Feasibility of Hepatic Fat Quantification Using Proton Density Fat Fraction by Multi-Echo Chemical-Shift-Encoded MRI at 7T
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
P 31452
Austrian Science Fund FWF - Austria
PubMed
34849373
PubMed Central
PMC7612048
DOI
10.3389/fphy.2021.665562
Knihovny.cz E-zdroje
- Klíčová slova
- 7T, CSE-MRI, PDFF, feasibility, liver, ultra-high magnetic field,
- Publikační typ
- časopisecké články MeSH
Fat fraction quantification and assessment of its distribution in the hepatic tissue become more important with the growing epidemic of obesity, and the increasing prevalence of diabetes mellitus type 2 and non-alcoholic fatty liver disease. At 3Tesla, the multi-echo, chemical-shift-encoded magnetic resonance imaging (CSE-MRI)-based acquisition allows the measurement of proton density fat-fraction (PDFF) even in clinical protocols. Further improvements in SNR can be achieved by the use of phased array coils and increased static magnetic field. The purpose of the study is to evaluate the feasibility of PDFF imaging using a multi-echo CSE-MRI technique at ultra-high magnetic field (7Tesla). Thirteen volunteers (M/F) with a broad range of age, body mass index, and hepatic PDFF were measured at 3 and 7T by multi-gradient-echo MRI and single-voxel spectroscopy MRS. All measurements were performed in breath-hold (exhalation); the MRI protocols were optimized for a short measurement time, thus minimizing motion-related problems. 7T data were processed off-line using Matlab® (MRI:multi-gradient-echo) and jMRUI (MRS), respectively. For quantitative validation of the PDFF results, a similar protocol was performed at 3T, including on-line data processing provided by the system manufacturer, and correlation analyses between 7 and 3T data were performed off-line. The multi-echo CSE-MRI measurements at 7T with a phased-array coil configuration and an optimal post-processing yielded liver volume coverage ranging from 30 to 90% for high- and low-BMI subjects, respectively. PDFFs ranged between 1 and 20%. We found significant correlations between 7T MRI and -MRS measurements (R2 ≅ 0.97; p < 0.005), and between MRI-PDFF at 7T and 3T fields (R2 ≅ 0.94; p < 0.005) in the evaluated volumes. Based on the measurements and analyses performed, the multi-echo CSE-MRI method using a 32-channel coil at 7T showed its aptitude for MRI-based quantitation of PDFF in the investigated volumes. The results are the first step toward qMRI of the whole liver at 7T with further improvements in hardware.
Zobrazit více v PubMed
Anderwald C, Bernroider E, Krssak M, Stingl H, Brehm A, Bischof MG, et al. Effects of insulin treatment in type 2 diabetic patients on intracellular lipid content in liver and skeletal muscle. Diabetes. 2002;51:3025–32. doi: 10.2337/diabetes.51.10.3025. PubMed DOI
Krssak M, Falk PK, Dresner A, DiPietro L, Vogel SM, Rothman DL, et al. Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study. Diabetologia. 1999;42:113–6. doi: 10.1007/s001250051123. PubMed DOI
Stepanova M, Younossi Z. Independent association between nonalcoholic fatty liver disease and cardiovascular disease in the US population. Clin Gastroenterol Hepatol. 2012;10:646–50. doi: 10.1016/j.cgh.2011.12.039. PubMed DOI
Seo SW, Gottesman RF, Clark JM, Hernaez R, Chang Y, Kim C, et al. Nonalcoholic fatty liver disease is associated with cognitive function in adults. Neurology. 2016;86:1136–42. doi: 10.1212/WNL.0000000000002498. PubMed DOI PMC
Younossim Z. Non-alcoholic fatty liver disease - a global public health perspective. J Hepatol. 2019;70:531–44. doi: 10.1016/j.jhep.2018.10.033. PubMed DOI
Reeder S, Hu H, Sirlin C. Proton density fat-fraction: a standardized MR-based biomarker of tissue fat concentration. J Magn Reson Imaging. 2012;36:1011–4. doi: 10.1002/jmri.23741. PubMed DOI PMC
Idilman IS, Aniktar H, Idilman R, Kabacam G, Savas B, Elhan A, et al. Hepatic steatosis: quantification by proton density fat fraction with MR imaging versus liver biopsy. Radiology. 2013;267:767–75. doi: 10.1148/radiol.13121360. PubMed DOI
Yu H, Shimakawa A, McKenzie C, Brodsky E, Brittain J, Reeder S. Multiecho water-fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling. Magn Reson Med. 2008;60:1122–34. doi: 10.1002/mrm.21737. PubMed DOI PMC
Tsao J, Jiang Y. Hierarchical IDEAL: fast, robust, and multiresolution separation of multiple chemical species from multiple echo times. Magn Reson Med. 2013;70:155–9. doi: 10.1002/mrm.24441. PubMed DOI
Reeder S, Wen Z, Yu H, Pineda AR, Gold GE, Markl M, et al. Multicoil dixon chemical species separation with an iterative least-squares estimation method. Magn Reson Med. 2004;51:35–45. doi: 10.1002/mrm.10675. PubMed DOI
Glover G. Multipoint dixon technique for water and fat proton and susceptibility imaging. J Magn Reson Imaging. 1991;1:521–30. doi: 10.1002/jmri.1880010504. PubMed DOI
Yu H, McKenzie C, Shimakawa A, Vu AT, Brau AC, Beatty PJ, et al. Multiecho reconstruction for simultaneous water-fat decomposition and T2* estimation. J Magn Reson Imaging. 2007;26:1153–61. doi: 10.1002/jmri.21090. PubMed DOI
Yu H, Shimakawa A, Hines CD, McKenzie CA, Hamilton G, Sirlin CB, et al. Combination of complex-based and magnitude-based multiecho water-fat separation for accurate quantification of fat-fraction. Magn Reson Med. 2011;66:199–206. doi: 10.1002/mrm.22840. PubMed DOI PMC
Dietrich O, Raya J, Reeder S, Reiser M, Schoenberg S. Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging. 2007;26:375–85. doi: 10.1002/jmri.20969. PubMed DOI
Stockmann J, Witzel T, Keil B, Polimeni JR, Mareyam A, LaPierre C, et al. A 32-channel combined RF and B0 shim array for 3T brain imaging. Magn Reson Med. 2016;75:441–51. doi: 10.1002/mrm.25587. PubMed DOI PMC
Navarro de Lara L, Windischberger C, Kuehne A, Woletz M, Sieg J, Bestmann S, et al. A novel coil array for combined TMS/fMRI experiments at 3 T. Magn ResonMed. 2015;74:1492–501. doi: 10.1002/mrm.25535. PubMed DOI PMC
Wen H, Denison T, Singerman R, Balaban R. The intrinsic signal-to-noise ratio in human cardiac imaging at 1.5, 3, and 4T. J Magn Reson. 1997;125:65–71. doi: 10.1006/jmre.1996.1072. PubMed DOI PMC
Vaughan JT, Garwood M, Collins CM, Liu W, DelaBarre L, Adriany G, et al. 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images. Magn Reson Med. 2001;46:24–30. doi: 10.1002/mrm.1156. PubMed DOI
Pohmann R, Speck O, Scheffler K. Signal-to-noise ratio and MR tissue parameters in human brain imaging at 3, 7, and 9.4 tesla using current receive coil arrays. Magn Reson Med. 2016;75:801–9. doi: 10.1002/mrm.25677. PubMed DOI
Balchandani P, Naidich T. Ultra-High-Field MR Neuroimaging. AJNR Am J Neuroradiol. 2015;36:1204–15. doi: 10.3174/ajnr.A4180. PubMed DOI PMC
Trattnig S, Springer E, Bogner W, Hangel G, Strasser B, Dymerska B, et al. Key clinical benefits of neuroimaging at 7T. Neuroimage. 2018;168:477–89. doi: 10.1016/j.neuroimage.2016.11.031. PubMed DOI PMC
Trattnig S, Zbýn S, Schmitt B, Friedrich K, Juras V, Szomolanyi P, et al. Advanced MR methods at ultra-high field (7 Tesla) for clinical musculoskeletal applications. Eur Radiol. 2012;22:2338–46. doi: 10.1007/s00330-012-2508-0. PubMed DOI
Korinek R, Bartusek B, Starcuk Z. Water-Fat separation in rat by MRI at high field (9.4T); Measurement 2015 Proceedings of the 10th International Conference on Measurement; Smolenice. 2015. pp. 133–6.
Kickler N, van der Zwaag W, Mekle R, Kober T, Marques JP, Krueger G, et al., editors. Eddy current effects on a clinical 7T-68cm bore scanner. MAGMA. 2010;23:39–43. doi: 10.1007/s10334-009-0192-0. PubMed DOI
de Graaf RA, Brown PB, McIntyre S, Nixon TW, Behar KL, Rothman DL. High magnetic field water and metabolite proton T1 and T2 relaxation in rat brain in vivo. Magn Reson Med. 2006;56:386–94. doi: 10.1002/mrm.20946. PubMed DOI
Gajdošík M, Chmelík M, Just-Kukurová I, Bogner W, Valkovič L, Trattnig S, et al. In vivo relaxation behavior of liver compounds at 7 Tesla, measured by single-voxel proton MR spectroscopy. J Magn Reson Imaging. 2014;40:1365–74. doi: 10.1002/jmri.24489. PubMed DOI
Gajdošík M, Chadzynski G, Hangel G, Mlynárik V, Chmelík M, Valkovič L, et al. Ultrashort-TE stimulated echo acquisition mode (STEAM) improves the quantification of lipids and fatty acid chain unsaturation in the human liver at 7T. NMR Biomed. 2015;28:1283–93. doi: 10.1002/nbm.3382. PubMed DOI
Hoult D, Phil D. Sensitivity and power deposition in a high-field imaging experiment. J Magn Reson Imaging. 2000;12:46–67. doi: 10.1002/1522-2586(200007)12:1<46::AID-JMRI6>3.0.CO;2-D. PubMed DOI
Collins C, Wang Z. Calculation of radiofrequency electromagnetic fields and their effects in MRI of human subjects. Magn Reson Med. 2011;65:1470–82. doi: 10.1002/mrm.22845. PubMed DOI PMC
Hardy CJ, Cline HE, Giaquinto RO, Niendorf T, Grant AK, Sodickson DK. 32-element receiver-coil array for cardiac imaging. Magn Reson Med. 2006;55:1142–9. doi: 10.1002/mrm.20870. PubMed DOI PMC
Keil B, Blau JN, Biber S, Hoecht P, Tountcheva V, Setsompop K, et al. A 64-channel 3T array coil for accelerated brain MRI. Magn Reson Med. 2013;70:248–58. doi: 10.1002/mrm.24427. PubMed DOI PMC
Zhu Y. Parallel excitation with an array of transmit coils. Magn Reson Med. 2004;51:775–784. doi: 10.1002/mrm.20011. PubMed DOI
Lattanzi R, Sodickson DK, Grant AK, Zhu Y. Electrodynamic constraints on homogeneity and radiofrequency power deposition in multiple coil excitations. Magn Reson Med. 2009;61:315–334. doi: 10.1002/mrm.21782. PubMed DOI PMC
Zhang B, Seifert AC, Kim JW, Borrello J, Xu J. 7 Tesla 22-channel wrap-around coil array for cervical spinal cord and brainstem imaging. Magn Reson Med. 2017;78:1623–34. doi: 10.1002/mrm.26538. PubMed DOI
Rietsch SHG, Orzada S, Maderwald S, Brunheim S, Philips BWJ, Scheenen TWJ, et al. 7T ultra-high field body MR imaging with an 8-channel transmit/32-channel receive radiofrequency coil array. Med Phys. 2018;45:2978–90. doi: 10.1002/mp.12931. PubMed DOI
Dixon W. Simple proton spectroscopic imaging. Radiology. 1984;153:189–94. doi: 10.1148/radiology.153.1.6089263. PubMed DOI
Hernando D, Kellman P, Haldar J, Liang Z. Robust water/fat separation in the presence of large field inhomogeneities using a graph cut algorithm. Magn Reson Med. 2010;63:79–90. doi: 10.1002/mrm.22177. PubMed DOI PMC
Sharma SD, Hu HH, Nayak KS. Accelerated water-fat imaging using restricted subspace field map estimation and compressed sensing. Magn Reson Med. 2012;67:650–9. doi: 10.1002/mrm.23052. PubMed DOI PMC
Ren J, Dimitrov I, Sherry AD, Malloy CR. Composition of adipose tissue and marrow fat in humans by 1H NMR at 7 tesla. J Lipid Res. 2008;49:2055–62. doi: 10.1194/jlr.D800010-JLR200. PubMed DOI PMC
Hamilton G, Smith DL, Bydder M, Nayak KS, Hu HH. MR properties of brown and white adipose tissues. J Magn Reson Imaging. 2011;34:468–73. doi: 10.1002/jmri.22623. PubMed DOI PMC
Yu H, Reeder SB, Shimakawa A, Brittain JH, Pelc NJ. Field map estimation with a region growing scheme for iterative 3-point water-fat decomposition. Magn Reson Med. 2005;54:1032–9. doi: 10.1002/mrm.20654. PubMed DOI
Hussain HK, Chenevert TL, Londy FJ, Gulani V, Swanson SD, McKenna BJ, et al. Hepatic fat fraction: MR imaging for quantitative measurement and display-early experience. Radiology. 2005;237:1048–55. doi: 10.1148/radiol.2373041639. PubMed DOI
Bydder M, Yokoo T, Hamilton G, Middleton MS, Chavez AD, Schwimmer JB, et al. Relaxation effects in the quantification of fat using gradient echo imaging. Magn Reson Imaging. 2008;26:347–59. doi: 10.1016/j.mri.2007.08.012. PubMed DOI PMC
Curtis WA, Fraum TJ, An H, Chen Y, Shetty AS, Fowler KJ. Quantitative MRI of diffuse liver disease: current applications and future directions. Radiology. 2019;290:23–30. doi: 10.1148/radiol.2018172765. PubMed DOI
Gracien RM, Maiworm M, Brüche N, Shrestha M, Nöth U, Hattingen E, et al. How stable is quantitative MRI? - Assessment of intra- and inter-scanner-model reproducibility using identical acquisition sequences and data analysis programs. Neuroimage. 2020;207:116364. doi: 10.1016/j.neuroimage.2019.116364. PubMed DOI
Phal PM, Usmanov A, Nesbit GM, Anderson JC, Spencer D, Wang P, et al. Qualitative comparison of 3-T and 1.5-T MRI in the evaluation of epilepsy. AJR Am J Roentgenol. 2008;191:890–5. doi: 10.2214/AJR.07.3933. PubMed DOI
Bohte AE, van Werven JR, Bipat S, Stoker J. The diagnostic accuracy of US, CT, MRI and 1H-MRS for the evaluation of hepatic steatosis compared with liver biopsy: a meta-analysis. Eur Radiol. 2011;21:87–97. doi: 10.1007/s00330-010-1905-5. PubMed DOI PMC
Korínek R, Gajdošík M, Trattnig S, Starčuk Z, Jr, Krššák M. Low-level fat fraction quantification at 3 T: comparative study of different tools for water-fat reconstruction and MR spectroscopy. MAGMA. 2020;33:455–68. doi: 10.1007/s10334-020-00825-9. PubMed DOI
Krssák M, Hofer H, Wrba F, Meyerspeer M, Brehm A, Lohninger A, et al. Non-invasive assessment of hepatic fat accumulation in chronic hepatitis C by 1H magnetic resonance spectroscopy. Eur J Radiol. 2010;74:e60–6. doi: 10.1016/j.ejrad.2009.03.062. PubMed DOI
Hájek M, Dezortová M, Wagnerová D, Skoch A, Voska L, Hejlová I, et al. MR spectroscopy as a tool for in vivo determination of steatosis in liver transplant recipients. MAGMA. 2011;24:297–304. doi: 10.1007/s10334-011-0264-9. PubMed DOI
Pfleger L, Gajdošík M, Wolf P, Smajis S, Fellinger P, Kuehne A, et al. Absolute quantification of phosphor-containing metabolites in the liver using 31 P MRSI and hepatic lipid volume correction at 7T suggests no dependence on body mass index or age. J Magn Reson Imaging. 2019;49:597–607. doi: 10.1002/jmri.26225. PubMed DOI PMC
Wolf P, Fellinger P, Pfleger L, Smajis S, Beiglböck H, Gajdošík M, et al. Reduced hepatocellular lipid accumulation and energy metabolism in patients with long standing type 1 diabetes mellitus. Sci Rep. 2019;9:2576. doi: 10.1038/s41598-019-39362-4. PubMed DOI PMC
Smajis S, Gajdošík M, Pfleger L, Traussnigg S, Kienbacher C, Halilbasic E, et al. Metabolic effects of a prolonged, very-high-dose dietary fructose challenge in healthy subjects. Am J Clin Nutr. 2020;9:369–77. doi: 10.1093/ajcn/nqz271. PubMed DOI
Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA) Magn Reson Med. 2002;47:1202–10. doi: 10.1002/mrm.10171. PubMed DOI
Eckstein K, Dymerska B, Bachrata B, Bogner W, Poljanc K, Trattnig S, et al. Computationally efficient combination of multi-channel phase data from multi-echo acquisitions (ASPIRE) Magn Reson Med. 2018;79:2996–3006. doi: 10.1002/mrm.26963. PubMed DOI
Hu HH, Bornert P, Hernando D, Kellman P, Ma J, Reeder S, et al. ISMRM workshop on fat-water separation: insights, applications and progress in MRI. Magn Reson Med. 2012;68:378–88. doi: 10.1002/mrm.24369. PubMed DOI PMC
WaterFat12 ISMRM toolbox. 2012 Available online at: https://www.ismrm.org/workshops/FatWater12/data.htm.
Naressi A, Couturier C, Devos JM, Janssen M, Mangeat C, de Beer R, et al. Java-based graphical user interface for the MRUI quantitation package. MAGMA. 2001;12:141–52. doi: 10.1007/BF02668096. PubMed DOI
Vanhamme L, van den Boogaart A, Van Huffel S. Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson. 1997;129:35–43. doi: 10.1006/jmre.1997.1244. PubMed DOI
Graveron-Demilly D. Quantification in magnetic resonance spectroscopy based on semi-parametric approaches. MAGMA. 2014;27:113–30. doi: 10.1007/s10334-013-0393-4. PubMed DOI
Haase A, Frahm J, Matthaei K. FLASH imaging: rapid NMR imaging using low flip angle pulses. J Magn Reson. 1986;67:258–66. doi: 10.1016/0022-2364(86)90433-6. PubMed DOI
Breuer FA, Blaimer M, Heidemann RM, Mueller MF, Griswold MA, Jakob PM. Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi-slice imaging. Magn Reson Med. 2005;53:684–91. doi: 10.1002/mrm.20401. PubMed DOI
Breuer FA, Blaimer M, Mueller MF, Seiberlich N, Heidemann RM, Griswold MA, et al. Controlled aliasing in volumetric parallel imaging (2D CAIPIRINHA) Magn Reson Med. 2006;55:549–56. doi: 10.1002/mrm.20787. PubMed DOI
Korínek R, Eckstein K, Stračuk Z, Jr, Trattnig S, Krššák M. Proceeding International Society Magnetic Resonance Medicine. Montreal, QC; 2019. Feasibility of abdominal quantitative imaging at 7T: pilot study.
Williams H, Doran E, Bawden S, Mirfin C, Gowland P. Proceeding International Society Magnetic Resonance Medicine. Montreal, QC: 2019. Liver mDixon at 7T.
Leporq B, Lambert SA, Ronot M, Boucenna I, Colinart P, Cauchy F, et al. Hepatic fat fraction and visceral adipose tissue fatty acid composition in mice: quantification with 7.0T MRI. Magn Reson Med. 2016;76:510–8. doi: 10.1002/mrm.25895. PubMed DOI
Berglund J, Ahlström H, Kullberg J. Model-based mapping of fat unsaturation and chain length by chemical shift imaging-phantom validation and in vivo feasibility. Magn Reson Med. 2012;68:1815–27. doi: 10.1002/mrm.24196. PubMed DOI
Metzger GJ, Auerbach EJ, Akgun C, Simonson J, Bi X, Ugurbil K, et al. Dynamically applied B1+ shimming solutions for non-contrast enhanced renal angiography at 7.0 Tesla. Magn Reson Med. 2013;69:114–26. doi: 10.1002/mrm.24237. PubMed DOI PMC
Damen M, van Houtum Q, van Leeuwen M, Luijten P, Webb A, Klomp, et al. Proceeding International Society Magnetic Resonance Medicine. Honolulu, HI: 2017. Quantitative T1 and T2 measurements of pancreas at 7 Tesla using a multi-transmit system.
Vaughan JT, Snyder CJ, DelaBarre LJ, Bolan PJ, Tian J, Bolinger L, et al. Whole-body imaging at 7T: preliminary results. Magn Reson Med. 2009;61:244–8. doi: 10.1002/mrm.21751. PubMed DOI PMC
Vaughan J, Snyder C, Delabarre L, Tian J, Adriany G, Andersen P, et al. Proceeding International Society Magnetic Resonance Medicine. Honolulu: 2009. Clinical imaging at 7T with a 16 channel whole body coil and 32 receive channels.