Molecular Characterization of Divergent Closterovirus Isolates Infecting Ribes Species
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
30002359
PubMed Central
PMC6071065
DOI
10.3390/v10070369
PII: v10070369
Knihovny.cz E-zdroje
- Klíčová slova
- Ribes, closterovirus, currant, recombinants/recombination,
- MeSH
- Closterovirus klasifikace genetika izolace a purifikace ultrastruktura MeSH
- fylogeneze MeSH
- genetická variace MeSH
- genom virový MeSH
- genomika metody MeSH
- nemoci rostlin virologie MeSH
- otevřené čtecí rámce MeSH
- rekombinace genetická MeSH
- Ribes virologie MeSH
- RNA virová MeSH
- sekvence aminokyselin MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- RNA virová MeSH
Five isolates of a new member of the family Closteroviridae, tentatively named blackcurrant leafroll-associated virus 1 (BcLRaV-1), were identified in the currant. The 17-kb-long genome codes for 10 putative proteins. The replication-associated polyprotein has several functional domains, including papain-like proteases, methyltransferase, Zemlya, helicase, and RNA-dependent RNA polymerase. Additional open reading frames code for a small protein predicted to integrate into the host cell wall, a heat-shock protein 70 homolog, a heat-shock protein 90 homolog, two coat proteins, and three proteins of unknown functions. Phylogenetic analysis showed that BcLRaV-1 is related to members of the genus Closterovirus, whereas recombination analysis provided evidence of intraspecies recombination.
Agricultural Institute of Slovenia Hacquetova ulica 17 1000 Ljubljana Slovenia
National Clonal Germplasm Repository United States Department of Agriculture Corvallis OR 97333 USA
Virology Phytoplasmology Laboratory Agroscope 1260 Nyon Switzerland
Zobrazit více v PubMed
Mitchell C., Brennan R.M., Cross J.V., Johnson S.N. Arthropod pests of currant and gooseberry crops in the U.K.: Their biology, management and future prospects. Agric. For. Entomol. 2011;13:221–237. doi: 10.1111/j.1461-9563.2010.00513.x. DOI
Geils B.W., Hummer K.E., Hunt R.S. White pines, Ribes, and blister rust: A review and synthesis. For. Pathol. 2010;40:147–185. doi: 10.1111/j.1439-0329.2010.00654.x. DOI
Adams A.N., Thresh J.M. Reversion of black currant. In: Converse R.H., editor. Virus Disease of Small Fruits. United States Department of Agriculture; Washington, DC, USA: 1987. pp. 133–136.
Jones A.T. Black currant reversion disease—The probable causal agent, eriophyid mite vectors, epidemiology and prospects for control. Virus Res. 2000;71:71–84. doi: 10.1016/S0168-1702(00)00189-1. PubMed DOI
Jones A.T., McGavin W.J., Geering A.D.W., Lockhart B.E.L. A new badnavirus in Ribes species, its detection by PCR, and its close association with gooseberry vein banding disease. Plant Dis. 2001;85:417–422. doi: 10.1094/PDIS.2001.85.4.417. PubMed DOI
Besse S., Gugerli P., Ramel M.E., Balmelli C. Characterisation of mixed virus infections in Ribes species in Switzerland; Proceedings of the 21st International Conference on Virus and other Graft Transmissible Diseases of Fruit Crops; Neustadt, Germany. 5–10 July 2009; pp. 214–219.
Ho T., Tzanetakis I.E. Development of a virus detection and discovery pipeline using next generation sequencing. Virology. 2014;471–473:54–60. doi: 10.1016/j.virol.2014.09.019. PubMed DOI
Petrzik K., Koloniuk I., Přibylová J., Špak J. Complete genome sequence of currant latent virus (genus Cheravirus, family Secoviridae) Arch. Virol. 2015;161:1–3. doi: 10.1007/s00705-015-2679-5. PubMed DOI
Petrzik K., Přibylová J., Koloniuk I., Špak J. Molecular characterization of a novel capillovirus from red currant. Arch. Virol. 2016;161:1083–1086. doi: 10.1007/s00705-016-2752-8. PubMed DOI
James D., Phelan J. Complete genome sequence of a strain of Actinidia virus X detected in Ribes nigrum cv. Baldwin showing unusual symptoms. Arch. Virol. 2016;161:507–511. doi: 10.1007/s00705-015-2678-6. PubMed DOI
Wu L.P., Yang T., Liu H.W., Postman J., Li R. Molecular characterization of a novel rhabdovirus infecting blackcurrant identified by high-throughput sequencing. Arch. Virol. 2018;162:2493–2494. doi: 10.1007/s00705-018-3709-x. PubMed DOI
Roberts I.M., Jones A.T. Rhabdovirus-like and closterovirus-like particles in ultrathin sections of Ribes species with symptoms of blackcurrant reversion and gooseberry veinbanding diseases. Ann. Appl. Biol. 1997;130:77–89. doi: 10.1111/j.1744-7348.1997.tb05784.x. DOI
Ho T., Postman J.D., Tzanetakis I.E. Discovery, characterization and detection of five new virus species in Ribes; Proceedings of the 23rd International Conference on Virus and Other Graft Transmissible Diseases of Fruit Crops; Morioka, Japan. 8–12 June 2015; Tokyo, Japan: Phytopathological Society of Japan; 2016. pp. 8–10. PSJ Plant Virus Disease Workshop Report No. 12 (Special Edition)
Rubio L., Guerri J., Moreno P. Genetic variability and evolutionary dynamics of viruses of the family Closteroviridae. Front. Microbiol. 2013;4:1–15. doi: 10.3389/fmicb.2013.00151. PubMed DOI PMC
Martelli G.P., Agranovsky A.A., Bar-Joseph M., Boscia D., Candresse T., Coutts R.H.A., Dolja V.V., Hu J.S., Jelkmann W., Karasev A.V., et al. Family Closteroviridae. In: King A.M.Q., Adams M.J., Carstens E.B., Lefkowitz E.J., editors. Ninth Report of the International Committee on Taxonomy of Viruses. Elsevier Academic Press; New York, NY, USA: 2012. pp. 987–1001.
Gugerli P., Ramel M.E. Production of monoclonal antibodies for the serological identification and reliable detection of Apple stem pitting and Pear yellow vein viruses in apple and pear. Acta Hortic. 2004:59–69. doi: 10.17660/ActaHortic.2004.657.6. DOI
Koloniuk I., Fránová J., Sarkisova T., Přibylová J., Lenz O., Petrzik K., Špak J. Identification and molecular characterization of a novel varicosa-like virus from red clover. Arch. Virol. 2018 doi: 10.1007/s00705-018-3838-2. in press. PubMed DOI
Gugerli P. Isopycnic centrifugation of plant-viruses in nycodenz density gradients. J. Virol. Methods. 1984;9:249–258. doi: 10.1016/0166-0934(84)90031-4. PubMed DOI
Katoh K., Standley D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Letunic I., Bork P. Interactive tree of life (iTOL) v3: An online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44:W242–W245. doi: 10.1093/nar/gkw290. PubMed DOI PMC
Martin D.P., Murrell B., Golden M., Khoosal A., Muhire B. RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evol. 2015;1:1–5. doi: 10.1093/ve/vev003. PubMed DOI PMC
Dolja V.V., Kreuze J.F., Valkonen J.P.T. Comparative and functional genomics of closteroviruses. Virus Res. 2006;117:38–51. doi: 10.1016/j.virusres.2006.02.002. PubMed DOI PMC
Peng C.W., Peremyslov V.V., Mushegian A.R., Dawson W.O., Dolja V.V. Functional specialization and evolution of leader proteinases in the family Closteroviridae. J. Virol. 2001;75:12153–12160. doi: 10.1128/JVI.75.24.12153-12160.2001. PubMed DOI PMC
Liu Y.-P., Peremyslov V.V., Medina V., Dolja V.V. Tandem leader proteases of Grapevine leafroll-associated virus-2: Host-specific functions in the infection cycle. Virology. 2009;383:291–299. doi: 10.1016/j.virol.2008.09.035. PubMed DOI PMC
Gushchin V.A., Karlin D.G., Makhotenko A.V., Khromov A.V., Erokhina T.N., Solovyev A.G., Morozov S.Y., Agranovsky A.A. A conserved region in the Closterovirus 1a polyprotein drives extensive remodeling of endoplasmic reticulum membranes and induces motile globules in Nicotiana benthamiana cells. Virology. 2016;502:1–8. doi: 10.1016/j.virol.2016.12.006. PubMed DOI
Koonin E.V., Dolja V.V. Evolution and taxonomy of positive-strand RNA viruses: Implications of comparative analysis of amino acid sequences. Crit. Rev. Biochem. Mol. Biol. 1993;28:375–430. doi: 10.3109/10409239309078440. PubMed DOI
Erokhina T.N., Zinovkin R.A., Vitushkina M.V., Jelkmann W., Agranovsky A.A. Detection of beet yellows closterovirus methyltransferase-like and helicase-like proteins in vivo using monoclonal antibodies. J. Gen. Virol. 2000;81:597–603. doi: 10.1099/0022-1317-81-3-597. PubMed DOI
Peremyslov V.V., Pan Y.W., Dolja V.V. Movement protein of a closterovirus Is a type III integral transmembrane protein localized to the endoplasmic reticulum. J. Virol. 2004;78:3704–3709. doi: 10.1128/JVI.78.7.3704-3709.2004. PubMed DOI PMC
Lu R., Folimonov A., Shintaku M., Li W.-X., Falk B.W., Dawson W.O., Ding S.-W. Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome. Proc. Natl. Acad. Sci. USA. 2004;101:15742–15747. doi: 10.1073/pnas.0404940101. PubMed DOI PMC
Reynard J.-S., Schneeberger P.H.H., Frey J.E., Schaerer S. Biological, serological, and molecular characterization of a highly divergent strain of Grapevine leafroll-associated virus 4 causing grapevine leafroll disease. Phytopathology. 2015;105:1262–1269. doi: 10.1094/PHYTO-12-14-0386-R. PubMed DOI
Štrukelj M., Pleško I.M., Urek G. Molecular characterization of a grapevine leafroll-associated virus 4 from Slovenian vineyards. Acta Virol. 2016;60:174–180. doi: 10.4149/av_2016_02_174. PubMed DOI
Bar-Joseph M., Dawson W.O. Citrus Tristeza Virus. In: Mahy B.W.J., van Regenmortel M.H.V., editors. Desk Encyclopedia of Plant and Fungal Virology. Academic Press; San Diego, CA, USA: 2009. pp. 160–165.
Martín S., Sambade A., Rubio L., Vives M.C., Moya P., Guerri J., Elena S.F., Moreno P. Contribution of recombination and selection to molecular evolution of Citrus tristeza virus. J. Gen. Virol. 2009;90:1527–1538. doi: 10.1099/vir.0.008193-0. PubMed DOI