Peripherally Crowded Cationic Phthalocyanines as Efficient Photosensitizers for Photodynamic Therapy

. 2021 Mar 11 ; 12 (3) : 502-507. [epub] 20210301

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33738078

Photodynamic therapy is a treatment modality of cancer based on the production of cytotoxic species upon the light activation of photosensitizers. Zinc phthalocyanine photosensitizers bearing four or eight bulky 2,6-di(pyridin-3-yl)phenoxy substituents were synthesized, and pyridyl moieties were methylated. The quaternized derivatives did not aggregate at all in water and retained their good photophysical properties. High photodynamic activity of these phthalocyanines was demonstrated on HeLa, MCF-7, and EA.hy926 cells with a very low EC50 of 50 nM (for the MCF-7 cell line) upon light activation while maintaining low toxicity in the dark (TC50 ≈ 600 μM), giving thus good phototherapeutic indexes (TC50/EC50) above 1400. The compounds localized primarily in the lysosomes, leading to their rupture after light activation. This induced an apoptotic cell death pathway with secondary necrosis because of extensive and swift damage to the cells. This work demonstrates the importance of a bulky and rigid arrangement of peripheral substituents in the development of photosensitizers.

Zobrazit více v PubMed

World Health Organization. Cancer. 2018. https://www.who.int/health-topics/cancer#tab=tab_1.

Hamblin M. R. Photodynamic Therapy for Cancer: What’s Past is Prologue. Photochem. Photobiol. 2020, 96 (3), 506–516. 10.1111/php.13190. PubMed DOI PMC

van Straten D.; Mashayekhi V.; de Bruijn H. S.; Oliveira S.; Robinson D. J. Oncologic Photodynamic Therapy: Basic Principles, Current Clinical Status and Future Directions. Cancers 2017, 9 (12), 19.10.3390/cancers9020019. PubMed DOI PMC

MacDonald I. J.; Dougherty T. J. Basic principles of photodynamic therapy. J. Porphyrins Phthalocyanines 2001, 5 (2), 105–129. 10.1002/jpp.328. DOI

Frochot C.; Mordon S. Update of the situation of clinical photodynamic therapy in Europe in the 2003–2018 period. J. Porphyrins Phthalocyanines 2019, 23 (04n05), 347–357. 10.1142/S1088424619300027. DOI

Claessens C. G.; Hahn U.; Torres T. Phthalocyanines: From outstanding electronic properties to emerging applications. Chem. Rec. 2008, 8 (2), 75–97. 10.1002/tcr.20139. PubMed DOI

Lo P. C.; Rodriguez-Morgade M. S.; Pandey R. K.; Ng D. K. P.; Torres T.; Dumoulin F. The unique features and promises of phthalocyanines as advanced photosensitisers for photodynamic therapy of cancer. Chem. Soc. Rev. 2020, 49 (4), 1041–1056. 10.1039/C9CS00129H. PubMed DOI

Li X.; Zheng B. D.; Peng X. H.; Li S. Z.; Ying J. W.; Zhao Y. Y.; Huang J. D.; Yoon J. Phthalocyanines as medicinal photosensitizers: Developments in the last five years. Coord. Chem. Rev. 2019, 379, 147–160. 10.1016/j.ccr.2017.08.003. DOI

Wong R. C. H.; Lo P. C.; Ng D. K. P. Stimuli responsive phthalocyanine-based fluorescent probes and photosensitizers. Coord. Chem. Rev. 2019, 379, 30–46. 10.1016/j.ccr.2017.10.006. DOI

Lau J. T. F.; Lo P.-C.; Jiang X.-J.; Wang Q.; Ng D. K. P. A Dual Activatable Photosensitizer toward Targeted Photodynamic Therapy. J. Med. Chem. 2014, 57 (10), 4088–4097. 10.1021/jm500456e. PubMed DOI

Chow S. Y. S.; Lo P.-C.; Ng D. K. P. An acid-cleavable phthalocyanine tetramer as an activatable photosensitiser for photodynamic therapy. Dalton Trans. 2016, 45 (33), 13021–13024. 10.1039/C6DT02283A. PubMed DOI

Zhen Z.; Tang W.; Guo C.; Chen H.; Lin X.; Liu G.; Fei B.; Chen X.; Xu B.; Xie J. Ferritin Nanocages To Encapsulate and Deliver Photosensitizers for Efficient Photodynamic Therapy against Cancer. ACS Nano 2013, 7 (8), 6988–6996. 10.1021/nn402199g. PubMed DOI PMC

Lucky S. S.; Soo K. C.; Zhang Y. Nanoparticles in Photodynamic Therapy. Chem. Rev. 2015, 115 (4), 1990–2042. 10.1021/cr5004198. PubMed DOI

Almeida-Marrero V.; van de Winckel E.; Anaya-Plaza E.; Torres T.; de la Escosura A. Porphyrinoid biohybrid materials as an emerging toolbox for biomedical light management. Chem. Soc. Rev. 2018, 47 (19), 7369–7400. 10.1039/C7CS00554G. PubMed DOI

Setaro F.; Wennink J. W. H.; Mäkinen P. I.; Holappa L.; Trohopoulos P. N.; Ylä-Herttuala S.; van Nostrum C. F.; de la Escosura A.; Torres T. Amphiphilic phthalocyanines in polymeric micelles: a supramolecular approach toward efficient third-generation photosensitizers. J. Mater. Chem. B 2020, 8 (2), 282–289. 10.1039/C9TB02014D. PubMed DOI

Brilkina A. A.; Dubasova L. V.; Sergeeva E. A.; Pospelov A. J.; Shilyagina N. Y.; Shakhova N. M.; Balalaeva I. V. Photobiological properties of phthalocyanine photosensitizers Photosens, Holosens and Phthalosens: A comparative in vitro analysis. J. Photochem. Photobiol., B 2019, 191, 128–134. 10.1016/j.jphotobiol.2018.12.020. PubMed DOI

Venkatramaiah N.; Pereira P. M. R.; Almeida Paz F. A.; Ribeiro C. A. F.; Fernandes R.; Tome J. P. C. Dual functionality of phosphonic-acid-appended phthalocyanines: inhibitors of urokinase plasminogen activator and anticancer photodynamic agents. Chem. Commun. 2015, 51 (85), 15550–15553. 10.1039/C5CC06561E. PubMed DOI

Li X. S.; Ke M. R.; Zhang M. F.; Tang Q. Q.; Zheng B. Y.; Huang J. D. A non-aggregated and tumour-associated macrophage-targeted photosensitiser for photodynamic therapy: a novel zinc(II) phthalocyanine containing octa-sulphonates. Chem. Commun. 2015, 51 (22), 4704–4707. 10.1039/C4CC09934F. PubMed DOI

Makhseed S.; Machacek M.; Alfadly W.; Tuhl A.; Vinodh M.; Simunek T.; Novakova V.; Kubat P.; Rudolf E.; Zimcik P. Water-soluble non-aggregating zinc phthalocyanine and in vitro studies for photodynamic therapy. Chem. Commun. 2013, 49 (95), 11149–11151. 10.1039/c3cc44609c. PubMed DOI

Ghazal B.; Machacek M.; Shalaby M. A.; Novakova V.; Zimcik P.; Makhseed S. Phthalocyanines and Tetrapyrazinoporphyrazines with Two Cationic Donuts: High Photodynamic Activity as a Result of Rigid Spatial Arrangement of Peripheral Substituents. J. Med. Chem. 2017, 60 (14), 6060–6076. 10.1021/acs.jmedchem.7b00272. PubMed DOI

Kollar J.; Machacek M.; Halaskova M.; Lenco J.; Kucera R.; Demuth J.; Rohlickova M.; Hasonova K.; Miletin M.; Novakova V.; Zimcik P. Cationic Versus Anionic Phthalocyanines for Photodynamic Therapy: What a Difference the Charge Makes. J. Med. Chem. 2020, 63 (14), 7616–7632. 10.1021/acs.jmedchem.0c00481. PubMed DOI

van de Winckel E.; David B.; Simoni M. M.; González-Delgado J. A.; de la Escosura A.; Cunha Â.; Torres T. Octacationic and axially di-substituted silicon (IV) phthalocyanines for photodynamic inactivation of bacteria. Dyes Pigm. 2017, 145, 239–245. 10.1016/j.dyepig.2017.06.004. DOI

Novakova V.; Donzello M. P.; Ercolani C.; Zimcik P.; Stuzhin P. A. Tetrapyrazinoporphyrazines and their metal derivatives. Part II: Electronic structure, electrochemical, spectral, photophysical and other application related properties. Coord. Chem. Rev. 2018, 361, 1–73. 10.1016/j.ccr.2018.01.015. DOI

Tuhl A.; Makhseed S.; Zimcik P.; Al-Awadi N.; Novakova V.; Samuel J. Heavy metal effects on physicochemical properties of non-aggregated azaphthalocyanine derivatives. J. Porphyrins Phthalocyanines 2012, 16 (7–8), 817–825. 10.1142/S1088424612500800. DOI

Svec J.; Zimcik P.; Novakova L.; Rakitin O. A.; Amelichev S. A.; Stuzhin P. A.; Novakova V. 1,2,5-Chalcogenadiazole-Annulated Tripyrazinoporphyrazines: Synthesis, Spectral Characteristics, and Influence of the Heavy Atom Effect on Their Photophysical Properties. Eur. J. Org. Chem. 2015, 2015 (3), 596–604. 10.1002/ejoc.201403329. DOI

Anaya-Plaza E.; Aljarilla A.; Beaune G.; Nonappa; Timonen J. V. I.; de la Escosura A.; Torres T.; Kostiainen M. A. Phthalocyanine–Virus Nanofibers as Heterogeneous Catalysts for Continuous-Flow Photo-Oxidation Processes. Adv. Mater. 2019, 31 (39), 1902582.10.1002/adma.201902582. PubMed DOI

Makhseed S.; Tuhl A.; Samuel J.; Zimcik P.; Al-Awadi N.; Novakova V. New highly soluble phenoxy-substituted phthalocyanine and azaphthalocyanine derivatives: Synthesis, photochemical and photophysical studies and atypical aggregation behavior. Dyes Pigm. 2012, 95 (2), 351–357. 10.1016/j.dyepig.2012.03.023. DOI

Anaya-Plaza E.; Joseph J.; Bauroth S.; Wagner M.; Dolle C.; Sekita M.; Gröhn F.; Spiecker E.; Clark T.; de la Escosura A.; Guldi D. M.; Torres T. Synergy of Electrostatic and π–π Interactions in the Realization of Nanoscale Artificial Photosynthetic Model Systems. Angew. Chem., Int. Ed. 2020, 59 (42), 18786–18794. 10.1002/anie.202006014. PubMed DOI PMC

Wilkinson F.; Helman W. P.; Ross A. B. Rate Constants for the Decay and Reactions of the Lowest Electronically Excited Singlet-State of Molecular-Oxygen in Solution - an Expanded and Revised Compilation. J. Phys. Chem. Ref. Data 1995, 24 (2), 663–1021. 10.1063/1.555965. DOI

Kupcho K.; Shultz J.; Hurst R.; Hartnett J.; Zhou W.; Machleidt T.; Grailer J.; Worzella T.; Riss T.; Lazar D.; Cali J. J.; Niles A. A real-time, bioluminescent annexin V assay for the assessment of apoptosis. Apoptosis 2019, 24 (1), 184–197. 10.1007/s10495-018-1502-7. PubMed DOI PMC

Machacek M.; Demuth J.; Cermak P.; Vavreckova M.; Hruba L.; Jedlickova A.; Kubat P.; Simunek T.; Novakova V.; Zimcik P. Tetra(3,4-pyrido)porphyrazines Caught in the Cationic Cage: Toward Nanomolar Active Photosensitizers. J. Med. Chem. 2016, 59 (20), 9443–9456. 10.1021/acs.jmedchem.6b01140. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...