Mitochondrially-Targeted Therapeutic Strategies for Alzheimer's Disease

. 2021 ; 18 (10) : 753-771.

Jazyk angličtina Země Spojené arabské emiráty Médium print

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34879805

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000868 European Regional Development Fund- Project ENOCH 750

Alzheimer's disease (AD) is an irreversible, progressive neurodegenerative disease and the most common cause of dementia among older adults. There are no effective treatments available for the disease, and it is associated with great societal concern because of the substantial costs of providing care to its sufferers, whose numbers will increase as populations age. While multiple causes have been proposed to be significant contributors to the onset of sporadic AD, increased age is a unifying risk factor. In addition to amyloid-β (Aβ) and tau protein playing a key role in the initiation and progression of AD, impaired mitochondrial bioenergetics and dynamics are likely major etiological factors in AD pathogenesis and have many potential origins, including Aβ and tau. Mitochondrial dysfunction is evident in the central nervous system (CNS) and systemically early in the disease process. Addressing these multiple mitochondrial deficiencies is a major challenge of mitochondrial systems biology. We review evidence for mitochondrial impairments ranging from mitochondrial DNA (mtDNA) mutations to epigenetic modification of mtDNA, altered gene expression, impaired mitobiogenesis, oxidative stress, altered protein turnover and changed organelle dynamics (fission and fusion). We also discuss therapeutic approaches, including repurposed drugs, epigenetic modifiers, and lifestyle changes that target each level of deficiency which could potentially alter the course of this progressive, heterogeneous Disease while being cognizant that successful future therapeutics may require a combinatorial approach.

Zobrazit více v PubMed

Cummings J. New approaches to symptomatic treatments for Alzheimer’s disease. Mol. Neurodegener. 2021;16(1):2. doi: 10.1186/s13024-021-00424-9. PubMed DOI PMC

Tsai S.J., SJ Huperzine-A, a versatile herb, for the treatment of Alzheimer’s disease. J. Chin. Med. Assoc. 2019;82(10):750–751. doi: 10.1097/JCMA.0000000000000151. PubMed DOI

Gul A., Bakht J., Mehmood F. Huperzine-A response to cognitive impairment and task switching deficits in patients with Alzheimer’s disease. J. Chin. Med. Assoc. 2019;82(1):40–43. doi: 10.1016/j.jcma.2018.07.004. PubMed DOI

Xing S.H., Zhu C.X., Zhang R., An L. Huperzine a in the treatment of Alzheimer’s disease and vascular dementia: a meta-analysis. Evid. Based Complement. Alternat. Med. 2014;2014:363985. doi: 10.1155/2014/363985. PubMed DOI PMC

Jarmolowicz A.I., Chen H.Y., Panegyres P.K. The patterns of inheritance in early-onset dementia: Alzheimer’s disease and frontotemporal dementia. Am. J. Alzheimers Dis. Other Demen. 2015;30(3):299–306. doi: 10.1177/1533317514545825. PubMed DOI PMC

Campion D., Dumanchin C., Hannequin D., Dubois B., Belliard S., Puel M., Thomas-Anterion C., Michon A., Martin C., Charbonnier F., Raux G., Camuzat A., Penet C., Mesnage V., Martinez M., Clerget-Darpoux F., Brice A., Frebourg T. Early-onset autosomal dominant Alzheimer disease: prevalence, genetic heterogeneity, and mutation spectrum. Am. J. Hum. Genet. 1999;65(3):664–670. doi: 10.1086/302553. PubMed DOI PMC

Li N., Liu K., Qiu Y., Ren Z., Dai R., Deng Y., Qing H. Effect of presenilin mutations on APP cleavage; insights into the pathogenesis of FAD. Front. Aging Neurosci. 2016;8:51. doi: 10.3389/fnagi.2016.00051. PubMed DOI PMC

Behl T., Kaur I., Fratila O., Brata R., Bungau S. Exploring the potential of therapeutic agents targeted towards mitigating the events associated with amyloid-β cascade in Alzheimer’s disease. Int. J. Mol. Sci. 2020;21(20):7443. doi: 10.3390/ijms21207443. PubMed DOI PMC

Hardy J.A., Higgins G.A. Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992;256(5054):184–185. doi: 10.1126/science.1566067. PubMed DOI

Huang Y., Mucke L. Alzheimer mechanisms and therapeutic strategies. Cell. 2012;148(6):1204–1222. doi: 10.1016/j.cell.2012.02.040. PubMed DOI PMC

Haass C., Kaether C., Thinakaran G., Sisodia S. Trafficking and proteolytic processing of APP. Cold Spring Harb. Perspect. Med. 2012;2(5):a006270. doi: 10.1101/cshperspect.a006270. PubMed DOI PMC

Muirhead K.E., Borger E., Aitken L., Conway S.J., Gunn-Moore F.J. The consequences of mitochondrial amyloid beta-peptide in Alzheimer’s disease. Biochem. J. 2010;426(3):255–270. doi: 10.1042/BJ20091941. PubMed DOI

Su B., Wang X., Nunomura A., Moreira P.I., Lee H.G., Perry G., Smith M.A., Zhu X. Oxidative stress signaling in Alzheimer’s disease. Curr. Alzheimer Res. 2008;5(6):525–532. doi: 10.2174/156720508786898451. PubMed DOI PMC

Fessel J. Ineffective levels of transforming growth factors and their receptor account for old age being a risk factor for Alzheimer’s disease. Alzheimers Dement. (N. Y.) 2019;5:899–905. doi: 10.1016/j.trci.2019.11.007. PubMed DOI PMC

Dorszewska J., Prendecki M., Oczkowska A., Dezor M., Kozubski W. Molecular basis of familial and sporadic alzheimer’s disease. Curr. Alzheimer Res. 2016;13(9):952–963. doi: 10.2174/1567205013666160314150501. PubMed DOI

Milind N., Preuss C., Haber A., Ananda G., Mukherjee S., John C., Shapley S., Logsdon B.A., Crane P.K., Carter G.W. Transcriptomic stratification of late-onset Alzheimer’s cases reveals novel genetic modifiers of disease pathology. PLoS Genet. 2020;16(6):e1008775. doi: 10.1371/journal.pgen.1008775. PubMed DOI PMC

Allen M., Zou F., Chai H.S., Younkin C.S., Crook J., Pankratz V.S., Carrasquillo M.M., Rowley C.N., Nair A.A., Middha S., Maharjan S., Nguyen T., Ma L., Malphrus K.G., Palusak R., Lincoln S., Bisceglio G., Georgescu C., Schultz D., Rakhshan F., Kolbert C.P., Jen J., Haines J.L., Mayeux R., Pericak-Vance M.A., Farrer L.A., Schellenberg G.D., Petersen R.C., Graff-Radford N.R., Dickson D.W., Younkin S.G., Ertekin-Taner N., Apostolova L.G., Arnold S.E., Baldwin C.T., Barber R., Barmada M.M., Beach T., Beecham G.W., Beekly D., Bennett D.A., Bigio E.H., Bird T.D., Blacker D., Boeve B.F., Bowen J.D., Boxer A., Burke J.R., Buros J., Buxbaum J.D., Cairns N.J., Cantwell L.B., Cao C., Carlson C.S., Carney R.M., Carroll S.L., Chui H.C., Clark D.G., Corneveaux J., Cotman C.W., Crane P.K., Cruchaga C., Cummings J.L., De Jager P.L., DeCarli C., DeKosky S.T., Demirci F.Y., Diaz-Arrastia R., Dick M., Dombroski B.A., Duara R., Ellis W.D., Evans D., Faber K.M., Fallon K.B., Farlow M.R., Ferris S., Foroud T.M., Frosch M., Galasko D.R., Gallins P.J., Ganguli M., Gearing M., Geschwind D.H., Ghetti B., Gilbert J.R., Gilman S., Giordani B., Glass J.D., Goate A.M., Green R.C., Growdon J.H., Hakonarson H., Hamilton R.L., Hardy J., Harrell L.E., Head E., Honig L.S., Huentelman M.J., Hulette C.M., Hyman B.T., Jarvik G.P., Jicha G.A., Jin L.W., Jun G., Kamboh M.I., Karlawish J., Karydas A., Kauwe J.S., Kaye J.A., Kennedy N., Kim R., Koo E.H., Kowall N.W., Kramer P., Kukull W.A., Lah J.J., Larson E.B., Levey A.I., Lieberman A.P., Lopez O.L., Lunetta K.L., Mack W.J., Marson D.C., Martin E.R., Martiniuk F., Mash D.C., Masliah E., McCormick W.C., McCurry S.M., McDavid A.N., McKee A.C., Mesulam M., Miller B.L., Miller C.A., Miller J.W., Montine T.J., Morris J.C., Myers A.J., Naj A.C., Nowotny P., Parisi J.E., Perl D.P., Peskind E., Poon W.W., Potter H., Quinn J.F., Raj A., Rajbhandary R.A., Raskind M., Reiman E.M., Reisberg B., Reitz C., Ringman J.M., Roberson E.D., Rogaeva E., Rosenberg R.N., Sano M., Saykin A.J., Schneider J.A., Schneider L.S., Seeley W., Shelanski M.L., Slifer M.A., Smith C.D., Sonnen J.A., Spina S., St George-Hyslop P., Stern R.A., Tanzi R.E., Trojanowski J.Q., Troncoso J.C., Tsuang D.W., Van Deerlin V.M., Vardarajan B.N., Vinters H.V., Vonsattel J.P., Wang L.S., Weintraub S., Welsh-Bohmer K.A., Williamson J., Woltjer R.L., Alzheimer’s Disease Genetics Consortium (ADGC) Novel late-onset Alzheimer disease loci variants associate with brain gene expression. Neurology. 2012;79(3):221–228. doi: 10.1212/WNL.0b013e3182605801. PubMed DOI PMC

Zhu L., Zhong M., Elder G.A., Sano M., Holtzman D.M., Gandy S., Cardozo C., Haroutunian V., Robakis N.K., Cai D. Phospholipid dysregulation contributes to ApoE4-associated cognitive deficits in Alzheimer’s disease pathogenesis. Proc. Natl. Acad. Sci. USA. 2015;112(38):11965–11970. doi: 10.1073/pnas.1510011112. PubMed DOI PMC

El Gaamouch F., Jing P., Xia J., Cai D. Alzheimer’s disease risk genes and lipid regulators. J. Alzheimers Dis. 2016;53(1):15–29. doi: 10.3233/JAD-160169. PubMed DOI

De Strooper B., Karran E. The cellular phase of Alzheimer’s disease. Cell. 2016;164(4):603–615. doi: 10.1016/j.cell.2015.12.056. PubMed DOI

Barber R.C. The genetics of Alzheimer’s disease. Scientifica (Cairo) 2012;2012:246210. doi: 10.6064/2012/246210. PubMed DOI PMC

Munoz D.G., Feldman H. Causes of Alzheimer’s disease. CMAJ. 2000;162(1):65–72. PubMed PMC

Jensen N.J., Wodschow H.Z., Nilsson M., Rungby J. Effects of ketone bodies on brain metabolism and function in neurodegenerative diseases. Int. J. Mol. Sci. 2020;21(22):8767. doi: 10.3390/ijms21228767. PubMed DOI PMC

Golpich M., Amini E., Mohamed Z., Azman Ali R., Mohamed Ibrahim N., Ahmadiani A. Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: Pathogenesis and treatment. CNS Neurosci. Ther. 2017;23(1):5–22. doi: 10.1111/cns.12655. PubMed DOI PMC

Calsolaro V., Edison P. Alterations in glucose metabolism in Alzheimer’s disease. Recent Pat. Endocr. Metab. Immune Drug Discov. 2016;10(1):31–39. doi: 10.2174/1872214810666160615102809. PubMed DOI

Chételat G., Desgranges B., de la Sayette V., Viader F., Eustache F., Baron J.C. Mild cognitive impairment: Can FDG-PET predict who is to rapidly convert to Alzheimer’s disease? Neurology. 2003;60(8):1374–1377. doi: 10.1212/01.WNL.0000055847.17752.E6. PubMed DOI

Pagani M., Nobili F., Morbelli S., Arnaldi D., Giuliani A., Öberg J., Girtler N., Brugnolo A., Picco A., Bauckneht M., Piva R., Chincarini A., Sambuceti G., Jonsson C., De Carli F. Early identification of MCI converting to AD: a FDG PET study. Eur. J. Nucl. Med. Mol. Imaging. 2017;44(12):2042–2052. doi: 10.1007/s00259-017-3761-x. PubMed DOI

Hu H., Tan C.C., Tan L., Yu J.T. A mitocentric view of Alzheimer’s disease. Mol. Neurobiol. 2017;54(8):6046–6060. doi: 10.1007/s12035-016-0117-7. PubMed DOI

Poulose N., Raju R. Sirtuin regulation in aging and injury. Biochimica et Biophysica Acta (BBA) 2015;1852(11):2442–55. doi: 10.1016/j.bbadis.2015.08.017. PubMed DOI PMC

De Felice F.G., Ferreira S.T. Inflammation, defective insulin signaling, and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to Alzheimer disease. Diabetes. 2014;63(7):2262–2272. doi: 10.2337/db13-1954. PubMed DOI

Spielman L.J., Little J.P., Klegeris A. Inflammation and insulin/IGF-1 resistance as the possible link between obesity and neurodegeneration. J. Neuroimmunol. 2014;273(1-2):8–21. doi: 10.1016/j.jneuroim.2014.06.004. PubMed DOI

Willette A. Does metabolic syndrome impact cognition and emotion in Alzheimer’s disease? Eur. J. Neurol. 2016;23(2):237–238. doi: 10.1111/ene.12879. PubMed DOI

Wang X.F., Lin X., Li D.Y., Zhou R., Greenbaum J., Chen Y.C., Zeng C.P., Peng L.P., Wu K.H., Ao Z.X., Lu J.M., Guo Y.F., Shen J., Deng H.W. Linking Alzheimer’s disease and type 2 diabetes: Novel shared susceptibility genes detected by cFDR approach. J. Neurol. Sci. 2017;380:262–272. doi: 10.1016/j.jns.2017.07.044. PubMed DOI PMC

Rios J.A., Cisternas P., Arrese M., Barja S., Inestrosa N.C. Is Alzheimer’s disease related to metabolic syndrome? A Wnt signaling conundrum. Prog Neurobiol. 2014;121:125–146. doi: 10.1016/j.pneurobio.2014.07.004. PubMed DOI

Pistollato F., Sumalla Cano S., Elio I., Masias Vergara M., Giampieri F., Battino M. Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease. Nutr. Rev. 2016;74(10):624–634. doi: 10.1093/nutrit/nuw023. PubMed DOI

Demetrius L.A., Driver J. Alzheimer’s as a metabolic disease. Biogerontology. 2013;14(6):641–649. doi: 10.1007/s10522-013-9479-7. PubMed DOI

Liu C.C., Liu C.C., Kanekiyo T., Xu H., Bu G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat. Rev. Neurol. 2013;9(2):106–118. doi: 10.1038/nrneurol.2012.263. PubMed DOI PMC

Burke S.L., Maramaldi P., Cadet T., Kukull W. Associations between depression, sleep disturbance, and apolipoprotein E in the development of Alzheimer’s disease: dementia. Int. Psychogeriatr. 2016;28(9):1409–1424. doi: 10.1017/S1041610216000405. PubMed DOI PMC

Saul D, Kosinsky R.L. Epigenetics of aging and aging-associated diseases. Int. J. Mol. Sci. 2021;22:401. doi: 10.3390/ijms22010401. PubMed DOI PMC

Brunet A., Berger S.L. Epigenetics of aging and aging-related disease. J. Gerontol. A Biol. Sci. Med. Sci. 2014;69(Suppl. 1):S17–S20. doi: 10.1093/gerona/glu042. PubMed DOI PMC

Stoccoro A., Coppedè F. Role of epigenetics in Alzheimer’s disease pathogenesis. Neurodegener. Dis. Manag. 2018;8(3):181–193. doi: 10.2217/nmt-2018-0004. PubMed DOI

Qazi T.J., Quan Z., Mir A., Qing H. Epigenetics in Alzheimer’s disease: perspective of DNA methylation. Mol. Neurobiol. 2018;55(2):1026–1044. doi: 10.1007/s12035-016-0357-6. PubMed DOI

Misrani A., Tabassum S., Yang L. Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease. Front. Aging Neurosci. 2021;13:617588. doi: 10.3389/fnagi.2021.617588. PubMed DOI PMC

Hroudová J., Singh N., Fišar Z. Mitochondrial dysfunctions in neurodegenerative diseases: relevance to Alzheimer's disease. Biomed Res Int. 2014;2014:175062. doi: 10.1155/2014/175062. PubMed DOI PMC

Blanch M., Mosquera J.L., Ansoleaga B., Ferrer I., Barrachina M. Altered mitochondrial DNA methylation pattern in Alzheimer disease-related pathology and in Parkinson disease. Am. J. Pathol. 2016;186(2):385–397. doi: 10.1016/j.ajpath.2015.10.004. PubMed DOI

Stoccoro A., Siciliano G., Migliore L., Coppedè F. Decreased methylation of the mitochondrial d-loop region in late-onset Alzheimer’s disease. J. Alzheimers Dis. 2017;59(2):559–564. doi: 10.3233/JAD-170139. PubMed DOI

Mposhi A., Van der Wijst M.G., Faber K.N., Rots M.G. Regulation of mitochondrial gene expression, the epigenetic enigma. Front. Biosci. 2017;22:1099–1113. doi: 10.2741/4535. PubMed DOI

Wang Y., Xu E., Musich P.R., Lin F. Mitochondrial dysfunction in neurodegenerative diseases and the potential countermeasure. CNS Neurosci. Ther. 2019;25(7):816–824. doi: 10.1111/cns.13116. PubMed DOI PMC

Reddy P.H. Mitochondrial medicine for aging and neurodegenerative diseases. Neuromolecular Med. 2008;10(4):291–315. doi: 10.1007/s12017-008-8044-z. PubMed DOI PMC

Anderson S., Bankier A.T., Barrell B.G., de Bruijn M.H., Coulson A.R., Drouin J., Eperon I.C., Nierlich D.P., Roe B.A., Sanger F., Schreier P.H., Smith A.J., Staden R., Young I.G. Sequence and organization of the human mitochondrial genome. Nature. 1981;290(5806):457–465. doi: 10.1038/290457a0. PubMed DOI

Tobore T.O., TO On the central role of mitochondria dysfunction and oxidative stress in Alzheimer’s disease. Neurol. Sci. 2019;40(8):1527–1540. doi: 10.1007/s10072-019-03863-x. PubMed DOI

Chan D.C. Mitochondrial dynamics and its involvement in disease. Annu Rev Pathol Mech Dis. 2020;15:235–259. doi: 10.1146/annurev-pathmechdis-012419-032711. PubMed DOI

Chan D.C. Mitochondrial fusion and fission in mammals. Annu. Rev. Cell Dev. Biol. 2006;22:79–99. doi: 10.1146/annurev.cellbio.22.010305.104638. PubMed DOI

Vinten-Johansen J. Commentary: Mitochondria are more than just the cells’ powerhouse. J. Thorac. Cardiovasc. Surg. 2020;160(2):e33–e34. doi: 10.1016/j.jtcvs.2019.07.029. PubMed DOI

Stefano G.B., Challenger S., Kream R.M. Hyperglycemia-associated alterations in cellular signaling and dysregulated mitochondrial bioenergetics in human metabolic disorders. Eur. J. Nutr. 2016;55(8):2339–2345. doi: 10.1007/s00394-016-1212-2. PubMed DOI PMC

Chen H., Chomyn A., Chan D.C. Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J. Biol. Chem. 2005;280(28):26185–26192. doi: 10.1074/jbc.M503062200. PubMed DOI

McBride H.M., Neuspiel M., Wasiak S. Mitochondria: more than just a powerhouse. Curr. Biol. 2006;16(14):R551–R560. doi: 10.1016/j.cub.2006.06.054. PubMed DOI

Yu T., Robotham J.L., Yoon Y. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc. Natl. Acad. Sci. USA. 2006;103(8):2653–2658. doi: 10.1073/pnas.0511154103. PubMed DOI PMC

Burgstaller J.P., Kolbe T., Havlicek V., Hembach S., Poulton J., Piálek J., Steinborn R., Rülicke T., Brem G., Jones N.S., Johnston I.G. Large-scale genetic analysis reveals mammalian mtDNA heteroplasmy dynamics and variance increase through lifetimes and generations. Nat. Commun. 2018;9(1):2488. doi: 10.1038/s41467-018-04797-2. PubMed DOI PMC

Stewart J.B., Chinnery P.F. The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat. Rev. Genet. 2015;16(9):530–542. doi: 10.1038/nrg3966. PubMed DOI

Chu C.T., CT Mechanisms of selective autophagy and mitophagy: Implications for neurodegenerative diseases. Neurobiol. Dis. 2019;122:23–34. doi: 10.1016/j.nbd.2018.07.015. PubMed DOI PMC

Yin F., Sancheti H., Patil I., Cadenas E. Energy metabolism and inflammation in brain aging and Alzheimer’s disease. Free Radic. Biol. Med. 2016;100:108–122. doi: 10.1016/j.freeradbiomed.2016.04.200. PubMed DOI PMC

Santos R.X., Correia S.C., Wang X., Perry G., Smith M.A., Moreira P.I., Zhu X. Alzheimer’s disease: diverse aspects of mitochondrial malfunctioning. Int. J. Clin. Exp. Pathol. 2010;3(6):570–581. PubMed PMC

Cunnane S., Nugent S., Roy M., Courchesne-Loyer A., Croteau E., Tremblay S., Castellano A., Pifferi F., Bocti C., Paquet N., Begdouri H., Bentourkia M., Turcotte E., Allard M., Barberger-Gateau P., Fulop T., Rapoport S.I. Brain fuel metabolism, aging, and Alzheimer’s disease. Nutrition. 2011;27(1):3–20. doi: 10.1016/j.nut.2010.07.021. PubMed DOI PMC

Podlesniy P., Llorens F., Golanska E., Sikorska B., Liberski P., Zerr I., Trullas R. Mitochondrial DNA differentiates Alzheimer’s disease from Creutzfeldt-Jakob disease. Alzheimers Dement. 2016;12(5):546–555. doi: 10.1016/j.jalz.2015.12.011. PubMed DOI

Trimmer P.A., Swerdlow R.H., Parks J.K., Keeney P., Bennett J.P., Jr, Miller S.W., Davis R.E., Parker W.D., Jr Abnormal mitochondrial morphology in sporadic Parkinson’s and Alzheimer’s disease cybrid cell lines. Exp. Neurol. 2000;162(1):37–50. doi: 10.1006/exnr.2000.7333. PubMed DOI

Pantiya P., Thonusin C., Chattipakorn N., Chattipakorn S.C. Mitochondrial abnormalities in neurodegenerative models and possible interventions: Focus on Alzheimer’s disease, Parkinson’s disease, Huntington’s disease. Mitochondrion. 2020;55:14–47. doi: 10.1016/j.mito.2020.08.003. PubMed DOI

Baloyannis S.J. Mitochondrial alterations in Alzheimer’s disease. J. Alzheimers Dis. 2006;9(2):119–126. doi: 10.3233/JAD-2006-9204. PubMed DOI

Bonda D.J., Smith M.A., Perry G., Lee H.G., Wang X., Zhu X. The mitochondrial dynamics of Alzheimer’s disease and Parkinson’s disease offer important opportunities for therapeutic intervention. Curr. Pharm. Des. 2011;17(31):3374–3380. doi: 10.2174/138161211798072562. PubMed DOI PMC

Swerdlow R.H., Burns J.M., Khan S.M. The Alzheimer’s disease mitochondrial cascade hypothesis: progress and perspectives. Biochim. Biophys. Acta. 2014;1842(8):1219–1231. doi: 10.1016/j.bbadis.2013.09.010. PubMed DOI PMC

Podlesniy P., Figueiro-Silva J., Llado A., Antonell A., Sanchez-Valle R., Alcolea D., Lleo A., Molinuevo J.L., Serra N., Trullas R. Low cerebrospinal fluid concentration of mitochondrial DNA in preclinical Alzheimer disease. Ann. Neurol. 2013;74(5):655–668. doi: 10.1002/ana.23955. PubMed DOI

Fiorito V., Chiabrando D., Tolosano E. Mitochondrial targeting in neurodegeneration: A heme perspective. Pharmaceuticals (Basel) 2018;11(3):11. doi: 10.3390/ph11030087. PubMed DOI PMC

Wang H., Fang B., Peng B., Wang L., Xue Y., Bai H., Lu S., Voelcker N.H., Li L., Fu L., Huang W. Recent advances in chemical biology of mitochondria targeting. Front Chem. 2021;9:683220. doi: 10.3389/fchem.2021.683220. PubMed DOI PMC

Chan D.C. Mitochondria: dynamic organelles in disease, aging, and development. Cell. 2006;125(7):1241–1252. doi: 10.1016/j.cell.2006.06.010. PubMed DOI

Lunnon K., Keohane A., Pidsley R., Newhouse S., Riddoch-Contreras J., Thubron E.B., Devall M., Soininen H., Kłoszewska I., Mecocci P., Tsolaki M., Vellas B., Schalkwyk L., Dobson R., Malik A.N., Powell J., Lovestone S., Hodges A., AddNeuroMed Consortium Mitochondrial genes are altered in blood early in Alzheimer’s disease. Neurobiol. Aging. 2017;53:36–47. doi: 10.1016/j.neurobiolaging.2016.12.029. PubMed DOI

Lopez Sanchez M.I.G., van Wijngaarden P., Trounce I.A. Amyloid precursor protein-mediated mitochondrial regulation and Alzheimer’s disease. Br. J. Pharmacol. 2019;176(18):3464–3474. doi: 10.1111/bph.14554. PubMed DOI PMC

Du H., Guo L., Yan S., Sosunov A.A., McKhann G.M., Yan S.S. Early deficits in synaptic mitochondria in an Alzheimer’s disease mouse model. Proc. Natl. Acad. Sci. USA. 2010;107(43):18670–18675. doi: 10.1073/pnas.1006586107. PubMed DOI PMC

Anandatheerthavarada H.K., Devi L. Amyloid precursor protein and mitochondrial dysfunction in Alzheimer’s disease. Neuroscientist. 2007;13(6):626–638. doi: 10.1177/1073858407303536. PubMed DOI

Devi L., Prabhu B.M., Galati D.F., Avadhani N.G., Anandatheerthavarada H.K. Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J. Neurosci. 2006;26(35):9057–9068. doi: 10.1523/JNEUROSCI.1469-06.2006. PubMed DOI PMC

Sorrentino V., Romani M., Mouchiroud L., Beck J.S., Zhang H., D’Amico D., Moullan N., Potenza F., Schmid A.W., Rietsch S., Counts S.E., Auwerx J. Enhancing mitochondrial proteostasis reduces amyloid-β proteotoxicity. Nature. 2017;552(7684):187–193. doi: 10.1038/nature25143. PubMed DOI PMC

Burté F., Carelli V., Chinnery P.F., Yu-Wai-Man P. Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat. Rev. Neurol. 2015;11(1):11–24. doi: 10.1038/nrneurol.2014.228. PubMed DOI

Cai Q., Tammineni P. Alterations in mitochondrial quality control in Alzheimer’s disease. Front. Cell. Neurosci. 2016;10:24. doi: 10.3389/fncel.2016.00024. PubMed DOI PMC

Onyango I.G., Dennis J., Khan S.M. Mitochondrial dysfunction in Alzheimer’s disease and the rationale for bioenergetics based therapies. Aging Dis. 2016;7(2):201–214. doi: 10.14336/AD.2015.1007. PubMed DOI PMC

Baraniak P.R., McDevitt T.C. Stem cell paracrine actions and tissue regeneration. Regen. Med. 2010;5(1):121–143. doi: 10.2217/rme.09.74. PubMed DOI PMC

Briston T., Hicks A.R. Mitochondrial dysfunction and neurodegenerative proteinopathies: mechanisms and prospects for therapeutic intervention. Biochem. Soc. Trans. 2018;46(4):829–842. doi: 10.1042/BST20180025. PubMed DOI PMC

Sarasija S., Norman K.R. Role of presenilin in mitochondrial oxidative stress and neurodegeneration in Caenorhabditis elegans. Antioxidants. 2018;7(9):7. doi: 10.3390/antiox7090111. PubMed DOI PMC

Maijenburg M.W., van der Schoot C.E., Voermans C. Mesenchymal stromal cell migration: possibilities to improve cellular therapy. Stem Cells Dev. 2012;21(1):19–29. doi: 10.1089/scd.2011.0270. PubMed DOI

Mendivil-Perez M., Soto-Mercado V., Guerra-Librero A., Fernandez-Gil B.I., Florido J., Shen Y.Q., Tejada M.A., Capilla-Gonzalez V., Rusanova I., Garcia-Verdugo J.M., Acuña-Castroviejo D., López L.C., Velez-Pardo C., Jimenez-Del-Rio M., Ferrer J.M., Escames G. Melatonin enhances neural stem cell differentiation and engraftment by increasing mitochondrial function. J. Pineal Res. 2017;63(2):63. doi: 10.1111/jpi.12415. PubMed DOI

Zhang W., Gu G.J., Shen X., Zhang Q., Wang G.M., Wang P.J. Neural stem cell transplantation enhances mitochondrial biogenesis in a transgenic mouse model of Alzheimer’s disease-like pathology. Neurobiol. Aging. 2015;36(3):1282–1292. doi: 10.1016/j.neurobiolaging.2014.10.040. PubMed DOI

Ahmadian-Moghadam H., Sadat-Shirazi M.S., Zarrindast M.R. Therapeutic potential of stem cells for treatment of neurodegenerative diseases. Biotechnol. Lett. 2020;42(7):1073–1101. doi: 10.1007/s10529-020-02886-1. PubMed DOI

Newell C., Sabouny R., Hittel D.S., Shutt T.E., Khan A., Klein M.S., Shearer J. Mesenchymal stem cells shift mitochondrial dynamics and enhance oxidative phosphorylation in recipient cells. Front. Physiol. 2018;9:1572. doi: 10.3389/fphys.2018.01572. PubMed DOI PMC

Hayakawa K., Esposito E., Wang X., Terasaki Y., Liu Y., Xing C., Ji X., Lo E.H. Transfer of mitochondria from astrocytes to neurons after stroke. Nature. 2016;535(7613):551–555. doi: 10.1038/nature18928. PubMed DOI PMC

Babenko V.A., Silachev D.N., Zorova L.D., Pevzner I.B., Khutornenko A.A., Plotnikov E.Y., Sukhikh G.T., Zorov D.B. Improving the post-stroke therapeutic potency of mesenchymal multipotent stromal cells by Cocultivation with cortical neurons: the role of crosstalk between cells. Stem Cells Transl. Med. 2015;4(9):1011–1020. doi: 10.5966/sctm.2015-0010. PubMed DOI PMC

Sheehan J.P., Swerdlow R.H., Miller S.W., Davis R.E., Parks J.K., Parker W.D., Tuttle J.B. Calcium homeostasis and reactive oxygen species production in cells transformed by mitochondria from individuals with sporadic Alzheimer’s disease. J. Neurosci. 1997;17(12):4612–4622. doi: 10.1523/JNEUROSCI.17-12-04612.1997. PubMed DOI PMC

Schon E.A., Shoubridge E.A., Moraes C.T. Cybrids in Alzheimer’s disease: a cellular model of the disease? Neurology. 1998;51(1):326–327. doi: 10.1212/WNL.51.1.326. PubMed DOI

Chien L., Liang M.Z., Chang C.Y., Wang C., Chen L. Mitochondrial therapy promotes regeneration of injured hippocampal neurons. Biochim. Biophys. Acta Mol. Basis Dis. 2018;1864(9 Pt B):3001–3012. doi: 10.1016/j.bbadis.2018.06.012. PubMed DOI

Williams S.L., Mash D.C., Züchner S., Moraes C.T. Somatic mtDNA mutation spectra in the aging human putamen. PLoS Genet. 2013;9(12):e1003990. doi: 10.1371/journal.pgen.1003990. PubMed DOI PMC

Wallace D.C., Chalkia D. Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harb. Perspect. Biol. 2013;5(11):a021220. doi: 10.1101/cshperspect.a021220. PubMed DOI PMC

Wei W., Tuna S., Keogh M.J., Smith K.R., Aitman T.J., Beales P.L., Bennett D.L., Gale D.P., Bitner-Glindzicz M.A.K., Black G.C., Brennan P., Elliott P., Flinter F.A., Floto R.A., Houlden H., Irving M., Koziell A., Maher E.R., Markus H.S., Morrell N.W., Newman W.G., Roberts I., Sayer J.A., Smith K.G.C., Taylor J.C., Watkins H., Webster A.R., Wilkie A.O.M., Williamson C., Ashford S., Penkett C.J., Stirrups K.E., Rendon A., Ouwehand W.H., Bradley J.R., Raymond F.L., Caulfield M., Turro E., Chinnery P.F., NIHR BioResource–Rare Diseases. 100,000 Genomes Project–Rare Diseases Pilot Germline selection shapes human mitochondrial DNA diversity. Science. 2019;364(6442):364. doi: 10.1126/science.aau6520. PubMed DOI

Filograna R., Mennuni M., Alsina D., Larsson N.G. Mitochondrial DNA copy number in human disease: the more the better? FEBS Lett. 2021;595(8):976–1002. doi: 10.1002/1873-3468.14021. PubMed DOI PMC

Frahm T., Mohamed S.A., Bruse P., Gemünd C., Oehmichen M., Meissner C. Lack of age-related increase of mitochondrial DNA amount in brain, skeletal muscle and human heart. Mech. Ageing Dev. 2005;126(11):1192–1200. doi: 10.1016/j.mad.2005.06.008. PubMed DOI

Ross J.M., Stewart J.B., Hagström E., Brené S., Mourier A., Coppotelli G., Freyer C., Lagouge M., Hoffer B.J., Olson L., Larsson N.G. Germline mitochondrial DNA mutations aggravate ageing and can impair brain development. Nature. 2013;501(7467):412–415. doi: 10.1038/nature12474. PubMed DOI PMC

Grazina M., Pratas J., Silva F., Oliveira S., Santana I., Oliveira C. Genetic basis of Alzheimer’s dementia: role of mtDNA mutations. Genes Brain Behav. 2006;5(Suppl. 2):92–107. doi: 10.1111/j.1601-183X.2006.00225.x. PubMed DOI

Rai P.K., Craven L., Hoogewijs K., Russell O.M., Lightowlers R.N. Advances in methods for reducing mitochondrial DNA disease by replacing or manipulating the mitochondrial genome. Essays Biochem. 2018;62(3):455–465. doi: 10.1042/EBC20170113. PubMed DOI PMC

Gammage P.A., Moraes C.T., Minczuk M. Mitochondrial genome engineering: The revolution may not be CRISPR-Ized. Trends Genet. 2018;34(2):101–110. doi: 10.1016/j.tig.2017.11.001. PubMed DOI PMC

Pereira C.V., Bacman S.R., Arguello T., Zekonyte U., Williams S.L., Edgell D.R., Moraes C.T. mitoTev-TALE: a monomeric DNA editing enzyme to reduce mutant mitochondrial DNA levels. EMBO Mol. Med. 2018;10(9):e8084. doi: 10.15252/emmm.201708084. PubMed DOI PMC

Peeva V., Blei D., Trombly G., Corsi S., Szukszto M.J., Rebelo-Guiomar P., Gammage P.A., Kudin A.P., Becker C., Altmüller J., Minczuk M., Zsurka G., Kunz W.S. Linear mitochondrial DNA is rapidly degraded by components of the replication machinery. Nat. Commun. 2018;9(1):1727. doi: 10.1038/s41467-018-04131-w. PubMed DOI PMC

Viscomi C. Toward a therapy for mitochondrial disease. Biochem. Soc. Trans. 2016;44(5):1483–1490. doi: 10.1042/BST20160085. PubMed DOI PMC

Mok B.Y., de Moraes M.H., Zeng J., Bosch D.E., Kotrys A.V., Raguram A., Hsu F., Radey M.C., Peterson S.B., Mootha V.K., Mougous J.D., Liu D.R. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature. 2020;583(7817):631–637. doi: 10.1038/s41586-020-2477-4. PubMed DOI PMC

Viscomi C., Bottani E., Zeviani M. Emerging concepts in the therapy of mitochondrial disease. Biochim. Biophys. Acta. 2015;1847(6-7):544–557. doi: 10.1016/j.bbabio.2015.03.001. PubMed DOI

Finck B.N., Kelly D.P. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J. Clin. Invest. 2006;116(3):615–622. doi: 10.1172/JCI27794. PubMed DOI PMC

Scarpulla R.C. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim. Biophys. Acta. 2011;1813(7):1269–1278. doi: 10.1016/j.bbamcr.2010.09.019. PubMed DOI PMC

Virbasius J.V., Scarpulla R.C. Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc. Natl. Acad. Sci. USA. 1994;91(4):1309–1313. doi: 10.1073/pnas.91.4.1309. PubMed DOI PMC

Picca A., Lezza A.M. Regulation of mitochondrial biogenesis through TFAM-mitochondrial DNA interactions: Useful insights from aging and calorie restriction studies. Mitochondrion. 2015;25:67–75. doi: 10.1016/j.mito.2015.10.001. PubMed DOI

Oyewole A.O., Birch-Machin M.A. Mitochondria-targeted antioxidants. FASEB J. 2015;29(12):4766–4771. doi: 10.1096/fj.15-275404. PubMed DOI

Fang Y., Hu X.H., Jia Z.G., Xu M.H., Guo Z.Y., Gao F.H. Tiron protects against UVB-induced senescence-like characteristics in human dermal fibroblasts by the inhibition of superoxide anion production and glutathione depletion. Australas. J. Dermatol. 2012;53(3):172–180. doi: 10.1111/j.1440-0960.2012.00912.x. PubMed DOI

Piermarocchi S., Saviano S., Parisi V., Tedeschi M., Panozzo G., Scarpa G., Boschi G., Lo Giudice G., Carmis Study Group Carotenoids in Age-related Maculopathy Italian Study (CARMIS): two-year results of a randomized study. Eur. J. Ophthalmol. 2012;22(2):216–225. doi: 10.5301/ejo.5000069. PubMed DOI

Hafez H.A., Kamel M.A., Osman M.Y., Osman H.M., Elblehi S.S., Mahmoud S.A. Ameliorative effects of astaxanthin on brain tissues of alzheimer’s disease-like model: cross talk between neuronal-specific microRNA-124 and related pathways. Mol. Cell. Biochem. 2021;476(5):2233–2249. doi: 10.1007/s11010-021-04079-4. PubMed DOI

Santonocito D., Raciti G., Campisi A., Sposito G., Panico A., Siciliano E.A., Sarpietro M.G., Damiani E., Puglia C. Astaxanthin-loaded stealth lipid nanoparticles (AST-SSLN) as potential carriers for the treatment of Alzheimer’s disease: Formulation development and optimization. Nanomaterials (Basel) 2021;11(2):391. doi: 10.3390/nano11020391. PubMed DOI PMC

Wu W., Wang X., Xiang Q., Meng X., Peng Y., Du N., Liu Z., Sun Q., Wang C., Liu X. Astaxanthin alleviates brain aging in rats by attenuating oxidative stress and increasing BDNF levels. Food Funct. 2014;5(1):158–166. doi: 10.1039/C3FO60400D. PubMed DOI

Smith R.A., Murphy M.P. Mitochondria-targeted antioxidants as therapies. Discov. Med. 2011;11(57):106–114. PubMed

Nissanka N., Moraes C.T. Mitochondrial DNA heteroplasmy in disease and targeted nuclease-based therapeutic approaches. EMBO Rep. 2020;21(3):e49612. doi: 10.15252/embr.201949612. PubMed DOI PMC

Bacman S.R., Williams S.L., Pinto M., Peralta S., Moraes C.T. Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat. Med. 2013;19(9):1111–1113. doi: 10.1038/nm.3261. PubMed DOI PMC

Yang Y., Wu H., Kang X., Liang Y., Lan T., Li T., Tan T., Peng J., Zhang Q., An G., Liu Y., Yu Q., Ma Z., Lian Y., Soh B.S., Chen Q., Liu P., Chen Y., Sun X., Li R., Zhen X., Liu P., Yu Y., Li X., Fan Y. Targeted elimination of mutant mitochondrial DNA in MELAS-iPSCs by mitoTALENs. Protein Cell. 2018;9(3):283–297. doi: 10.1007/s13238-017-0499-y. PubMed DOI PMC

Zakirova E.G., Muzyka V.V., Mazunin I.O., Orishchenko K.E. Natural and artificial mechanisms of mitochondrial genome elimination. Life (Basel) 2021;11(2):76. doi: 10.3390/life11020076. PubMed DOI PMC

Bacman S.R., Kauppila J.H.K., Pereira C.V., Nissanka N., Miranda M., Pinto M., Williams S.L., Larsson N.G., Stewart J.B., Moraes C.T. MitoTALEN reduces mutant mtDNA load and restores tRNAAla levels in a mouse model of heteroplasmic mtDNA mutation. Nat. Med. 2018;24(11):1696–1700. doi: 10.1038/s41591-018-0166-8. PubMed DOI PMC

Gammage P.A., Rorbach J., Vincent A.I., Rebar E.J., Minczuk M. Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations. EMBO Mol. Med. 2014;6(4):458–466. doi: 10.1002/emmm.201303672. PubMed DOI PMC

Craven L., Alston C.L., Taylor R.W., Turnbull D.M. Recent advances in mitochondrial Disease. Annu. Rev. Genomics Hum. Genet. 2017;18:257–275. doi: 10.1146/annurev-genom-091416-035426. PubMed DOI

Chang J.C., Wu S.L., Liu K.H., Chen Y.H., Chuang C.S., Cheng F.C., Su H.L., Wei Y.H., Kuo S.J., Liu C.S. Allogeneic/xenogeneic transplantation of peptide-labeled mitochondria in Parkinson’s disease: restoration of mitochondria functions and attenuation of 6-hydroxydopamine-induced neurotoxicity. Transl. Res. 2016;170:40–56.e3. doi: 10.1016/j.trsl.2015.12.003. PubMed DOI

Schon E.A., DiMauro S., Hirano M. Human mitochondrial DNA: roles of inherited and somatic mutations. Nat. Rev. Genet. 2012;13(12):878–890. doi: 10.1038/nrg3275. PubMed DOI PMC

Schon E.A., Przedborski S. Mitochondria: the next (neurode)generation. Neuron. 2011;70(6):1033–1053. doi: 10.1016/j.neuron.2011.06.003. PubMed DOI PMC

Corral-Debrinski M., Horton T., Lott M.T., Shoffner J.M., McKee A.C., Beal M.F., Graham B.H., Wallace D.C. Marked changes in mitochondrial DNA deletion levels in Alzheimer brains. Genomics. 1994;23(2):471–476. doi: 10.1006/geno.1994.1525. PubMed DOI

Coskun P.E., Beal M.F., Wallace D.C. Alzheimer’s brains harbor somatic mtDNA control-region mutations that suppress mitochondrial transcription and replication. Proc. Natl. Acad. Sci. USA. 2004;101(29):10726–10731. doi: 10.1073/pnas.0403649101. PubMed DOI PMC

Chocron E.S., Munkácsy E., Pickering A.M. Cause or casualty: The role of mitochondrial DNA in aging and age-associated disease. Biochim. Biophys. Acta Mol. Basis Dis. 2019;1865(2):285–297. doi: 10.1016/j.bbadis.2018.09.035. PubMed DOI PMC

Swerdlow R.H., Koppel S., Weidling I., Hayley C., Ji Y., Wilkins H.M. Mitochondria, cybrids, aging, and Alzheimer’s disease. Prog. Mol. Biol. Transl. Sci. 2017;146:259–302. doi: 10.1016/bs.pmbts.2016.12.017. PubMed DOI PMC

Lin M.T., Simon D.K., Ahn C.H., Kim L.M., Beal M.F. High aggregate burden of somatic mtDNA point mutations in aging and Alzheimer’s disease brain. Hum. Mol. Genet. 2002;11(2):133–145. doi: 10.1093/hmg/11.2.133. PubMed DOI

Duarte-Jurado A.P., Gopar-Cuevas Y., Saucedo-Cardenas O., Loera-Arias M.J., Montes-de-Oca-Luna R., Garcia-Garcia A., Rodriguez-Rocha H. Antioxidant therapeutics in Parkinson’s disease: Current challenges and opportunities. Antioxidants. 2021;10(3):453. doi: 10.3390/antiox10030453. PubMed DOI PMC

Polyzos A.A., Wood N.I., Williams P., Wipf P., Morton A.J., McMurray C.T. XJB-5-131-mediated improvement in physiology and behaviour of the R6/2 mouse model of Huntington’s disease is age- and sex- dependent. PLoS One. 2018;13(4):e0194580. doi: 10.1371/journal.pone.0194580. PubMed DOI PMC

Jin H., Kanthasamy A., Ghosh A., Anantharam V., Kalyanaraman B., Kanthasamy A.G. Mitochondria-targeted antioxidants for treatment of Parkinson’s disease: preclinical and clinical outcomes. Biochim. Biophys. Acta. 2014;1842(8):1282–1294. doi: 10.1016/j.bbadis.2013.09.007. PubMed DOI PMC

Xun Z., Rivera-Sánchez S., Ayala-Peña S., Lim J., Budworth H., Skoda E.M., Robbins P.D., Niedernhofer L.J., Wipf P., McMurray C.T. Targeting of XJB-5-131 to mitochondria suppresses oxidative DNA damage and motor decline in a mouse model of Huntington’s disease. Cell Rep. 2012;2(5):1137–1142. doi: 10.1016/j.celrep.2012.10.001. PubMed DOI PMC

Reiter R.J., Rosales-Corral S., Tan D.X., Jou M.J., Galano A., Xu B. Melatonin as a mitochondria-targeted antioxidant: one of evolution’s best ideas. Cell. Mol. Life Sci. 2017;74(21):3863–3881. doi: 10.1007/s00018-017-2609-7. PubMed DOI PMC

Carter H.N., Chen C.C., Hood D.A. Mitochondria, muscle health, and exercise with advancing age. Physiology (Bethesda) 2015;30(3):208–223. doi: 10.1152/physiol.00039.2014. PubMed DOI

Flannery P.J., Trushina E. Mitochondrial dynamics and transport in Alzheimer’s disease. Mol. Cell. Neurosci. 2019;98:109–120. doi: 10.1016/j.mcn.2019.06.009. PubMed DOI PMC

Reiter R.J., Mayo J.C., Tan D.X., Sainz R.M., Alatorre-Jimenez M., Qin L. Melatonin as an antioxidant: under promises but over delivers. J. Pineal Res. 2016;61(3):253–278. doi: 10.1111/jpi.12360. PubMed DOI

Reiter R., Tang L., Garcia J.J., Muñoz-Hoyos A. Pharmacological actions of melatonin in oxygen radical pathophysiology. Life Sci. 1997;60(25):2255–2271. doi: 10.1016/S0024-3205(97)00030-1. PubMed DOI

Hock M.B., Kralli A. Transcriptional control of mitochondrial biogenesis and function. Annu. Rev. Physiol. 2009;71:177–203. doi: 10.1146/annurev.physiol.010908.163119. PubMed DOI

Ma K., Chen G., Li W., Kepp O., Zhu Y., Chen Q. Mitophagy, mitochondrial homeostasis, and cell fate. Front. Cell Dev. Biol. 2020;8:467. doi: 10.3389/fcell.2020.00467. PubMed DOI PMC

Gureev A.P., Shaforostova E.A., Popov V.N. Regulation of mitochondrial biogenesis as a way for active longevity: Interaction between the Nrf2 and PGC-1α Signaling Pathways. Front. Genet. 2019;10:435. doi: 10.3389/fgene.2019.00435. PubMed DOI PMC

Mishra P., Chan D.C. Metabolic regulation of mitochondrial dynamics. J. Cell Biol. 2016;212(4):379–387. doi: 10.1083/jcb.201511036. PubMed DOI PMC

Hamacher-Brady A., Brady N.R. Mitophagy programs: mechanisms and physiological implications of mitochondrial targeting by autophagy. Cell. Mol. Life Sci. 2016;73(4):775–795. doi: 10.1007/s00018-015-2087-8. PubMed DOI PMC

Morabito R, Remigante A, Marino A. Melatonin protects band 3 protein in human erythrocytes against H2O2 induced oxidative stress. Molecules. 2019;24:2741. doi: 10.3390/molecules24152741. PubMed DOI PMC

Reiter R.J., Tan D., Kim S.J., Manchester L.C., Qi W., Garcia J.J., Cabrera J.C., El-Sokkary G., Rouvier-Garay V. Augmentation of indices of oxidative damage in life-long melatonin-deficient rats. Mech. Ageing Dev. 1999;110(3):157–173. doi: 10.1016/S0047-6374(99)00058-5. PubMed DOI

R., H., Melatonin, Its Metabolites and Their Interference with Reactive Nitrogen Compounds. Molecules. 2021;26:4015. PubMed PMC

Tan D.X., Manchester L.C., Burkhardt S., Sainz R.M., Mayo J.C., Kohen R., Shohami E., Huo Y.S., Hardeland R., Reiter R.J. N1-acetyl-N2-formyl-5-methoxykynuramine, a biogenic amine and melatonin metabolite, functions as a potent antioxidant. FASEB J. 2001;15(12):2294–2296. doi: 10.1096/fj.01-0309fje. PubMed DOI

Tan D.X., Reiter R.J., Manchester L.C., Yan M.T., El-Sawi M., Sainz R.M., Mayo J.C., Kohen R., Allegra M., Hardeland R. Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger. Curr. Top. Med. Chem. 2002;2(2):181–197. doi: 10.2174/1568026023394443. PubMed DOI

Ressmeyer A.R., Mayo J.C., Zelosko V., Sáinz R.M., Tan D.X., Poeggeler B., Antolín I., Zsizsik B.K., Reiter R.J., Hardeland R. Antioxidant properties of the melatonin metabolite N1-acetyl-5-methoxykynuramine (AMK): scavenging of free radicals and prevention of protein destruction. Redox Rep. 2003;8(4):205–213. doi: 10.1179/135100003225002709. PubMed DOI

Butterfield D.A., Boyd-Kimball D. Amyloid beta-peptide(1-42) contributes to the oxidative stress and neurodegeneration found in Alzheimer disease brain. Brain Pathol. 2004;14(4):426–432. doi: 10.1111/j.1750-3639.2004.tb00087.x. PubMed DOI PMC

García S., Martín Giménez V.M., Mocayar Marón F.J., Reiter R.J., Manucha W. Melatonin and cannabinoids: mitochondrial-targeted molecules that may reduce inflammaging in neurodegenerative diseases. Histol. Histopathol. 2020;35(8):789–800. PubMed

Rosales-Corral S.A., Acuña-Castroviejo D., Coto-Montes A., Boga J.A., Manchester L.C., Fuentes-Broto L., Korkmaz A., Ma S., Tan D.X., Reiter R.J. Alzheimer’s disease: pathological mechanisms and the beneficial role of melatonin. J. Pineal Res. 2012;52(2):167–202. doi: 10.1111/j.1600-079X.2011.00937.x. PubMed DOI

Joshi A.U., Minhas P.S., Liddelow S.A., Haileselassie B., Andreasson K.I., Dorn G.W., II, Mochly-Rosen D. Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. Nat. Neurosci. 2019;22(10):1635–1648. doi: 10.1038/s41593-019-0486-0. PubMed DOI PMC

Palmer C.S., Osellame L.D., Laine D., Koutsopoulos O.S., Frazier A.E., Ryan M.T. MiD49 and MiD51, new components of the mitochondrial fission machinery. EMBO Rep. 2011;12(6):565–573. doi: 10.1038/embor.2011.54. PubMed DOI PMC

Chen H., Chan D.C. Mitochondrial dynamics--fusion, fission, movement, and mitophagy--in neurodegenerative diseases. Hum. Mol. Genet. 2009;18(R2):R169–R176. doi: 10.1093/hmg/ddp326. PubMed DOI PMC

Knott A.B., Perkins G., Schwarzenbacher R., Bossy-Wetzel E. Mitochondrial fragmentation in neurodegeneration. Nat. Rev. Neurosci. 2008;9(7):505–518. doi: 10.1038/nrn2417. PubMed DOI PMC

Jensen M.B., Jasper H. Mitochondrial proteostasis in the control of aging and longevity. Cell Metab. 2014;20(2):214–225. doi: 10.1016/j.cmet.2014.05.006. PubMed DOI PMC

Nargund A.M., Fiorese C.J., Pellegrino M.W., Deng P., Haynes C.M. Mitochondrial and nuclear accumulation of the transcription factor ATFS-1 promotes OXPHOS recovery during the UPR(mt). Mol. Cell. 2015;58(1):123–133. doi: 10.1016/j.molcel.2015.02.008. PubMed DOI PMC

Tian Y., Merkwirth C., Dillin A. Mitochondrial UPR: a double-edged sword. Trends Cell Biol. 2016;26(8):563–565. doi: 10.1016/j.tcb.2016.06.006. PubMed DOI

Pellegrino M.W., Nargund A.M., Haynes C.M. Signaling the mitochondrial unfolded protein response. Biochimica et Biophysica Acta. 2013;(1833):410–6. PubMed PMC

Cassidy-Stone A., Chipuk J.E., Ingerman E., Song C., Yoo C., Kuwana T., Kurth M.J., Shaw J.T., Hinshaw J.E., Green D.R., Nunnari J. Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev. Cell. 2008;14(2):193–204. doi: 10.1016/j.devcel.2007.11.019. PubMed DOI PMC

Joshi A.U., Saw N.L., Shamloo M., Mochly-Rosen D. Drp1/Fis1 interaction mediates mitochondrial dysfunction, bioenergetic failure and cognitive decline in Alzheimer’s disease. Oncotarget. 2017;9(5):6128–6143. doi: 10.18632/oncotarget.23640. PubMed DOI PMC

Walsh J.G., Muruve D.A., Power C. Inflammasomes in the CNS. Nat. Rev. Neurosci. 2014;15(2):84–97. doi: 10.1038/nrn3638. PubMed DOI

Liu Q., Zhang D., Hu D., Zhou X., Zhou Y. The role of mitochondria in NLRP3 inflammasome activation. Mol. Immunol. 2018;103:115–124. doi: 10.1016/j.molimm.2018.09.010. PubMed DOI

Zhou R., Yazdi A.S., Menu P., Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469(7329):221–225. doi: 10.1038/nature09663. PubMed DOI

Nakahira K., Haspel J.A., Rathinam V.A., Lee S.J., Dolinay T., Lam H.C., Englert J.A., Rabinovitch M., Cernadas M., Kim H.P., Fitzgerald K.A., Ryter S.W., Choi A.M. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 2011;12(3):222–230. doi: 10.1038/ni.1980. PubMed DOI PMC

Bahat A., MacVicar T., Langer T. Metabolism and innate immunity meet at the mitochondria. Front. Cell Dev. Biol. 2021;9:720490. doi: 10.3389/fcell.2021.720490. PubMed DOI PMC

Subramanian N., Natarajan K., Clatworthy M.R., Wang Z., Germain R.N. The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation. Cell Death Differ. 2013;153(2):348–361. doi: 10.1016/j.cell.2013.02.054. PubMed DOI PMC

Yan X., Wang B., Hu Y., Wang S., Zhang X. Abnormal mitochondrial quality control in neurodegenerative diseases. Front. Cell. Neurosci. 2020;14:138. doi: 10.3389/fncel.2020.00138. PubMed DOI PMC

Bai H., Zhang Q. Activation of NLRP3 inflammasome and onset of Alzheimer’s disease. Front. Immunol. 2021;12:701282. doi: 10.3389/fimmu.2021.701282. PubMed DOI PMC

Wilkins H.M., Carl S.M., Weber S.G., Ramanujan S.A., Festoff B.W., Linseman D.A., Swerdlow R.H. Mitochondrial lysates induce inflammation and Alzheimer’s disease-relevant changes in microglial and neuronal cells. J. Alzheimers Dis. 2015;45(1):305–318. doi: 10.3233/JAD-142334. PubMed DOI PMC

Shimada K., Crother T.R., Karlin J., Dagvadorj J., Chiba N., Chen S., Ramanujan V.K., Wolf A.J., Vergnes L., Ojcius D.M., Rentsendorj A., Vargas M., Guerrero C., Wang Y., Fitzgerald K.A., Underhill D.M., Town T., Arditi M. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity. 2012;36(3):401–414. doi: 10.1016/j.immuni.2012.01.009. PubMed DOI PMC

Iyer S.S., He Q., Janczy J.R., Elliott E.I., Zhong Z., Olivier A.K., Sadler J.J., Knepper-Adrian V., Han R., Qiao L., Eisenbarth S.C., Nauseef W.M., Cassel S.L., Sutterwala F.S. Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity. 2013;39(2):311–323. doi: 10.1016/j.immuni.2013.08.001. PubMed DOI PMC

Lonskaya I., Hebron M.L., Desforges N.M., Schachter J.B., Moussa C.E. Nilotinib-induced autophagic changes increase endogenous parkin level and ubiquitination, leading to amyloid clearance. J. Mol. Med. (Berl.) 2014;92(4):373–386. doi: 10.1007/s00109-013-1112-3. PubMed DOI PMC

Friedman L.G., Qureshi Y.H., Yu W.H. Promoting autophagic clearance: viable therapeutic targets in Alzheimer’s disease. Neurotherapeutics. 2015;12(1):94–108. doi: 10.1007/s13311-014-0320-z. PubMed DOI PMC

Rubinsztein D.C., Mariño G., Kroemer G. Autophagy and aging. Cell. 2011;146(5):682–695. doi: 10.1016/j.cell.2011.07.030. PubMed DOI

Gómez Morillas A., Besson V.C., Lerouet D. Microglia and neuroinflammation: What place for P2RY12? Int. J. Mol. Sci. 2021;22(4):1636. doi: 10.3390/ijms22041636. PubMed DOI PMC

Inoue K. Microglial activation by purines and pyrimidines. Glia. 2002;40(2):156–163. doi: 10.1002/glia.10150. PubMed DOI

Faroqi A.H., Lim M.J., Kee E.C., Lee J.H., Burgess J.D., Chen R., Di Virgilio F., Delenclos M., McLean P.J. In vivo detection of extracellular adenosine triphosphate in a mouse model of traumatic brain injury. J. Neurotrauma. 2021;38(5):655–664. doi: 10.1089/neu.2020.7226. PubMed DOI PMC

Davalos D., Grutzendler J., Yang G., Kim J.V., Zuo Y., Jung S., Littman D.R., Dustin M.L., Gan W.B. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 2005;8(6):752–758. doi: 10.1038/nn1472. PubMed DOI

Moon S., Muniyappan S., Lee S.B., Lee B.H. Small-molecule inhibitors targeting proteasome-associated deubiquitinases. Int. J. Mol. Sci. 2021;22(12):6213. doi: 10.3390/ijms22126213. PubMed DOI PMC

Lee B.H., Lee M.J., Park S., Oh D.C., Elsasser S., Chen P.C., Gartner C., Dimova N., Hanna J., Gygi S.P., Wilson S.M., King R.W., Finley D. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature. 2010;467(7312):179–184. doi: 10.1038/nature09299. PubMed DOI PMC

Myeku N., Clelland C.L., Emrani S., Kukushkin N.V., Yu W.H., Goldberg A.L., Duff K.E. Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling. Nat. Med. 2016;22(1):46–53. doi: 10.1038/nm.4011. PubMed DOI PMC

Bluhm A., Schrempel S., von Hörsten S., Schulze A., Roßner S. Proteolytic α-synuclein cleavage in health and disease. Int. J. Mol. Sci. 2021;22(11):5450. doi: 10.3390/ijms22115450. PubMed DOI PMC

Huang L., Ho P., Chen C.H. Activation and inhibition of the proteasome by betulinic acid and its derivatives. FEBS Lett. 2007;581(25):4955–4959. doi: 10.1016/j.febslet.2007.09.031. PubMed DOI PMC

Trippier P.C., Zhao K.T., Fox S.G., Schiefer I.T., Benmohamed R., Moran J., Kirsch D.R., Morimoto R.I., Silverman R.B. Proteasome activation is a mechanism for pyrazolone small molecules displaying therapeutic potential in amyotrophic lateral sclerosis. ACS Chem. Neurosci. 2014;5(9):823–829. doi: 10.1021/cn500147v. PubMed DOI PMC

Outeiro T.F., Putcha P., Tetzlaff J.E., Spoelgen R., Koker M., Carvalho F., Hyman B.T., McLean P.J. Formation of toxic oligomeric alpha-synuclein species in living cells. PLoS One. 2008;3(4):e1867. doi: 10.1371/journal.pone.0001867. PubMed DOI PMC

Sahu I., Glickman M.H. Structural insights into substrate recognition and processing by the 20S proteasome. Biomolecules. 2021;11(2):148. doi: 10.3390/biom11020148. PubMed DOI PMC

Leestemaker Y., de Jong A., Witting K.F., Penning R., Schuurman K., Rodenko B., Zaal E.A., van de Kooij B., Laufer S., Heck A.J.R., Borst J., Scheper W., Berkers C.R., Ovaa H. Proteasome activation by small molecules. Cell Chem. Biol. 2017;24(6):725–736.e7. doi: 10.1016/j.chembiol.2017.05.010. PubMed DOI

Lau J.L., Dunn M.K. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg. Med. Chem. 2018;26(10):2700–2707. doi: 10.1016/j.bmc.2017.06.052. PubMed DOI

Gillette T.G., Kumar B., Thompson D., Slaughter C.A., DeMartino G.N. Differential roles of the COOH termini of AAA subunits of PA700 (19 S regulator) in asymmetric assembly and activation of the 26 S proteasome. J. Biol. Chem. 2008;283(46):31813–31822. doi: 10.1074/jbc.M805935200. PubMed DOI PMC

Dal Vechio F.H., Cerqueira F., Augusto O., Lopes R., Demasi M. Peptides that activate the 20S proteasome by gate opening increased oxidized protein removal and reduced protein aggregation. Free Radic. Biol. Med. 2014;67:304–313. doi: 10.1016/j.freeradbiomed.2013.11.017. PubMed DOI

Villavicencio Tejo F., Quintanilla R.A. Contribution of the Nrf2 pathway on oxidative damage and mitochondrial failure in Parkinson and Alzheimer’s disease. Antioxidants. 2021;10(7):1069. doi: 10.3390/antiox10071069. PubMed DOI PMC

Kwak M.K., Wakabayashi N., Greenlaw J.L., Yamamoto M., Kensler T.W. Antioxidants enhance mammalian proteasome expression through the Keap1-Nrf2 signaling pathway. Mol. Cell. Biol. 2003;23(23):8786–8794. doi: 10.1128/MCB.23.23.8786-8794.2003. PubMed DOI PMC

Ryu D., Mouchiroud L., Andreux P.A., Katsyuba E., Moullan N., Nicolet-Dit-Félix A.A., Williams E.G., Jha P., Lo Sasso G., Huzard D., Aebischer P., Sandi C., Rinsch C., Auwerx J. Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat. Med. 2016;22(8):879–888. doi: 10.1038/nm.4132. PubMed DOI

Pietrocola F., Lachkar S., Enot D.P., Niso-Santano M., Bravo-San Pedro J.M., Sica V., Izzo V., Maiuri M.C., Madeo F., Mariño G., Kroemer G. Spermidine induces autophagy by inhibiting the acetyltransferase EP300. Cell Death Differ. 2015;22(3):509–516. doi: 10.1038/cdd.2014.215. PubMed DOI PMC

Qi Y., Qiu Q., Gu X., Tian Y., Zhang Y. ATM mediates spermidine-induced mitophagy via PINK1 and Parkin regulation in human fibroblasts. Sci. Rep. 2016;6:24700. doi: 10.1038/srep24700. PubMed DOI PMC

Eisenberg T., Abdellatif M., Schroeder S., Primessnig U., Stekovic S., Pendl T., Harger A., Schipke J., Zimmermann A., Schmidt A., Tong M., Ruckenstuhl C., Dammbrueck C., Gross A.S., Herbst V., Magnes C., Trausinger G., Narath S., Meinitzer A., Hu Z., Kirsch A., Eller K., Carmona-Gutierrez D., Büttner S., Pietrocola F., Knittelfelder O., Schrepfer E., Rockenfeller P., Simonini C., Rahn A., Horsch M., Moreth K., Beckers J., Fuchs H., Gailus-Durner V., Neff F., Janik D., Rathkolb B., Rozman J., de Angelis M.H., Moustafa T., Haemmerle G., Mayr M., Willeit P., von Frieling-Salewsky M., Pieske B., Scorrano L., Pieber T., Pechlaner R., Willeit J., Sigrist S.J., Linke W.A., Mühlfeld C., Sadoshima J., Dengjel J., Kiechl S., Kroemer G., Sedej S., Madeo F. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat. Med. 2016;22(12):1428–1438. doi: 10.1038/nm.4222. PubMed DOI PMC

Gupta V.K., Scheunemann L., Eisenberg T., Mertel S., Bhukel A., Koemans T.S., Kramer J.M., Liu K.S., Schroeder S., Stunnenberg H.G., Sinner F., Magnes C., Pieber T.R., Dipt S., Fiala A., Schenck A., Schwaerzel M., Madeo F., Sigrist S.J. Restoring polyamines protects from age-induced memory impairment in an autophagy-dependent manner. Nat. Neurosci. 2013;16(10):1453–1460. doi: 10.1038/nn.3512. PubMed DOI

Chondrogianni N., Voutetakis K., Kapetanou M., Delitsikou V., Papaevgeniou N., Sakellari M., Lefaki M., Filippopoulou K., Gonos E.S. Proteasome activation: An innovative promising approach for delaying aging and retarding age-related diseases. Ageing Res. Rev. 2015;23(Pt A):37–55. doi: 10.1016/j.arr.2014.12.003. PubMed DOI

Losón O.C., Song Z., Chen H., Chan D.C. Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol. Biol. Cell. 2013;24(5):659–667. doi: 10.1091/mbc.e12-10-0721. PubMed DOI PMC

Palmer C.S., Elgass K.D., Parton R.G., Osellame L.D., Stojanovski D., Ryan M.T. Adaptor proteins MiD49 and MiD51 can act independently of Mff and Fis1 in Drp1 recruitment and are specific for mitochondrial fission. J. Biol. Chem. 2013;288(38):27584–27593. doi: 10.1074/jbc.M113.479873. PubMed DOI PMC

Zhang L., Zhang S., Maezawa I., Trushin S., Minhas P., Pinto M., Jin L.W., Prasain K., Nguyen T.D., Yamazaki Y., Kanekiyo T., Bu G., Gateno B., Chang K.O., Nath K.A., Nemutlu E., Dzeja P., Pang Y.P., Hua D.H., Trushina E. Modulation of mitochondrial complex I activity averts cognitive decline in multiple animal models of familial Alzheimer’s Disease. EBioMedicine. 2015;2(4):294–305. doi: 10.1016/j.ebiom.2015.03.009. PubMed DOI PMC

Lin L., Huang Q.X., Yang S.S., Chu J., Wang J.Z., Tian Q. Melatonin in Alzheimer’s disease. Int. J. Mol. Sci. 2013;14(7):14575–14593. doi: 10.3390/ijms140714575. PubMed DOI PMC

Espino J., Bejarano I., Redondo P.C., Rosado J.A., Barriga C., Reiter R.J., Pariente J.A., Rodríguez A.B. Melatonin reduces apoptosis induced by calcium signaling in human leukocytes: Evidence for the involvement of mitochondria and Bax activation. J. Membr. Biol. 2010;233(1-3):105–118. doi: 10.1007/s00232-010-9230-0. PubMed DOI

Liu P., Smith B.R., Montonye M.L., Kemper L.J., Leinonen-Wright K., Nelson K.M., Higgins L., Guerrero C.R., Markowski T.W., Zhao X., Petersen A.J., Knopman D.S., Petersen R.C., Ashe K.H. A soluble truncated tau species related to cognitive dysfunction is elevated in the brain of cognitively impaired human individuals. Sci. Rep. 2020;10(1):3869. doi: 10.1038/s41598-020-60777-x. PubMed DOI PMC

Shimohama S., Tanino H., Fujimoto S. Changes in caspase expression in Alzheimer’s disease: comparison with development and aging. Biochem. Biophys. Res. Commun. 1999;256(2):381–384. doi: 10.1006/bbrc.1999.0344. PubMed DOI

Louneva N., Cohen J.W., Han L.Y., Talbot K., Wilson R.S., Bennett D.A., Trojanowski J.Q., Arnold S.E. Caspase-3 is enriched in postsynaptic densities and increased in Alzheimer’s disease. Am. J. Pathol. 2008;173(5):1488–1495. doi: 10.2353/ajpath.2008.080434. PubMed DOI PMC

Kim W., Ma L., Lomoio S., Willen R., Lombardo S., Dong J., Haydon P.G., Tesco G. BACE1 elevation engendered by GGA3 deletion increases β-amyloid pathology in association with APP elevation and decreased CHL1 processing in 5XFAD mice. Mol. Neurodegener. 2018;13(1):6. doi: 10.1186/s13024-018-0239-7. PubMed DOI PMC

Hossain M.F., Uddin M.S., Uddin G.M.S., Sumsuzzman D.M., Islam M.S., Barreto G.E., Mathew B., Ashraf G.M. Melatonin in Alzheimer’s disease: A latent endogenous regulator of neurogenesis to mitigate Alzheimer’s neuropathology. Mol. Neurobiol. 2019;56(12):8255–8276. doi: 10.1007/s12035-019-01660-3. PubMed DOI

Tesco G., Koh Y.H., Kang E.L., Cameron A.N., Das S., Sena-Esteves M., Hiltunen M., Yang S.H., Zhong Z., Shen Y., Simpkins J.W., Tanzi R.E. Depletion of GGA3 stabilizes BACE and enhances beta-secretase activity. Neuron. 2007;54(5):721–737. doi: 10.1016/j.neuron.2007.05.012. PubMed DOI PMC

Ling X., Zhang L.M., Lu S.D., Li X.J., Sun F.Y. Protective effect of melatonin on injuried cerebral neurons is associated with bcl-2 protein over-expression. Chung Kuo Yao Li Hsueh Pao. 1999;20(5):409–414. PubMed

Tadokoro K., Ohta Y., Inufusa H., Loon A.F.N., Abe K. Prevention of cognitive decline in Alzheimer’s disease by novel antioxidative supplements. Int. J. Mol. Sci. 2020;21(6):1974. doi: 10.3390/ijms21061974. PubMed DOI PMC

Poeggeler B., Miravalle L., Zagorski M.G., Wisniewski T., Chyan Y.J., Zhang Y., Shao H., Bryant-Thomas T., Vidal R., Frangione B., Ghiso J., Pappolla M.A. Melatonin reverses the profibrillogenic activity of apolipoprotein E4 on the Alzheimer amyloid Abeta peptide. Biochemistry. 2001;40(49):14995–15001. doi: 10.1021/bi0114269. PubMed DOI

Feng Z., Zhang J.T. Protective effect of melatonin on beta-amyloid-induced apoptosis in rat astroglioma C6 cells and its mechanism. Free Radic. Biol. Med. 2004;37(11):1790–1801. doi: 10.1016/j.freeradbiomed.2004.08.023. PubMed DOI

Vincent B. Protective roles of melatonin against the amyloid-dependent development of Alzheimer’s disease: A critical review. Pharmacol. Res. 2018;134:223–237. doi: 10.1016/j.phrs.2018.06.011. PubMed DOI

Li Y., Zhang J., Wan J., Liu A., Sun J. Melatonin regulates Aβ production/clearance balance and Aβ neurotoxicity: A potential therapeutic molecule for Alzheimer’s disease. Biomed. Pharmacother. 2020;132:110887. doi: 10.1016/j.biopha.2020.110887. PubMed DOI

Feng Z., Qin C., Chang Y., Zhang J.T. Early melatonin supplementation alleviates oxidative stress in a transgenic mouse model of Alzheimer’s disease. Free Radic. Biol. Med. 2006;40(1):101–109. doi: 10.1016/j.freeradbiomed.2005.08.014. PubMed DOI

Pappolla M.A., Chyan Y.J., Poeggeler B., Frangione B., Wilson G., Ghiso J., Reiter R.J. An assessment of the antioxidant and the antiamyloidogenic properties of melatonin: implications for Alzheimer’s disease. J. Neural Transm. (Vienna) 2000;107(2):203–231. doi: 10.1007/s007020050018. PubMed DOI

Matsubara E., Bryant-Thomas T., Pacheco Quinto J., Henry T.L., Poeggeler B., Herbert D., Cruz-Sanchez F., Chyan Y.J., Smith M.A., Perry G., Shoji M., Abe K., Leone A., Grundke-Ikbal I., Wilson G.L., Ghiso J., Williams C., Refolo L.M., Pappolla M.A., Chain D.G., Neria E. Melatonin increases survival and inhibits oxidative and amyloid pathology in a transgenic model of Alzheimer’s disease. J. Neurochem. 2003;85(5):1101–1108. doi: 10.1046/j.1471-4159.2003.01654.x. PubMed DOI

Kerr J.S., Adriaanse B.A., Greig N.H., Mattson M.P., Cader M.Z., Bohr V.A., Fang E.F. Mitophagy and Alzheimer’s disease: Cellular and molecular mechanisms. Trends Neurosci. 2017;40(3):151–166. doi: 10.1016/j.tins.2017.01.002. PubMed DOI PMC

Martín-Maestro P., Gargini R., Perry G., Avila J., García-Escudero V. PARK2 enhancement is able to compensate mitophagy alterations found in sporadic Alzheimer’s disease. Hum. Mol. Genet. 2016;25(4):792–806. doi: 10.1093/hmg/ddv616. PubMed DOI PMC

Wang Y., Liu N., Lu B. Mechanisms and roles of mitophagy in neurodegenerative diseases. CNS Neurosci. Ther. 2019;25(7):859–875. doi: 10.1111/cns.13140. PubMed DOI PMC

Ding W.X., Yin X.M. Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol. Chem. 2012;393(7):547–564. doi: 10.1515/hsz-2012-0119. PubMed DOI PMC

Devine M.J., Kittler J.T. Mitochondria at the neuronal presynapse in health and disease. Nat. Rev. Neurosci. 2018;19(2):63–80. doi: 10.1038/nrn.2017.170. PubMed DOI

Springer M.Z., Macleod K.F. In Brief: Mitophagy: mechanisms and role in human disease. J. Pathol. 2016;240(3):253–255. doi: 10.1002/path.4774. PubMed DOI PMC

Kann O., Kovács R. Mitochondria and neuronal activity. Am. J. Physiol. Cell Physiol. 2007;292(2):C641–C657. doi: 10.1152/ajpcell.00222.2006. PubMed DOI

Brini M., Calì T., Ottolini D., Carafoli E. Neuronal calcium signaling: function and dysfunction. Cell. Mol. Life Sci. 2014;71(15):2787–2814. doi: 10.1007/s00018-013-1550-7. PubMed DOI PMC

Depp C., Bas-Orth C., Schroeder L., Hellwig A., Bading H. Synaptic activity protects neurons against calciummediated oxidation and contraction of mitochondria during excitotoxicity. Antioxid. Redox Signal. 2018;29(12):1109–1124. doi: 10.1089/ars.2017.7092. PubMed DOI

Silzer T.K., Phillips N.R. Etiology of type 2 diabetes and Alzheimer’s disease: Exploring the mitochondria. Mitochondrion. 2018;43:16–24. doi: 10.1016/j.mito.2018.04.004. PubMed DOI

Kubli D.A., Gustafsson Å.B. Mitochondria and mitophagy: the yin and yang of cell death control. Circ. Res. 2012;111(9):1208–1221. doi: 10.1161/CIRCRESAHA.112.265819. PubMed DOI PMC

Song Y.M., Lee Y.H., Kim J.W., Ham D.S., Kang E.S., Cha B.S., Lee H.C., Lee B.W. Metformin alleviates hepatosteatosis by restoring SIRT1-mediated autophagy induction via an AMP-activated protein kinase-independent pathway. Autophagy. 2015;11(1):46–59. doi: 10.4161/15548627.2014.984271. PubMed DOI PMC

East D.A., Fagiani F., Crosby J., Georgakopoulos N.D., Bertrand H., Schaap M., Fowkes A., Wells G., Campanella M. PMI: a ΔΨm independent pharmacological regulator of mitophagy. Chem. Biol. 2014;21(11):1585–1596. doi: 10.1016/j.chembiol.2014.09.019. PubMed DOI PMC

Yogalingam G., Hwang S., Ferreira J.C., Mochly-Rosen D. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) phosphorylation by protein kinase Cδ (PKCδ) inhibits mitochondria elimination by lysosomal-like structures following ischemia and reoxygenation-induced injury. J. Biol. Chem. 2013;288(26):18947–18960. doi: 10.1074/jbc.M113.466870. PubMed DOI PMC

Ross J.M., Olson L., Coppotelli G. Mitochondrial and ubiquitin proteasome system dysfunction in ageing and disease: two sides of the same coin? Int. J. Mol. Sci. 2015;16(8):19458–19476. doi: 10.3390/ijms160819458. PubMed DOI PMC

Riederer B.M., Leuba G., Vernay A., Riederer I.M. The role of the ubiquitin proteasome system in Alzheimer’s disease. Exp. Biol. Med. (Maywood) 2011;236(3):268–276. doi: 10.1258/ebm.2010.010327. PubMed DOI

Bonet-Costa V., Pomatto L.C., Davies K.J. The proteasome and oxidative stress in Alzheimer’s disease. Antioxid. Redox Signal. 2016;25(16):886–901. doi: 10.1089/ars.2016.6802. PubMed DOI PMC

Dantuma N.P., Bott L.C. The ubiquitin-proteasome system in neurodegenerative diseases: precipitating factor, yet part of the solution. Front. Mol. Neurosci. 2014;7:70. doi: 10.3389/fnmol.2014.00070. PubMed DOI PMC

Szeto H.H. First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics. Br. J. Pharmacol. 2014;171(8):2029–2050. doi: 10.1111/bph.12461. PubMed DOI PMC

Wu J., Zhang M., Li H., Sun X., Hao S., Ji M., Yang J., Li K. BDNF pathway is involved in the protective effects of SS-31 on isoflurane-induced cognitive deficits in aging mice. Behav. Brain Res. 2016;305:115–121. doi: 10.1016/j.bbr.2016.02.036. PubMed DOI

Calkins M.J., Manczak M., Reddy P.H. Mitochondria-targeted antiox- idant SS31 prevents amyloid beta-induced mitochondrial abnormalities and synaptic degeneration in Alzheimer’s disease. Pharmaceuticals (Basel) 2012;5(10):1103–1119. doi: 10.3390/ph5101103. PubMed DOI PMC

Colell A., García-Ruiz C., Lluis J.M., Coll O., Mari M., Fernández-Checa J.C. Cholesterol impairs the adenine nucleotide translocator-mediated mitochondrial permeability transition through altered membrane fluidity. J. Biol. Chem. 2003;278(36):33928–33935. doi: 10.1074/jbc.M210943200. PubMed DOI

Kennedy B.E., Madreiter C.T., Vishnu N., Malli R., Graier W.F., Karten B. Adaptations of energy metabolism associated with increased levels of mitochondrial cholesterol in Niemann-Pick type C1-deficient cells. J. Biol. Chem. 2014;289(23):16278–16289. doi: 10.1074/jbc.M114.559914. PubMed DOI PMC

Martin L.A., Kennedy B.E., Karten B. Mitochondrial cholesterol: mechanisms of import and effects on mitochondrial function. J. Bioenerg. Biomembr. 2016;48(2):137–151. doi: 10.1007/s10863-014-9592-6. PubMed DOI

Yu W., Gong J.S., Ko M., Garver W.S., Yanagisawa K., Michikawa M. Altered cholesterol metabolism in Niemann-Pick type C1 mouse brains affects mitochondrial function. J. Biol. Chem. 2005;280(12):11731–11739. doi: 10.1074/jbc.M412898200. PubMed DOI

Echegoyen S., Oliva E.B., Sepulveda J., Díaz-Zagoya J.C., Espinosa-García M.T., Pardo J.P., Martínez F. Cholesterol increase in mitochondria: its effect on inner-membrane functions, submitochondrial localization and ultrastructural morphology. Biochem. J. 1993;289(Pt 3):703–708. doi: 10.1042/bj2890703. PubMed DOI PMC

Marí M., Caballero F., Colell A., Morales A., Caballeria J., Fernandez A., Enrich C., Fernandez-Checa J.C., García-Ruiz C. Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis. Cell Metab. 2006;4(3):185–198. doi: 10.1016/j.cmet.2006.07.006. PubMed DOI

Garcia-Ruiz C., Mari M., Colell A., Morales A., Caballero F., Montero J., Terrones O., Basañez G., Fernández-Checa J.C. Mitochondrial cholesterol in health and disease. Histol. Histopathol. 2009;24(1):117–132. PubMed

Aufschnaiter A., Kohler V., Diessl J., Peselj C., Carmona-Gutierrez D., Keller W., Büttner S. Mitochondrial lipids in neurodegeneration. Cell Tissue Res. 2017;367(1):125–140. doi: 10.1007/s00441-016-2463-1. PubMed DOI PMC

Barbero-Camps E., Fernández A., Baulies A., Martinez L., Fernández-Checa J.C., Colell A. Endoplasmic reticulum stress mediates amyloid β neurotoxicity via mitochondrial cholesterol trafficking. Am. J. Pathol. 2014;184(7):2066–2081. doi: 10.1016/j.ajpath.2014.03.014. PubMed DOI PMC

Barbero-Camps E., Fernández A., Martínez L., Fernández-Checa J.C., Colell A. APP/PS1 mice overexpressing SREBP-2 exhibit combined Aβ accumulation and tau pathology underlying Alzheimer’s disease. Hum. Mol. Genet. 2013;22(17):3460–3476. doi: 10.1093/hmg/ddt201. PubMed DOI PMC

Rosales-Corral S.A., Lopez-Armas G., Cruz-Ramos J., Melnikov V.G., Tan D.X., Manchester L.C., Munoz R., Reiter R.J. Alterations in lipid levels of mitochondrial membranes induced by amyloid-β: A protective role of melatonin. Int. J. Alzheimers Dis. 2012;2012:459806. doi: 10.1155/2012/459806. PubMed DOI PMC

Kågedal K., Kim W.S., Appelqvist H., Chan S., Cheng D., Agholme L., Barnham K., McCann H., Halliday G., Garner B. Increased expression of the lysosomal cholesterol transporter NPC1 in Alzheimer’s disease. Biochim. Biophys. Acta. 2010;1801(8):831–838. doi: 10.1016/j.bbalip.2010.05.005. PubMed DOI

Arenas F., Castro F., Nuñez S., Gay G., Garcia-Ruiz C., Fernandez-Checa J.C. STARD1 and NPC1 expression as pathological markers associated with astrogliosis in post-mortem brains from patients with Alzheimer’s disease and Down syndrome. Aging (Albany NY) 2020;12(1):571–592. doi: 10.18632/aging.102641. PubMed DOI PMC

Webber K.M., Stocco D.M., Casadesus G., Bowen R.L., Atwood C.S., Previll L.A., Harris P.L., Zhu X., Perry G., Smith M.A. Steroidogenic acute regulatory protein (StAR): evidence of gonadotropin-induced steroidogenesis in Alzheimer disease. Mol. Neurodegener. 2006;1:14. doi: 10.1186/1750-1326-1-14. PubMed DOI PMC

Singhal A., Szente L., Hildreth J.E.K., Song B. Hydroxypropyl-beta and -gamma cyclodextrins rescue cholesterol accumulation in Niemann-Pick C1 mutant cell via lysosome-associated membrane protein 1. Cell Death Dis. 2018;9(10):1019. doi: 10.1038/s41419-018-1056-1. PubMed DOI PMC

Yalcin A., Soddu E., Turunc Bayrakdar E., Uyanikgil Y., Kanit L., Armagan G., Rassu G., Gavini E., Giunchedi P. Neuroprotective effects of engineered polymeric nasal microspheres containing hydroxypropyl-β-cyclodextrin on β-amyloid (1-42)-induced toxicity. J. Pharm. Sci. 2016;105(8):2372–2380. doi: 10.1016/j.xphs.2016.05.017. PubMed DOI

Djelti F., Braudeau J., Hudry E., Dhenain M., Varin J., Bièche I., Marquer C., Chali F., Ayciriex S., Auzeil N., Alves S., Langui D., Potier M.C., Laprevote O., Vidaud M., Duyckaerts C., Miles R., Aubourg P., Cartier N. CYP46A1 inhibition, brain cholesterol accumulation and neurodegeneration pave the way for Alzheimer’s disease. Brain. 2015;138(Pt 8):2383–2398. doi: 10.1093/brain/awv166. PubMed DOI

Paumgartner G., Beuers U. Ursodeoxycholic acid in cholestatic liver disease: mechanisms of action and therapeutic use revisited. Hepatology. 2002;36(3):525–531. doi: 10.1053/jhep.2002.36088. PubMed DOI

Zangerolamo L., Vettorazzi J.F., Rosa L.R.O., Carneiro E.M., Barbosa H.C.L. The bile acid TUDCA and neurodegenerative disorders: An overview. Life Sci. 2021;272:119252. doi: 10.1016/j.lfs.2021.119252. PubMed DOI

Nũnes A.F., Amaral J.D., Lo A.C., Fonseca M.B., Viana R.J., Callaerts-Vegh Z., D’Hooge R., Rodrigues C.M. TUDCA, a bile acid, attenuates amyloid precursor protein processing and amyloid-β deposition in APP/PS1 mice. Mol. Neurobiol. 2012;45(3):440–454. doi: 10.1007/s12035-012-8256-y. PubMed DOI

Lo A.C., Callaerts-Vegh Z., Nunes A.F., Rodrigues C.M., D’Hooge R. Tauroursodeoxycholic acid (TUDCA) supplementation prevents cognitive impairment and amyloid deposition in APP/PS1 mice. Neurobiol. Dis. 2013;50:21–29. doi: 10.1016/j.nbd.2012.09.003. PubMed DOI

Viana R.J., Nunes A.F., Castro R.E., Ramalho R.M., Meyerson J., Fossati S., Ghiso J., Rostagno A., Rodrigues C.M. Tauroursodeoxycholic acid prevents E22Q Alzheimer’s Abeta toxicity in human cerebral endothelial cells. Cell. Mol. Life Sci. 2009;66(6):1094–1104. doi: 10.1007/s00018-009-8746-x. PubMed DOI PMC

Ramalho R.M., Borralho P.M., Castro R.E., Solá S., Steer C.J., Rodrigues C.M. Tauroursodeoxycholic acid modulates p53-mediated apoptosis in Alzheimer’s disease mutant neuroblastoma cells. J. Neurochem. 2006;98(5):1610–1618. doi: 10.1111/j.1471-4159.2006.04007.x. PubMed DOI

Dionísio P.A., Amaral J.D., Ribeiro M.F., Lo A.C., D’Hooge R., Rodrigues C.M. Amyloid-β pathology is attenuated by tauroursodeoxycholic acid treatment in APP/PS1 mice after disease onset. Neurobiol. Aging. 2015;36(1):228–240. doi: 10.1016/j.neurobiolaging.2014.08.034. PubMed DOI

Bell S.M., Barnes K., Clemmens H., Al-Rafiah A.R., Al-Ofi E.A., Leech V., Bandmann O., Shaw P.J., Blackburn D.J., Ferraiuolo L., Mortiboys H. Ursodeoxycholic acid improves mitochondrial function and redistributes Drp1 in fibroblasts from patients with either sporadic or familial Alzheimer’s disease. J. Mol. Biol. 2018;430(21):3942–3953. doi: 10.1016/j.jmb.2018.08.019. PubMed DOI PMC

Delgado-Morales R., Agís-Balboa R.C., Esteller M., Berdasco M. Epigenetic mechanisms during ageing and neurogenesis as novel therapeutic avenues in human brain disorders. Clin. Epigenetics. 2017;9:67. doi: 10.1186/s13148-017-0365-z. PubMed DOI PMC

Griñán-Ferré C., Sarroca S., Ivanova A., Puigoriol-Illamola D., Aguado F., Camins A., Sanfeliu C., Pallàs M. Epigenetic mechanisms underlying cognitive impairment and Alzheimer disease hallmarks in 5XFAD mice. Aging (Albany NY) 2016;8(4):664–684. doi: 10.18632/aging.100906. PubMed DOI PMC

Yang J., He J., Ismail M., Tweeten S., Zeng F., Gao L., Ballinger S., Young M., Prabhu S.D., Rowe G.C., Zhang J., Zhou L., Xie M. HDAC inhibition induces autophagy and mitochondrial biogenesis to maintain mitochondrial homeostasis during cardiac ischemia/reperfusion injury. J. Mol. Cell. Cardiol. 2019;130:36–48. doi: 10.1016/j.yjmcc.2019.03.008. PubMed DOI PMC

Maes T., et al. First-in-human phase I results show safety, tolerability and brain penetrance of ORY-2001, an epigenetic drug targeting LSD1 and MAO-B. Alzheimers Dement. 2017;13:P1573–P1574. doi: 10.1016/j.jalz.2017.07.739. DOI

Colman R.J., Beasley T.M., Kemnitz J.W., Johnson S.C., Weindruch R., Anderson R.M. Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. Nat. Commun. 2014;5:3557. doi: 10.1038/ncomms4557. PubMed DOI PMC

Cerqueira F.M., Cunha F.M., Laurindo F.R., Kowaltowski A.J. Calorie restriction increases cerebral mitochondrial respiratory capacity in a NO•-mediated mechanism: impact on neuronal survival. Free Radic. Biol. Med. 2012;52(7):1236–1241. doi: 10.1016/j.freeradbiomed.2012.01.011. PubMed DOI

Onyango I.G., Lu J., Rodova M., Lezi E., Crafter A.B., Swerdlow R.H. Regulation of neuron mitochondrial biogenesis and relevance to brain health. Biochim. Biophys. Acta. 2010;1802(1):228–234. doi: 10.1016/j.bbadis.2009.07.014. PubMed DOI

Bhatti G.K., Reddy A.P., Reddy P.H., Bhatti J.S. Lifestyle modifications and nutritional interventions in aging-associated cognitive decline and Alzheimer’s disease. Front. Aging Neurosci. 2020;11:369. doi: 10.3389/fnagi.2019.00369. PubMed DOI PMC

Luo H., Chiang H.H., Louw M., Susanto A., Chen D. Nutrient sensing and the oxidative stress response. Trends Endocrinol. Metab. 2017;28(6):449–460. doi: 10.1016/j.tem.2017.02.008. PubMed DOI PMC

Menshikova E.V., Ritov V.B., Dube J.J., Amati F., Stefanovic-Racic M., Toledo F.G.S., Coen P.M., Goodpaster B.H. Calorie restriction-induced weight loss and exercise have differential effects on skeletal muscle mitochondria despite similar effects on insulin sensitivity. J. Gerontol. A Biol. Sci. Med. Sci. 2017;73(1):81–87. doi: 10.1093/gerona/glw328. PubMed DOI PMC

Barja G. Endogenous oxidative stress: relationship to aging, longevity and caloric restriction. Ageing Res. Rev. 2002;1(3):397–411. doi: 10.1016/S1568-1637(02)00008-9. PubMed DOI

Civitarese A.E., Carling S., Heilbronn L.K., Hulver M.H., Ukropcova B., Deutsch W.A., Smith S.R., Ravussin E., CALERIE Pennington Team Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med. 2007;4(3):e76. doi: 10.1371/journal.pmed.0040076. PubMed DOI PMC

Mercken E.M., Crosby S.D., Lamming D.W., JeBailey L., Krzysik-Walker S., Villareal D.T., Capri M., Franceschi C., Zhang Y., Becker K., Sabatini D.M., de Cabo R., Fontana L. Calorie restriction in humans inhibits the PI3K/AKT pathway and induces a younger transcription profile. Aging Cell. 2013;12(4):645–651. doi: 10.1111/acel.12088. PubMed DOI PMC

Amigo I., Menezes-Filho S.L., Luévano-Martínez L.A., Chausse B., Kowaltowski A.J. Caloric restriction increases brain mitochondrial calcium retention capacity and protects against excitotoxicity. Aging Cell. 2017;16(1):73–81. doi: 10.1111/acel.12527. PubMed DOI PMC

Chen W.W., Zhang X., Huang W.J. Role of physical exercise in Alzheimer’s disease. Biomed. Rep. 2016;4(4):403–407. doi: 10.3892/br.2016.607. [Review]. PubMed DOI PMC

Paillard T., Rolland Y., de Souto Barreto P. Protective effects of physical exercise in Alzheimer’s disease and Parkinson’s disease: A narrative review. J. Clin. Neurol. 2015;11(3):212–219. doi: 10.3988/jcn.2015.11.3.212. PubMed DOI PMC

Koo J.H., Kang E-B., Kwon I-S., Jang J.C., Kim E-J., Lee Y., Cho I-H., Cho J-Y. Endurance exercise confers neuroprotective mitochondrial phenotypes in the brain of Alzheimer’s disease mice. FASEB J. 2015;29(S1):1055.35. doi: 10.1096/fasebj.29.1_supplement.1055.35. DOI

Steiner J.L., Murphy E.A., McClellan J.L., Carmichael M.D., Davis J.M. Exercise training increases mitochondrial biogenesis in the brain. J. Appl. Physiol. 2011;111(4):1066–1071. doi: 10.1152/japplphysiol.00343.2011. PubMed DOI

Radak Z., Suzuki K., Higuchi M., Balogh L., Boldogh I., Koltai E. Physical exercise, reactive oxygen species and neuroprotection. Free Radic. Biol. Med. 2016;98:187–196. doi: 10.1016/j.freeradbiomed.2016.01.024. PubMed DOI

Intlekofer K.A., Cotman C.W. Exercise counteracts declining hippocampal function in aging and Alzheimer’s disease. Neurobiol. Dis. 2013;57:47–55. doi: 10.1016/j.nbd.2012.06.011. PubMed DOI

Andrews Z.B., Diano S., Horvath T.L. Mitochondrial uncoupling proteins in the CNS: in support of function and survival. Nat. Rev. Neurosci. 2005;6(11):829–840. doi: 10.1038/nrn1767. PubMed DOI

Wang R., Holsinger R.M.D. Exercise-induced brain-derived neurotrophic factor expression: Therapeutic implications for Alzheimer’s dementia. Ageing Res. Rev. 2018;48:109–121. doi: 10.1016/j.arr.2018.10.002. PubMed DOI

Vaynman S., Ying Z., Wu A., Gomez-Pinilla F. Coupling energy metabolism with a mechanism to support brain-derived neurotrophic factor-mediated synaptic plasticity. Neuroscience. 2006;139(4):1221–1234. doi: 10.1016/j.neuroscience.2006.01.062. PubMed DOI

Gusdon A.M., Callio J., Distefano G., O’Doherty R.M., Goodpaster B.H., Coen P.M., Chu C.T. Exercise increases mitochondrial complex I activity and DRP1 expression in the brains of aged mice. Exp. Gerontol. 2017;90:1–13. doi: 10.1016/j.exger.2017.01.013. PubMed DOI PMC

Wang Z., Guo Y., Myers K.G., Heintz R., Peng Y.H., Maarek J.M., Holschneider D.P. Exercise alters resting-state functional connectivity of motor circuits in parkinsonian rats. Neurobiol. Aging. 2015;36(1):536–544. doi: 10.1016/j.neurobiolaging.2014.08.016. PubMed DOI PMC

Braga R.R., Crisol B.M., Brícola R.S., Sant’ana M.R., Nakandakari S.C.B.R., Costa S.O., Prada P.O., da Silva A.S.R., Moura L.P., Pauli J.R., Cintra D.E., Ropelle E.R. Exercise alters the mitochondrial proteostasis and induces the mitonuclear imbalance and UPRmt in the hypothalamus of mice. Sci. Rep. 2021;11(1):3813. doi: 10.1038/s41598-021-82352-8. PubMed DOI PMC

Taylor M.K., Swerdlow R.H., Burns J.M., Sullivan D.K. An experimental ketogenic diet for Alzheimer disease was nutritionally dense and rich in vegetables and avocado. Curr. Dev. Nutr. 2019;3(4):nzz003. doi: 10.1093/cdn/nzz003. PubMed DOI PMC

Cahill G.F.J., Jr, Herrera M.G., Morgan A.P., Soeldner J.S., Steinke J., Levy P.L., Reichard G.A., Jr, Kipnis D.M. Hormone-fuel interrelationships during fasting. J. Clin. Invest. 1966;45(11):1751–1769. doi: 10.1172/JCI105481. PubMed DOI PMC

Yang H., Shan W., Zhu F., Wu J., Wang Q. Ketone bodies in neurological diseases: Focus on neuroprotection and underlying mechanisms. Front. Neurol. 2019;10:585. doi: 10.3389/fneur.2019.00585. PubMed DOI PMC

Gasior M., Rogawski M.A., Hartman A.L. Neuroprotective and disease-modifying effects of the ketogenic diet. Behav. Pharmacol. 2006;17(5-6):431–439. doi: 10.1097/00008877-200609000-00009. PubMed DOI PMC

McNally M.A., Hartman A.L. Ketone bodies in epilepsy. J. Neurochem. 2012;121(1):28–35. doi: 10.1111/j.1471-4159.2012.07670.x. PubMed DOI PMC

McDonald T.J.W., Cervenka M.C. Ketogenic diets for adult neurological disorders. Neurotherapeutics. 2018;15(4):1018–1031. doi: 10.1007/s13311-018-0666-8. PubMed DOI PMC

Van der Auwera I., Wera S., Van Leuven F., Henderson S.T. A ketogenic diet reduces amyloid beta 40 and 42 in a mouse model of Alzheimer’s disease. Nutr. Metab. (Lond.) 2005;2:28. doi: 10.1186/1743-7075-2-28. PubMed DOI PMC

Hughes S.D., Kanabus M., Anderson G., Hargreaves I.P., Rutherford T., O’Donnell M., Cross J.H., Rahman S., Eaton S., Heales S.J. The ketogenic diet component decanoic acid increases mitochondrial citrate synthase and complex I activity in neuronal cells. J. Neurochem. 2014;129(3):426–433. doi: 10.1111/jnc.12646. PubMed DOI

Rho J.M., Rogawski M.A. The ketogenic diet: stoking the powerhouse of the cell. Epilepsy Curr. 2007;7(2):58–60. doi: 10.1111/j.1535-7511.2007.00170.x. PubMed DOI PMC

Yin J.X., Maalouf M., Han P., Zhao M., Gao M., Dharshaun T., Ryan C., Whitelegge J., Wu J., Eisenberg D., Reiman E.M., Schweizer F.E., Shi J. Ketones block amyloid entry and improve cognition in an Alzheimer’s model. Neurobiol. Aging. 2016;39:25–37. doi: 10.1016/j.neurobiolaging.2015.11.018. PubMed DOI

Swerdlow R.H. Mitochondria and cell bioenergetics: increasingly recognized components and a possible etiologic cause of Alzheimer’s disease. Antioxid. Redox Signal. 2012;16(12):1434–1455. doi: 10.1089/ars.2011.4149. PubMed DOI PMC

Hasebe N., Fujita Y., Ueno M., Yoshimura K., Fujino Y., Yamashita T. Soluble β-amyloid precursor protein alpha binds to p75 neurotrophin receptor to promote neurite outgrowth. PLoS One. 2013;8(12):e82321. doi: 10.1371/journal.pone.0082321. PubMed DOI PMC

Bough K.J., Wetherington J., Hassel B., Pare J.F., Gawryluk J.W., Greene J.G., Shaw R., Smith Y., Geiger J.D., Dingledine R.J. Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Ann. Neurol. 2006;60(2):223–235. doi: 10.1002/ana.20899. PubMed DOI

Masino S.A., Kawamura M., Wasser C.D., Pomeroy L.T., Ruskin D.N. Adenosine, ketogenic diet and epilepsy: the emerging therapeutic relationship between metabolism and brain activity. Curr. Neuropharmacol. 2009;7(3):257–268. doi: 10.2174/157015909789152164. PubMed DOI PMC

Kovács Z., Brunner B., Ari C. Beneficial effects of exogenous ketogenic supplements on aging processes and age-related neurodegenerative diseases. Nutrients. 2021;13(7):2197. doi: 10.3390/nu13072197. PubMed DOI PMC

Kashiwaya Y., Takeshima T., Mori N., Nakashima K., Clarke K., Veech R.L. D-β-hydroxybutyrate protects neurons in models of Alzheimer’s and Parkinson’s disease. Proc. Natl. Acad. Sci. USA. 2000;97(10):5440–5444. doi: 10.1073/pnas.97.10.5440. PubMed DOI PMC

Lilamand M., Porte B., Cognat E., Hugon J., Mouton-Liger F., Paquet C. Are ketogenic diets promising for Alzheimer’s disease? A translational review. Alzheimers Res. Ther. 2020;12(1):42. doi: 10.1186/s13195-020-00615-4. PubMed DOI PMC

Yao J., Chen S., Mao Z., Cadenas E., Brinton R.D. 2-Deoxy-D-glucose treatment induces ketogenesis, sustains mitochondrial function, and reduces pathology in female mouse model of Alzheimer’s disease. PLoS One. 2011;6(7):e21788. doi: 10.1371/journal.pone.0021788. PubMed DOI PMC

Chen Q., Prior M., Dargusch R., Roberts A., Riek R., Eichmann C., Chiruta C., Akaishi T., Abe K., Maher P., Schubert D. A novel neurotrophic drug for cognitive enhancement and Alzheimer’s disease. PLoS One. 2011;6(12):e27865. doi: 10.1371/journal.pone.0027865. PubMed DOI PMC

Prior M., Dargusch R., Ehren J.L., Chiruta C., Schubert D. The neurotrophic compound J147 reverses cognitive impairment in aged Alzheimer’s disease mice. Alzheimers Res. Ther. 2013;5(3):25. doi: 10.1186/alzrt179. PubMed DOI PMC

Daugherty D., Goldberg J., Fischer W., Dargusch R., Maher P., Schubert D. A novel Alzheimer’s disease drug candidate targeting inflammation and fatty acid metabolism. Alzheimers Res. Ther. 2017;9(1):50. doi: 10.1186/s13195-017-0277-3. PubMed DOI PMC

Rusek M., Pluta R., Ułamek-Kozioł M., Czuczwar S.J. Ketogenic diet in Alzheimer’s disease. Int. J. Mol. Sci. 2019;20(16):20. doi: 10.3390/ijms20163892. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...