMed DOI PMC
Kim R., Emi M., Tanabe K., Uchida Y., Toge T. The role of Fas ligand and transforming growth factor beta in tumor progression: Molecular mechanisms of immune privilege via Fas-mediated apoptosis and potential targets for cancer therapy. Cancer. 2004;100:2281–2291. doi: 10.1002/cncr.20270. PubMed DOI
Sun J., Zhang Z., OuYang J. A novel nomogram combined PIRADS v2 and neutrophil-to-lymphocyte ratio to predict the risk of clinically significant prostate cancer in men with PSA <10 ng/ml at first biopsy. Urol. Oncol. Semin. Orig. Investig. 2019;38:401–409. doi: 10.1016/j.urolonc.2019.12.006. PubMed DOI
Wang H., Tai S., Zhang L., Zhou J., Liang C. A calculator based on prostate imaging reporting and data system version 2 (PI-RADS V2) is a promising prostate cancer predictor. Sci. Rep. 2019;9:6870. doi: 10.1038/s41598-019-43427-9. PubMed DOI PMC
Ferro M., Musi G., Matei D., Mistretta A., Luzzago S., Cozzi G., Bianchi R., Di Trapani E., Cioffi A., Lucarelli G., et al. Assessment of PSIM (Prostatic Systemic Inflammatory Markers) Score in Predicting Pathologic Features at Robotic Radical Prostatectomy in Patients with Low-Risk Prostate Cancer Who Met the Inclusion Criteria for Active Surveillance. Diagnostics. 2021;11:355. doi: 10.3390/diagnostics11020355. PubMed DOI PMC
Dalpiaz O., Luef T., Seles M., Stotz M., Stojakovic T., Pummer K., Zigeuner R., Hutterer G.C., Pichler M. Critical evaluation of the potential prognostic value of the pretreatment-derived neutrophil–lymphocyte ratio under consideration of C-reactive protein levels in clear cell renal cell carcinoma. Br. J. Cancer. 2016;116:85–90. doi: 10.1038/bjc.2016.393. PubMed DOI PMC
Fan L., Wang X., Chi C., Wang Y., Cai W., Shao X., Xu F., Pan J., Zhu Y., Shangguan X., et al. Prognostic nutritional index predicts initial response to treatment and prognosis in metastatic castration-resistant prostate cancer patients treated with abiraterone. Prostate. 2017;77:1233–1241. doi: 10.1002/pros.23381. PubMed DOI
Li B., Lu Z., Wang S., Hou J., Xia G., Li H., Yin B., Lu W. Pretreatment elevated prognostic nutritional index predicts a favorable prognosis in patients with prostate cancer. BMC Cancer. 2020;20:361. doi: 10.1186/s12885-020-06879-1. PubMed DOI PMC
Mohri Y., Inoue Y., Tanaka K., Hiro J., Uchida K., Kusunoki M. Prognostic Nutritional Index Predicts Postoperative Outcome in Colorectal Cancer. World J. Surg. 2013;37:2688–2692. doi: 10.1007/s00268-013-2156-9. PubMed DOI
Baldassarri M., Fallerini C., Cetta F., Ghisalberti M., Bellan C., Furini S., Spiga O., Crispino S., Gotti G., Ariani F., et al. Omic Approach in Non-smoker Female with Lung Squamous Cell Carcinoma Pinpoints to Germline Susceptibility and Personalized Medicine. Cancer Res. Treat. 2018;50:356–365. doi: 10.4143/crt.2017.125. PubMed DOI PMC
Cochetti G., de Vermandois J.A.R., Maulà V., Giulietti M., Cecati M., Del Zingaro M., Cagnani R., Suvieri C., Paladini A., Mearini E. Role of miRNAs in prostate cancer: Do we really know everything? Urol. Oncol. Semin. Orig. Investig. 2020;38:623–635. doi: 10.1016/j.urolonc.2020.03.007. PubMed DOI