Probiotic characteristics of bacteriocin-producing Enterococcus faecium strains isolated from human milk and colostrum
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
4753
Hacettepe ?niversitesi
PubMed
30739237
DOI
10.1007/s12223-019-00687-2
PII: 10.1007/s12223-019-00687-2
Knihovny.cz E-zdroje
- MeSH
- antibakteriální látky farmakologie MeSH
- antibióza MeSH
- bakteriální adheze MeSH
- bakteriální léková rezistence MeSH
- bakteriociny metabolismus MeSH
- Caco-2 buňky MeSH
- cholesterol metabolismus MeSH
- Enterococcus faecium účinky léků genetika izolace a purifikace metabolismus MeSH
- kolostrum mikrobiologie MeSH
- lidé MeSH
- Listeria monocytogenes fyziologie MeSH
- mateřské mléko mikrobiologie MeSH
- mikrobiální testy citlivosti MeSH
- probiotika * MeSH
- žaludeční šťáva MeSH
- žlučové kyseliny a soli farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- bakteriociny MeSH
- cholesterol MeSH
- žlučové kyseliny a soli MeSH
As potential probiotic traits of human milk-isolated bacteria have increasingly been recognized, this study aimed to evaluate the probiotic properties of bacteriocin-producing Enterococcus faecium strains isolated from human milk and colostrum. Among 118 human milk- and colostrum-isolated lactic cocci, only 29 were identified as Enterococcus. Of these, only four Enterococcus faecium isolates exhibited bacteriocigenic activity against several pathogenic Gram-positive bacteria, including Listeria monocytogenes. These isolates exhibited high acid (up to pH 3.0) and bile tolerance (0.5% oxgall) in simulated gastrointestinal conditions, demonstrating their ability to survive through the upper gastrointestinal tract. All of the E. faecium strains were shown to be sensitive to most of the antibiotics including vancomycin, tetracycline, rifampicin, and erythromycin, while they were resistant to kanamycin and chloramphenicol. None of the strains showed any virulence (gelE, agg2, clyA, clyB, clyM) and antibiotic resistance genes (vanA, vanB, ermB, tetM, and aac(6')-le-aph(2″)-la). In addition, all the strains were able to assimilate cholesterol, ranging between 25.2-64.1% and they exhibited variable adherence (19-36%) to Caco-2 cells. Based on the overall results of this in vitro study, four of the E. faecium strains isolated from human milk and colostrum can be considered as promising probiotic candidates; however, further in vivo evaluations are required.
Department of Food Engineering Faculty of Engineering Trakya University 22180 Edirne Turkey
Department of Food Engineering Hacettepe University Ankara Turkey
Department of Food Engineering Uludag University Bursa Turkey
Department of Food Technology Çanakkale Onsekiz Mart University Çanakkale Turkey
Zobrazit více v PubMed
Int J Food Microbiol. 2003 Dec 1;88(2-3):215-22 PubMed
J Hum Lact. 2005 May;21(2):131-7 PubMed
Arch Microbiol. 1995 Sep;164(3):165-72 PubMed
J Appl Microbiol. 2010 Sep;109(3):1084-92 PubMed
Folia Microbiol (Praha). 2002;47(4):391-400 PubMed
Folia Microbiol (Praha). 2009 Nov;54(6):538-44 PubMed
Int J Food Microbiol. 2009 Jul 31;133(1-2):105-12 PubMed
Anal Biochem. 1981 Nov 1;117(2):307-10 PubMed
Syst Appl Microbiol. 2011 Apr;34(2):148-55 PubMed
Appl Environ Microbiol. 2008 Jul;74(14):4247-55 PubMed
Biomed Res Int. 2015;2015:412714 PubMed
J Dairy Sci. 2017 Mar;100(3):1618-1628 PubMed
Microbiol Immunol. 2010 May;54(5):257-64 PubMed
Res Microbiol. 2008 Nov-Dec;159(9-10):595-601 PubMed
Braz J Microbiol. 2012 Oct;43(4):1452-62 PubMed
Nucleic Acids Res. 1989 Oct 11;17(19):7843-53 PubMed
J Appl Microbiol. 2003;95(3):471-8 PubMed
Microb Biotechnol. 2016 Nov;9(6):737-745 PubMed
Microb Ecol. 2008 Jan;55(1):1-14 PubMed
Appl Environ Microbiol. 2005 Jun;71(6):3060-7 PubMed
Antonie Van Leeuwenhoek. 2005 Oct-Nov;88(3-4):207-19 PubMed
J Clin Microbiol. 1995 Jan;33(1):24-7 PubMed
J Microbiol Methods. 2002 Jul;50(2):115-21 PubMed
Int J Food Microbiol. 2005 Apr 1;99(3):287-96 PubMed
J Food Prot. 1998 May;61(5):557-62 PubMed
PLoS One. 2013 Apr 26;8(4):e62838 PubMed
Probiotics Antimicrob Proteins. 2017 Jun;9(2):182-188 PubMed
J Food Prot. 2001 May;64(5):725-9 PubMed
Eur J Clin Nutr. 2000 Apr;54(4):288-97 PubMed
Crit Rev Food Sci Nutr. 1999 Jan;39(1):13-126 PubMed
BMC Microbiol. 2013 Dec 10;13:288 PubMed
Br J Nutr. 2013 Oct;110(7):1253-62 PubMed
J Ind Microbiol Biotechnol. 2004 Aug;31(7):323-9 PubMed
J Hum Lact. 2012 Feb;28(1):36-44 PubMed
Microb Drug Resist. 2012 Oct;18(5):502-9 PubMed
J Clin Microbiol. 2003 Jun;41(6):2569-76 PubMed
J Dairy Sci. 1999 Jan;82(1):23-31 PubMed
Appl Environ Microbiol. 2002 Sep;68(9):4689-93 PubMed
Food Microbiol. 2010 Oct;27(7):955-61 PubMed
Anaerobe. 2007 Oct-Dec;13(5-6):228-37 PubMed
J Clin Microbiol. 2003 Nov;41(11):5183-5 PubMed
Pharmacol Res. 2013 Mar;69(1):1-10 PubMed
Pharm Res. 1990 Jul;7(7):756-61 PubMed
J Appl Microbiol. 2008 Feb;104(2):465-77 PubMed
Diagn Microbiol Infect Dis. 2014 Sep;80(1):26-8 PubMed
PLoS Med. 2006 Nov;3(11):e442 PubMed
Biomed Res Int. 2014;2014:575367 PubMed
Appl Microbiol Biotechnol. 2016 Sep;100(17):7665-77 PubMed
Dig Dis Sci. 1992 Jan;37(1):121-8 PubMed
J Food Prot. 1998 Dec;61(12):1636-43 PubMed
Appl Biochem Biotechnol. 2010 Jan;160(1):40-9 PubMed
J Pediatr. 2003 Dec;143(6):754-8 PubMed
Antonie Van Leeuwenhoek. 2012 May;101(4):869-79 PubMed
J Appl Microbiol. 2003;94(2):214-29 PubMed
J Fish Dis. 2011 Jul;34(7):499-507 PubMed
Environ Microbiol. 2014 Sep;16(9):2891-904 PubMed
Folia Microbiol (Praha). 2008;53(5):378-94 PubMed
J Appl Microbiol. 1997 Oct;83(4):413-20 PubMed
Int J Food Microbiol. 2011 Dec 2;151(2):125-40 PubMed
Ann Med. 2016;48(4):246-55 PubMed
Anal Biochem. 1987 Nov 1;166(2):368-79 PubMed
Mol Nutr Food Res. 2015 Jan;59(1):94-105 PubMed
Anaerobe. 2014 Dec;30:1-10 PubMed
J Appl Microbiol. 2016 Sep;121(3):811-20 PubMed