Mitochondrially-Targeted Therapeutic Strategies for Alzheimer's Disease
Jazyk angličtina Země Spojené arabské emiráty Médium print
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000868
European Regional Development Fund- Project ENOCH 750
PubMed
34879805
PubMed Central
PMC9178515
DOI
10.2174/1567205018666211208125855
PII: CAR-EPUB-119295
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer's disease, bioenergetics, epigenetic modifiers, lifestyle changes, mitochondria, mtDNA, repurposed drugs., β-amyloid,
- MeSH
- Alzheimerova nemoc * metabolismus MeSH
- amyloidní beta-protein metabolismus MeSH
- lidé MeSH
- mitochondriální DNA metabolismus MeSH
- mitochondrie metabolismus MeSH
- neurodegenerativní nemoci * metabolismus MeSH
- senioři MeSH
- Check Tag
- lidé MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- amyloidní beta-protein MeSH
- mitochondriální DNA MeSH
Alzheimer's disease (AD) is an irreversible, progressive neurodegenerative disease and the most common cause of dementia among older adults. There are no effective treatments available for the disease, and it is associated with great societal concern because of the substantial costs of providing care to its sufferers, whose numbers will increase as populations age. While multiple causes have been proposed to be significant contributors to the onset of sporadic AD, increased age is a unifying risk factor. In addition to amyloid-β (Aβ) and tau protein playing a key role in the initiation and progression of AD, impaired mitochondrial bioenergetics and dynamics are likely major etiological factors in AD pathogenesis and have many potential origins, including Aβ and tau. Mitochondrial dysfunction is evident in the central nervous system (CNS) and systemically early in the disease process. Addressing these multiple mitochondrial deficiencies is a major challenge of mitochondrial systems biology. We review evidence for mitochondrial impairments ranging from mitochondrial DNA (mtDNA) mutations to epigenetic modification of mtDNA, altered gene expression, impaired mitobiogenesis, oxidative stress, altered protein turnover and changed organelle dynamics (fission and fusion). We also discuss therapeutic approaches, including repurposed drugs, epigenetic modifiers, and lifestyle changes that target each level of deficiency which could potentially alter the course of this progressive, heterogeneous Disease while being cognizant that successful future therapeutics may require a combinatorial approach.
Zobrazit více v PubMed
Cummings J. New approaches to symptomatic treatments for Alzheimer’s disease. Mol. Neurodegener. 2021;16(1):2. doi: 10.1186/s13024-021-00424-9. PubMed DOI PMC
Tsai S.J., SJ Huperzine-A, a versatile herb, for the treatment of Alzheimer’s disease. J. Chin. Med. Assoc. 2019;82(10):750–751. doi: 10.1097/JCMA.0000000000000151. PubMed DOI
Gul A., Bakht J., Mehmood F. Huperzine-A response to cognitive impairment and task switching deficits in patients with Alzheimer’s disease. J. Chin. Med. Assoc. 2019;82(1):40–43. doi: 10.1016/j.jcma.2018.07.004. PubMed DOI
Xing S.H., Zhu C.X., Zhang R., An L. Huperzine a in the treatment of Alzheimer’s disease and vascular dementia: a meta-analysis. Evid. Based Complement. Alternat. Med. 2014;2014:363985. doi: 10.1155/2014/363985. PubMed DOI PMC
Jarmolowicz A.I., Chen H.Y., Panegyres P.K. The patterns of inheritance in early-onset dementia: Alzheimer’s disease and frontotemporal dementia. Am. J. Alzheimers Dis. Other Demen. 2015;30(3):299–306. doi: 10.1177/1533317514545825. PubMed DOI PMC
Campion D., Dumanchin C., Hannequin D., Dubois B., Belliard S., Puel M., Thomas-Anterion C., Michon A., Martin C., Charbonnier F., Raux G., Camuzat A., Penet C., Mesnage V., Martinez M., Clerget-Darpoux F., Brice A., Frebourg T. Early-onset autosomal dominant Alzheimer disease: prevalence, genetic heterogeneity, and mutation spectrum. Am. J. Hum. Genet. 1999;65(3):664–670. doi: 10.1086/302553. PubMed DOI PMC
Li N., Liu K., Qiu Y., Ren Z., Dai R., Deng Y., Qing H. Effect of presenilin mutations on APP cleavage; insights into the pathogenesis of FAD. Front. Aging Neurosci. 2016;8:51. doi: 10.3389/fnagi.2016.00051. PubMed DOI PMC
Behl T., Kaur I., Fratila O., Brata R., Bungau S. Exploring the potential of therapeutic agents targeted towards mitigating the events associated with amyloid-β cascade in Alzheimer’s disease. Int. J. Mol. Sci. 2020;21(20):7443. doi: 10.3390/ijms21207443. PubMed DOI PMC
Hardy J.A., Higgins G.A. Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992;256(5054):184–185. doi: 10.1126/science.1566067. PubMed DOI
Huang Y., Mucke L. Alzheimer mechanisms and therapeutic strategies. Cell. 2012;148(6):1204–1222. doi: 10.1016/j.cell.2012.02.040. PubMed DOI PMC
Haass C., Kaether C., Thinakaran G., Sisodia S. Trafficking and proteolytic processing of APP. Cold Spring Harb. Perspect. Med. 2012;2(5):a006270. doi: 10.1101/cshperspect.a006270. PubMed DOI PMC
Muirhead K.E., Borger E., Aitken L., Conway S.J., Gunn-Moore F.J. The consequences of mitochondrial amyloid beta-peptide in Alzheimer’s disease. Biochem. J. 2010;426(3):255–270. doi: 10.1042/BJ20091941. PubMed DOI
Su B., Wang X., Nunomura A., Moreira P.I., Lee H.G., Perry G., Smith M.A., Zhu X. Oxidative stress signaling in Alzheimer’s disease. Curr. Alzheimer Res. 2008;5(6):525–532. doi: 10.2174/156720508786898451. PubMed DOI PMC
Fessel J. Ineffective levels of transforming growth factors and their receptor account for old age being a risk factor for Alzheimer’s disease. Alzheimers Dement. (N. Y.) 2019;5:899–905. doi: 10.1016/j.trci.2019.11.007. PubMed DOI PMC
Dorszewska J., Prendecki M., Oczkowska A., Dezor M., Kozubski W. Molecular basis of familial and sporadic alzheimer’s disease. Curr. Alzheimer Res. 2016;13(9):952–963. doi: 10.2174/1567205013666160314150501. PubMed DOI
Milind N., Preuss C., Haber A., Ananda G., Mukherjee S., John C., Shapley S., Logsdon B.A., Crane P.K., Carter G.W. Transcriptomic stratification of late-onset Alzheimer’s cases reveals novel genetic modifiers of disease pathology. PLoS Genet. 2020;16(6):e1008775. doi: 10.1371/journal.pgen.1008775. PubMed DOI PMC
Allen M., Zou F., Chai H.S., Younkin C.S., Crook J., Pankratz V.S., Carrasquillo M.M., Rowley C.N., Nair A.A., Middha S., Maharjan S., Nguyen T., Ma L., Malphrus K.G., Palusak R., Lincoln S., Bisceglio G., Georgescu C., Schultz D., Rakhshan F., Kolbert C.P., Jen J., Haines J.L., Mayeux R., Pericak-Vance M.A., Farrer L.A., Schellenberg G.D., Petersen R.C., Graff-Radford N.R., Dickson D.W., Younkin S.G., Ertekin-Taner N., Apostolova L.G., Arnold S.E., Baldwin C.T., Barber R., Barmada M.M., Beach T., Beecham G.W., Beekly D., Bennett D.A., Bigio E.H., Bird T.D., Blacker D., Boeve B.F., Bowen J.D., Boxer A., Burke J.R., Buros J., Buxbaum J.D., Cairns N.J., Cantwell L.B., Cao C., Carlson C.S., Carney R.M., Carroll S.L., Chui H.C., Clark D.G., Corneveaux J., Cotman C.W., Crane P.K., Cruchaga C., Cummings J.L., De Jager P.L., DeCarli C., DeKosky S.T., Demirci F.Y., Diaz-Arrastia R., Dick M., Dombroski B.A., Duara R., Ellis W.D., Evans D., Faber K.M., Fallon K.B., Farlow M.R., Ferris S., Foroud T.M., Frosch M., Galasko D.R., Gallins P.J., Ganguli M., Gearing M., Geschwind D.H., Ghetti B., Gilbert J.R., Gilman S., Giordani B., Glass J.D., Goate A.M., Green R.C., Growdon J.H., Hakonarson H., Hamilton R.L., Hardy J., Harrell L.E., Head E., Honig L.S., Huentelman M.J., Hulette C.M., Hyman B.T., Jarvik G.P., Jicha G.A., Jin L.W., Jun G., Kamboh M.I., Karlawish J., Karydas A., Kauwe J.S., Kaye J.A., Kennedy N., Kim R., Koo E.H., Kowall N.W., Kramer P., Kukull W.A., Lah J.J., Larson E.B., Levey A.I., Lieberman A.P., Lopez O.L., Lunetta K.L., Mack W.J., Marson D.C., Martin E.R., Martiniuk F., Mash D.C., Masliah E., McCormick W.C., McCurry S.M., McDavid A.N., McKee A.C., Mesulam M., Miller B.L., Miller C.A., Miller J.W., Montine T.J., Morris J.C., Myers A.J., Naj A.C., Nowotny P., Parisi J.E., Perl D.P., Peskind E., Poon W.W., Potter H., Quinn J.F., Raj A., Rajbhandary R.A., Raskind M., Reiman E.M., Reisberg B., Reitz C., Ringman J.M., Roberson E.D., Rogaeva E., Rosenberg R.N., Sano M., Saykin A.J., Schneider J.A., Schneider L.S., Seeley W., Shelanski M.L., Slifer M.A., Smith C.D., Sonnen J.A., Spina S., St George-Hyslop P., Stern R.A., Tanzi R.E., Trojanowski J.Q., Troncoso J.C., Tsuang D.W., Van Deerlin V.M., Vardarajan B.N., Vinters H.V., Vonsattel J.P., Wang L.S., Weintraub S., Welsh-Bohmer K.A., Williamson J., Woltjer R.L., Alzheimer’s Disease Genetics Consortium (ADGC) Novel late-onset Alzheimer disease loci variants associate with brain gene expression. Neurology. 2012;79(3):221–228. doi: 10.1212/WNL.0b013e3182605801. PubMed DOI PMC
Zhu L., Zhong M., Elder G.A., Sano M., Holtzman D.M., Gandy S., Cardozo C., Haroutunian V., Robakis N.K., Cai D. Phospholipid dysregulation contributes to ApoE4-associated cognitive deficits in Alzheimer’s disease pathogenesis. Proc. Natl. Acad. Sci. USA. 2015;112(38):11965–11970. doi: 10.1073/pnas.1510011112. PubMed DOI PMC
El Gaamouch F., Jing P., Xia J., Cai D. Alzheimer’s disease risk genes and lipid regulators. J. Alzheimers Dis. 2016;53(1):15–29. doi: 10.3233/JAD-160169. PubMed DOI
De Strooper B., Karran E. The cellular phase of Alzheimer’s disease. Cell. 2016;164(4):603–615. doi: 10.1016/j.cell.2015.12.056. PubMed DOI
Barber R.C. The genetics of Alzheimer’s disease. Scientifica (Cairo) 2012;2012:246210. doi: 10.6064/2012/246210. PubMed DOI PMC
Munoz D.G., Feldman H. Causes of Alzheimer’s disease. CMAJ. 2000;162(1):65–72. PubMed PMC
Jensen N.J., Wodschow H.Z., Nilsson M., Rungby J. Effects of ketone bodies on brain metabolism and function in neurodegenerative diseases. Int. J. Mol. Sci. 2020;21(22):8767. doi: 10.3390/ijms21228767. PubMed DOI PMC
Golpich M., Amini E., Mohamed Z., Azman Ali R., Mohamed Ibrahim N., Ahmadiani A. Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: Pathogenesis and treatment. CNS Neurosci. Ther. 2017;23(1):5–22. doi: 10.1111/cns.12655. PubMed DOI PMC
Calsolaro V., Edison P. Alterations in glucose metabolism in Alzheimer’s disease. Recent Pat. Endocr. Metab. Immune Drug Discov. 2016;10(1):31–39. doi: 10.2174/1872214810666160615102809. PubMed DOI
Chételat G., Desgranges B., de la Sayette V., Viader F., Eustache F., Baron J.C. Mild cognitive impairment: Can FDG-PET predict who is to rapidly convert to Alzheimer’s disease? Neurology. 2003;60(8):1374–1377. doi: 10.1212/01.WNL.0000055847.17752.E6. PubMed DOI
Pagani M., Nobili F., Morbelli S., Arnaldi D., Giuliani A., Öberg J., Girtler N., Brugnolo A., Picco A., Bauckneht M., Piva R., Chincarini A., Sambuceti G., Jonsson C., De Carli F. Early identification of MCI converting to AD: a FDG PET study. Eur. J. Nucl. Med. Mol. Imaging. 2017;44(12):2042–2052. doi: 10.1007/s00259-017-3761-x. PubMed DOI
Hu H., Tan C.C., Tan L., Yu J.T. A mitocentric view of Alzheimer’s disease. Mol. Neurobiol. 2017;54(8):6046–6060. doi: 10.1007/s12035-016-0117-7. PubMed DOI
Poulose N., Raju R. Sirtuin regulation in aging and injury. Biochimica et Biophysica Acta (BBA) 2015;1852(11):2442–55. doi: 10.1016/j.bbadis.2015.08.017. PubMed DOI PMC
De Felice F.G., Ferreira S.T. Inflammation, defective insulin signaling, and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to Alzheimer disease. Diabetes. 2014;63(7):2262–2272. doi: 10.2337/db13-1954. PubMed DOI
Spielman L.J., Little J.P., Klegeris A. Inflammation and insulin/IGF-1 resistance as the possible link between obesity and neurodegeneration. J. Neuroimmunol. 2014;273(1-2):8–21. doi: 10.1016/j.jneuroim.2014.06.004. PubMed DOI
Willette A. Does metabolic syndrome impact cognition and emotion in Alzheimer’s disease? Eur. J. Neurol. 2016;23(2):237–238. doi: 10.1111/ene.12879. PubMed DOI
Wang X.F., Lin X., Li D.Y., Zhou R., Greenbaum J., Chen Y.C., Zeng C.P., Peng L.P., Wu K.H., Ao Z.X., Lu J.M., Guo Y.F., Shen J., Deng H.W. Linking Alzheimer’s disease and type 2 diabetes: Novel shared susceptibility genes detected by cFDR approach. J. Neurol. Sci. 2017;380:262–272. doi: 10.1016/j.jns.2017.07.044. PubMed DOI PMC
Rios J.A., Cisternas P., Arrese M., Barja S., Inestrosa N.C. Is Alzheimer’s disease related to metabolic syndrome? A Wnt signaling conundrum. Prog Neurobiol. 2014;121:125–146. doi: 10.1016/j.pneurobio.2014.07.004. PubMed DOI
Pistollato F., Sumalla Cano S., Elio I., Masias Vergara M., Giampieri F., Battino M. Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease. Nutr. Rev. 2016;74(10):624–634. doi: 10.1093/nutrit/nuw023. PubMed DOI
Demetrius L.A., Driver J. Alzheimer’s as a metabolic disease. Biogerontology. 2013;14(6):641–649. doi: 10.1007/s10522-013-9479-7. PubMed DOI
Liu C.C., Liu C.C., Kanekiyo T., Xu H., Bu G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat. Rev. Neurol. 2013;9(2):106–118. doi: 10.1038/nrneurol.2012.263. PubMed DOI PMC
Burke S.L., Maramaldi P., Cadet T., Kukull W. Associations between depression, sleep disturbance, and apolipoprotein E in the development of Alzheimer’s disease: dementia. Int. Psychogeriatr. 2016;28(9):1409–1424. doi: 10.1017/S1041610216000405. PubMed DOI PMC
Saul D, Kosinsky R.L. Epigenetics of aging and aging-associated diseases. Int. J. Mol. Sci. 2021;22:401. doi: 10.3390/ijms22010401. PubMed DOI PMC
Brunet A., Berger S.L. Epigenetics of aging and aging-related disease. J. Gerontol. A Biol. Sci. Med. Sci. 2014;69(Suppl. 1):S17–S20. doi: 10.1093/gerona/glu042. PubMed DOI PMC
Stoccoro A., Coppedè F. Role of epigenetics in Alzheimer’s disease pathogenesis. Neurodegener. Dis. Manag. 2018;8(3):181–193. doi: 10.2217/nmt-2018-0004. PubMed DOI
Qazi T.J., Quan Z., Mir A., Qing H. Epigenetics in Alzheimer’s disease: perspective of DNA methylation. Mol. Neurobiol. 2018;55(2):1026–1044. doi: 10.1007/s12035-016-0357-6. PubMed DOI
Misrani A., Tabassum S., Yang L. Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease. Front. Aging Neurosci. 2021;13:617588. doi: 10.3389/fnagi.2021.617588. PubMed DOI PMC
Hroudová J., Singh N., Fišar Z. Mitochondrial dysfunctions in neurodegenerative diseases: relevance to Alzheimer's disease. Biomed Res Int. 2014;2014:175062. doi: 10.1155/2014/175062. PubMed DOI PMC
Blanch M., Mosquera J.L., Ansoleaga B., Ferrer I., Barrachina M. Altered mitochondrial DNA methylation pattern in Alzheimer disease-related pathology and in Parkinson disease. Am. J. Pathol. 2016;186(2):385–397. doi: 10.1016/j.ajpath.2015.10.004. PubMed DOI
Stoccoro A., Siciliano G., Migliore L., Coppedè F. Decreased methylation of the mitochondrial d-loop region in late-onset Alzheimer’s disease. J. Alzheimers Dis. 2017;59(2):559–564. doi: 10.3233/JAD-170139. PubMed DOI
Mposhi A., Van der Wijst M.G., Faber K.N., Rots M.G. Regulation of mitochondrial gene expression, the epigenetic enigma. Front. Biosci. 2017;22:1099–1113. doi: 10.2741/4535. PubMed DOI
Wang Y., Xu E., Musich P.R., Lin F. Mitochondrial dysfunction in neurodegenerative diseases and the potential countermeasure. CNS Neurosci. Ther. 2019;25(7):816–824. doi: 10.1111/cns.13116. PubMed DOI PMC
Reddy P.H. Mitochondrial medicine for aging and neurodegenerative diseases. Neuromolecular Med. 2008;10(4):291–315. doi: 10.1007/s12017-008-8044-z. PubMed DOI PMC
Anderson S., Bankier A.T., Barrell B.G., de Bruijn M.H., Coulson A.R., Drouin J., Eperon I.C., Nierlich D.P., Roe B.A., Sanger F., Schreier P.H., Smith A.J., Staden R., Young I.G. Sequence and organization of the human mitochondrial genome. Nature. 1981;290(5806):457–465. doi: 10.1038/290457a0. PubMed DOI
Tobore T.O., TO On the central role of mitochondria dysfunction and oxidative stress in Alzheimer’s disease. Neurol. Sci. 2019;40(8):1527–1540. doi: 10.1007/s10072-019-03863-x. PubMed DOI
Chan D.C. Mitochondrial dynamics and its involvement in disease. Annu Rev Pathol Mech Dis. 2020;15:235–259. doi: 10.1146/annurev-pathmechdis-012419-032711. PubMed DOI
Chan D.C. Mitochondrial fusion and fission in mammals. Annu. Rev. Cell Dev. Biol. 2006;22:79–99. doi: 10.1146/annurev.cellbio.22.010305.104638. PubMed DOI
Vinten-Johansen J. Commentary: Mitochondria are more than just the cells’ powerhouse. J. Thorac. Cardiovasc. Surg. 2020;160(2):e33–e34. doi: 10.1016/j.jtcvs.2019.07.029. PubMed DOI
Stefano G.B., Challenger S., Kream R.M. Hyperglycemia-associated alterations in cellular signaling and dysregulated mitochondrial bioenergetics in human metabolic disorders. Eur. J. Nutr. 2016;55(8):2339–2345. doi: 10.1007/s00394-016-1212-2. PubMed DOI PMC
Chen H., Chomyn A., Chan D.C. Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J. Biol. Chem. 2005;280(28):26185–26192. doi: 10.1074/jbc.M503062200. PubMed DOI
McBride H.M., Neuspiel M., Wasiak S. Mitochondria: more than just a powerhouse. Curr. Biol. 2006;16(14):R551–R560. doi: 10.1016/j.cub.2006.06.054. PubMed DOI
Yu T., Robotham J.L., Yoon Y. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc. Natl. Acad. Sci. USA. 2006;103(8):2653–2658. doi: 10.1073/pnas.0511154103. PubMed DOI PMC
Burgstaller J.P., Kolbe T., Havlicek V., Hembach S., Poulton J., Piálek J., Steinborn R., Rülicke T., Brem G., Jones N.S., Johnston I.G. Large-scale genetic analysis reveals mammalian mtDNA heteroplasmy dynamics and variance increase through lifetimes and generations. Nat. Commun. 2018;9(1):2488. doi: 10.1038/s41467-018-04797-2. PubMed DOI PMC
Stewart J.B., Chinnery P.F. The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat. Rev. Genet. 2015;16(9):530–542. doi: 10.1038/nrg3966. PubMed DOI
Chu C.T., CT Mechanisms of selective autophagy and mitophagy: Implications for neurodegenerative diseases. Neurobiol. Dis. 2019;122:23–34. doi: 10.1016/j.nbd.2018.07.015. PubMed DOI PMC
Yin F., Sancheti H., Patil I., Cadenas E. Energy metabolism and inflammation in brain aging and Alzheimer’s disease. Free Radic. Biol. Med. 2016;100:108–122. doi: 10.1016/j.freeradbiomed.2016.04.200. PubMed DOI PMC
Santos R.X., Correia S.C., Wang X., Perry G., Smith M.A., Moreira P.I., Zhu X. Alzheimer’s disease: diverse aspects of mitochondrial malfunctioning. Int. J. Clin. Exp. Pathol. 2010;3(6):570–581. PubMed PMC
Cunnane S., Nugent S., Roy M., Courchesne-Loyer A., Croteau E., Tremblay S., Castellano A., Pifferi F., Bocti C., Paquet N., Begdouri H., Bentourkia M., Turcotte E., Allard M., Barberger-Gateau P., Fulop T., Rapoport S.I. Brain fuel metabolism, aging, and Alzheimer’s disease. Nutrition. 2011;27(1):3–20. doi: 10.1016/j.nut.2010.07.021. PubMed DOI PMC
Podlesniy P., Llorens F., Golanska E., Sikorska B., Liberski P., Zerr I., Trullas R. Mitochondrial DNA differentiates Alzheimer’s disease from Creutzfeldt-Jakob disease. Alzheimers Dement. 2016;12(5):546–555. doi: 10.1016/j.jalz.2015.12.011. PubMed DOI
Trimmer P.A., Swerdlow R.H., Parks J.K., Keeney P., Bennett J.P., Jr, Miller S.W., Davis R.E., Parker W.D., Jr Abnormal mitochondrial morphology in sporadic Parkinson’s and Alzheimer’s disease cybrid cell lines. Exp. Neurol. 2000;162(1):37–50. doi: 10.1006/exnr.2000.7333. PubMed DOI
Pantiya P., Thonusin C., Chattipakorn N., Chattipakorn S.C. Mitochondrial abnormalities in neurodegenerative models and possible interventions: Focus on Alzheimer’s disease, Parkinson’s disease, Huntington’s disease. Mitochondrion. 2020;55:14–47. doi: 10.1016/j.mito.2020.08.003. PubMed DOI
Baloyannis S.J. Mitochondrial alterations in Alzheimer’s disease. J. Alzheimers Dis. 2006;9(2):119–126. doi: 10.3233/JAD-2006-9204. PubMed DOI
Bonda D.J., Smith M.A., Perry G., Lee H.G., Wang X., Zhu X. The mitochondrial dynamics of Alzheimer’s disease and Parkinson’s disease offer important opportunities for therapeutic intervention. Curr. Pharm. Des. 2011;17(31):3374–3380. doi: 10.2174/138161211798072562. PubMed DOI PMC
Swerdlow R.H., Burns J.M., Khan S.M. The Alzheimer’s disease mitochondrial cascade hypothesis: progress and perspectives. Biochim. Biophys. Acta. 2014;1842(8):1219–1231. doi: 10.1016/j.bbadis.2013.09.010. PubMed DOI PMC
Podlesniy P., Figueiro-Silva J., Llado A., Antonell A., Sanchez-Valle R., Alcolea D., Lleo A., Molinuevo J.L., Serra N., Trullas R. Low cerebrospinal fluid concentration of mitochondrial DNA in preclinical Alzheimer disease. Ann. Neurol. 2013;74(5):655–668. doi: 10.1002/ana.23955. PubMed DOI
Fiorito V., Chiabrando D., Tolosano E. Mitochondrial targeting in neurodegeneration: A heme perspective. Pharmaceuticals (Basel) 2018;11(3):11. doi: 10.3390/ph11030087. PubMed DOI PMC
Wang H., Fang B., Peng B., Wang L., Xue Y., Bai H., Lu S., Voelcker N.H., Li L., Fu L., Huang W. Recent advances in chemical biology of mitochondria targeting. Front Chem. 2021;9:683220. doi: 10.3389/fchem.2021.683220. PubMed DOI PMC
Chan D.C. Mitochondria: dynamic organelles in disease, aging, and development. Cell. 2006;125(7):1241–1252. doi: 10.1016/j.cell.2006.06.010. PubMed DOI
Lunnon K., Keohane A., Pidsley R., Newhouse S., Riddoch-Contreras J., Thubron E.B., Devall M., Soininen H., Kłoszewska I., Mecocci P., Tsolaki M., Vellas B., Schalkwyk L., Dobson R., Malik A.N., Powell J., Lovestone S., Hodges A., AddNeuroMed Consortium Mitochondrial genes are altered in blood early in Alzheimer’s disease. Neurobiol. Aging. 2017;53:36–47. doi: 10.1016/j.neurobiolaging.2016.12.029. PubMed DOI
Lopez Sanchez M.I.G., van Wijngaarden P., Trounce I.A. Amyloid precursor protein-mediated mitochondrial regulation and Alzheimer’s disease. Br. J. Pharmacol. 2019;176(18):3464–3474. doi: 10.1111/bph.14554. PubMed DOI PMC
Du H., Guo L., Yan S., Sosunov A.A., McKhann G.M., Yan S.S. Early deficits in synaptic mitochondria in an Alzheimer’s disease mouse model. Proc. Natl. Acad. Sci. USA. 2010;107(43):18670–18675. doi: 10.1073/pnas.1006586107. PubMed DOI PMC
Anandatheerthavarada H.K., Devi L. Amyloid precursor protein and mitochondrial dysfunction in Alzheimer’s disease. Neuroscientist. 2007;13(6):626–638. doi: 10.1177/1073858407303536. PubMed DOI
Devi L., Prabhu B.M., Galati D.F., Avadhani N.G., Anandatheerthavarada H.K. Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J. Neurosci. 2006;26(35):9057–9068. doi: 10.1523/JNEUROSCI.1469-06.2006. PubMed DOI PMC
Sorrentino V., Romani M., Mouchiroud L., Beck J.S., Zhang H., D’Amico D., Moullan N., Potenza F., Schmid A.W., Rietsch S., Counts S.E., Auwerx J. Enhancing mitochondrial proteostasis reduces amyloid-β proteotoxicity. Nature. 2017;552(7684):187–193. doi: 10.1038/nature25143. PubMed DOI PMC
Burté F., Carelli V., Chinnery P.F., Yu-Wai-Man P. Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat. Rev. Neurol. 2015;11(1):11–24. doi: 10.1038/nrneurol.2014.228. PubMed DOI
Cai Q., Tammineni P. Alterations in mitochondrial quality control in Alzheimer’s disease. Front. Cell. Neurosci. 2016;10:24. doi: 10.3389/fncel.2016.00024. PubMed DOI PMC
Onyango I.G., Dennis J., Khan S.M. Mitochondrial dysfunction in Alzheimer’s disease and the rationale for bioenergetics based therapies. Aging Dis. 2016;7(2):201–214. doi: 10.14336/AD.2015.1007. PubMed DOI PMC
Baraniak P.R., McDevitt T.C. Stem cell paracrine actions and tissue regeneration. Regen. Med. 2010;5(1):121–143. doi: 10.2217/rme.09.74. PubMed DOI PMC
Briston T., Hicks A.R. Mitochondrial dysfunction and neurodegenerative proteinopathies: mechanisms and prospects for therapeutic intervention. Biochem. Soc. Trans. 2018;46(4):829–842. doi: 10.1042/BST20180025. PubMed DOI PMC
Sarasija S., Norman K.R. Role of presenilin in mitochondrial oxidative stress and neurodegeneration in Caenorhabditis elegans. Antioxidants. 2018;7(9):7. doi: 10.3390/antiox7090111. PubMed DOI PMC
Maijenburg M.W., van der Schoot C.E., Voermans C. Mesenchymal stromal cell migration: possibilities to improve cellular therapy. Stem Cells Dev. 2012;21(1):19–29. doi: 10.1089/scd.2011.0270. PubMed DOI
Mendivil-Perez M., Soto-Mercado V., Guerra-Librero A., Fernandez-Gil B.I., Florido J., Shen Y.Q., Tejada M.A., Capilla-Gonzalez V., Rusanova I., Garcia-Verdugo J.M., Acuña-Castroviejo D., López L.C., Velez-Pardo C., Jimenez-Del-Rio M., Ferrer J.M., Escames G. Melatonin enhances neural stem cell differentiation and engraftment by increasing mitochondrial function. J. Pineal Res. 2017;63(2):63. doi: 10.1111/jpi.12415. PubMed DOI
Zhang W., Gu G.J., Shen X., Zhang Q., Wang G.M., Wang P.J. Neural stem cell transplantation enhances mitochondrial biogenesis in a transgenic mouse model of Alzheimer’s disease-like pathology. Neurobiol. Aging. 2015;36(3):1282–1292. doi: 10.1016/j.neurobiolaging.2014.10.040. PubMed DOI
Ahmadian-Moghadam H., Sadat-Shirazi M.S., Zarrindast M.R. Therapeutic potential of stem cells for treatment of neurodegenerative diseases. Biotechnol. Lett. 2020;42(7):1073–1101. doi: 10.1007/s10529-020-02886-1. PubMed DOI
Newell C., Sabouny R., Hittel D.S., Shutt T.E., Khan A., Klein M.S., Shearer J. Mesenchymal stem cells shift mitochondrial dynamics and enhance oxidative phosphorylation in recipient cells. Front. Physiol. 2018;9:1572. doi: 10.3389/fphys.2018.01572. PubMed DOI PMC
Hayakawa K., Esposito E., Wang X., Terasaki Y., Liu Y., Xing C., Ji X., Lo E.H. Transfer of mitochondria from astrocytes to neurons after stroke. Nature. 2016;535(7613):551–555. doi: 10.1038/nature18928. PubMed DOI PMC
Babenko V.A., Silachev D.N., Zorova L.D., Pevzner I.B., Khutornenko A.A., Plotnikov E.Y., Sukhikh G.T., Zorov D.B. Improving the post-stroke therapeutic potency of mesenchymal multipotent stromal cells by Cocultivation with cortical neurons: the role of crosstalk between cells. Stem Cells Transl. Med. 2015;4(9):1011–1020. doi: 10.5966/sctm.2015-0010. PubMed DOI PMC
Sheehan J.P., Swerdlow R.H., Miller S.W., Davis R.E., Parks J.K., Parker W.D., Tuttle J.B. Calcium homeostasis and reactive oxygen species production in cells transformed by mitochondria from individuals with sporadic Alzheimer’s disease. J. Neurosci. 1997;17(12):4612–4622. doi: 10.1523/JNEUROSCI.17-12-04612.1997. PubMed DOI PMC
Schon E.A., Shoubridge E.A., Moraes C.T. Cybrids in Alzheimer’s disease: a cellular model of the disease? Neurology. 1998;51(1):326–327. doi: 10.1212/WNL.51.1.326. PubMed DOI
Chien L., Liang M.Z., Chang C.Y., Wang C., Chen L. Mitochondrial therapy promotes regeneration of injured hippocampal neurons. Biochim. Biophys. Acta Mol. Basis Dis. 2018;1864(9 Pt B):3001–3012. doi: 10.1016/j.bbadis.2018.06.012. PubMed DOI
Williams S.L., Mash D.C., Züchner S., Moraes C.T. Somatic mtDNA mutation spectra in the aging human putamen. PLoS Genet. 2013;9(12):e1003990. doi: 10.1371/journal.pgen.1003990. PubMed DOI PMC
Wallace D.C., Chalkia D. Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harb. Perspect. Biol. 2013;5(11):a021220. doi: 10.1101/cshperspect.a021220. PubMed DOI PMC
Wei W., Tuna S., Keogh M.J., Smith K.R., Aitman T.J., Beales P.L., Bennett D.L., Gale D.P., Bitner-Glindzicz M.A.K., Black G.C., Brennan P., Elliott P., Flinter F.A., Floto R.A., Houlden H., Irving M., Koziell A., Maher E.R., Markus H.S., Morrell N.W., Newman W.G., Roberts I., Sayer J.A., Smith K.G.C., Taylor J.C., Watkins H., Webster A.R., Wilkie A.O.M., Williamson C., Ashford S., Penkett C.J., Stirrups K.E., Rendon A., Ouwehand W.H., Bradley J.R., Raymond F.L., Caulfield M., Turro E., Chinnery P.F., NIHR BioResource–Rare Diseases. 100,000 Genomes Project–Rare Diseases Pilot Germline selection shapes human mitochondrial DNA diversity. Science. 2019;364(6442):364. doi: 10.1126/science.aau6520. PubMed DOI
Filograna R., Mennuni M., Alsina D., Larsson N.G. Mitochondrial DNA copy number in human disease: the more the better? FEBS Lett. 2021;595(8):976–1002. doi: 10.1002/1873-3468.14021. PubMed DOI PMC
Frahm T., Mohamed S.A., Bruse P., Gemünd C., Oehmichen M., Meissner C. Lack of age-related increase of mitochondrial DNA amount in brain, skeletal muscle and human heart. Mech. Ageing Dev. 2005;126(11):1192–1200. doi: 10.1016/j.mad.2005.06.008. PubMed DOI
Ross J.M., Stewart J.B., Hagström E., Brené S., Mourier A., Coppotelli G., Freyer C., Lagouge M., Hoffer B.J., Olson L., Larsson N.G. Germline mitochondrial DNA mutations aggravate ageing and can impair brain development. Nature. 2013;501(7467):412–415. doi: 10.1038/nature12474. PubMed DOI PMC
Grazina M., Pratas J., Silva F., Oliveira S., Santana I., Oliveira C. Genetic basis of Alzheimer’s dementia: role of mtDNA mutations. Genes Brain Behav. 2006;5(Suppl. 2):92–107. doi: 10.1111/j.1601-183X.2006.00225.x. PubMed DOI
Rai P.K., Craven L., Hoogewijs K., Russell O.M., Lightowlers R.N. Advances in methods for reducing mitochondrial DNA disease by replacing or manipulating the mitochondrial genome. Essays Biochem. 2018;62(3):455–465. doi: 10.1042/EBC20170113. PubMed DOI PMC
Gammage P.A., Moraes C.T., Minczuk M. Mitochondrial genome engineering: The revolution may not be CRISPR-Ized. Trends Genet. 2018;34(2):101–110. doi: 10.1016/j.tig.2017.11.001. PubMed DOI PMC
Pereira C.V., Bacman S.R., Arguello T., Zekonyte U., Williams S.L., Edgell D.R., Moraes C.T. mitoTev-TALE: a monomeric DNA editing enzyme to reduce mutant mitochondrial DNA levels. EMBO Mol. Med. 2018;10(9):e8084. doi: 10.15252/emmm.201708084. PubMed DOI PMC
Peeva V., Blei D., Trombly G., Corsi S., Szukszto M.J., Rebelo-Guiomar P., Gammage P.A., Kudin A.P., Becker C., Altmüller J., Minczuk M., Zsurka G., Kunz W.S. Linear mitochondrial DNA is rapidly degraded by components of the replication machinery. Nat. Commun. 2018;9(1):1727. doi: 10.1038/s41467-018-04131-w. PubMed DOI PMC
Viscomi C. Toward a therapy for mitochondrial disease. Biochem. Soc. Trans. 2016;44(5):1483–1490. doi: 10.1042/BST20160085. PubMed DOI PMC
Mok B.Y., de Moraes M.H., Zeng J., Bosch D.E., Kotrys A.V., Raguram A., Hsu F., Radey M.C., Peterson S.B., Mootha V.K., Mougous J.D., Liu D.R. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature. 2020;583(7817):631–637. doi: 10.1038/s41586-020-2477-4. PubMed DOI PMC
Viscomi C., Bottani E., Zeviani M. Emerging concepts in the therapy of mitochondrial disease. Biochim. Biophys. Acta. 2015;1847(6-7):544–557. doi: 10.1016/j.bbabio.2015.03.001. PubMed DOI
Finck B.N., Kelly D.P. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J. Clin. Invest. 2006;116(3):615–622. doi: 10.1172/JCI27794. PubMed DOI PMC
Scarpulla R.C. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim. Biophys. Acta. 2011;1813(7):1269–1278. doi: 10.1016/j.bbamcr.2010.09.019. PubMed DOI PMC
Virbasius J.V., Scarpulla R.C. Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc. Natl. Acad. Sci. USA. 1994;91(4):1309–1313. doi: 10.1073/pnas.91.4.1309. PubMed DOI PMC
Picca A., Lezza A.M. Regulation of mitochondrial biogenesis through TFAM-mitochondrial DNA interactions: Useful insights from aging and calorie restriction studies. Mitochondrion. 2015;25:67–75. doi: 10.1016/j.mito.2015.10.001. PubMed DOI
Oyewole A.O., Birch-Machin M.A. Mitochondria-targeted antioxidants. FASEB J. 2015;29(12):4766–4771. doi: 10.1096/fj.15-275404. PubMed DOI
Fang Y., Hu X.H., Jia Z.G., Xu M.H., Guo Z.Y., Gao F.H. Tiron protects against UVB-induced senescence-like characteristics in human dermal fibroblasts by the inhibition of superoxide anion production and glutathione depletion. Australas. J. Dermatol. 2012;53(3):172–180. doi: 10.1111/j.1440-0960.2012.00912.x. PubMed DOI
Piermarocchi S., Saviano S., Parisi V., Tedeschi M., Panozzo G., Scarpa G., Boschi G., Lo Giudice G., Carmis Study Group Carotenoids in Age-related Maculopathy Italian Study (CARMIS): two-year results of a randomized study. Eur. J. Ophthalmol. 2012;22(2):216–225. doi: 10.5301/ejo.5000069. PubMed DOI
Hafez H.A., Kamel M.A., Osman M.Y., Osman H.M., Elblehi S.S., Mahmoud S.A. Ameliorative effects of astaxanthin on brain tissues of alzheimer’s disease-like model: cross talk between neuronal-specific microRNA-124 and related pathways. Mol. Cell. Biochem. 2021;476(5):2233–2249. doi: 10.1007/s11010-021-04079-4. PubMed DOI
Santonocito D., Raciti G., Campisi A., Sposito G., Panico A., Siciliano E.A., Sarpietro M.G., Damiani E., Puglia C. Astaxanthin-loaded stealth lipid nanoparticles (AST-SSLN) as potential carriers for the treatment of Alzheimer’s disease: Formulation development and optimization. Nanomaterials (Basel) 2021;11(2):391. doi: 10.3390/nano11020391. PubMed DOI PMC
Wu W., Wang X., Xiang Q., Meng X., Peng Y., Du N., Liu Z., Sun Q., Wang C., Liu X. Astaxanthin alleviates brain aging in rats by attenuating oxidative stress and increasing BDNF levels. Food Funct. 2014;5(1):158–166. doi: 10.1039/C3FO60400D. PubMed DOI
Smith R.A., Murphy M.P. Mitochondria-targeted antioxidants as therapies. Discov. Med. 2011;11(57):106–114. PubMed
Nissanka N., Moraes C.T. Mitochondrial DNA heteroplasmy in disease and targeted nuclease-based therapeutic approaches. EMBO Rep. 2020;21(3):e49612. doi: 10.15252/embr.201949612. PubMed DOI PMC
Bacman S.R., Williams S.L., Pinto M., Peralta S., Moraes C.T. Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat. Med. 2013;19(9):1111–1113. doi: 10.1038/nm.3261. PubMed DOI PMC
Yang Y., Wu H., Kang X., Liang Y., Lan T., Li T., Tan T., Peng J., Zhang Q., An G., Liu Y., Yu Q., Ma Z., Lian Y., Soh B.S., Chen Q., Liu P., Chen Y., Sun X., Li R., Zhen X., Liu P., Yu Y., Li X., Fan Y. Targeted elimination of mutant mitochondrial DNA in MELAS-iPSCs by mitoTALENs. Protein Cell. 2018;9(3):283–297. doi: 10.1007/s13238-017-0499-y. PubMed DOI PMC
Zakirova E.G., Muzyka V.V., Mazunin I.O., Orishchenko K.E. Natural and artificial mechanisms of mitochondrial genome elimination. Life (Basel) 2021;11(2):76. doi: 10.3390/life11020076. PubMed DOI PMC
Bacman S.R., Kauppila J.H.K., Pereira C.V., Nissanka N., Miranda M., Pinto M., Williams S.L., Larsson N.G., Stewart J.B., Moraes C.T. MitoTALEN reduces mutant mtDNA load and restores tRNAAla levels in a mouse model of heteroplasmic mtDNA mutation. Nat. Med. 2018;24(11):1696–1700. doi: 10.1038/s41591-018-0166-8. PubMed DOI PMC
Gammage P.A., Rorbach J., Vincent A.I., Rebar E.J., Minczuk M. Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations. EMBO Mol. Med. 2014;6(4):458–466. doi: 10.1002/emmm.201303672. PubMed DOI PMC
Craven L., Alston C.L., Taylor R.W., Turnbull D.M. Recent advances in mitochondrial Disease. Annu. Rev. Genomics Hum. Genet. 2017;18:257–275. doi: 10.1146/annurev-genom-091416-035426. PubMed DOI
Chang J.C., Wu S.L., Liu K.H., Chen Y.H., Chuang C.S., Cheng F.C., Su H.L., Wei Y.H., Kuo S.J., Liu C.S. Allogeneic/xenogeneic transplantation of peptide-labeled mitochondria in Parkinson’s disease: restoration of mitochondria functions and attenuation of 6-hydroxydopamine-induced neurotoxicity. Transl. Res. 2016;170:40–56.e3. doi: 10.1016/j.trsl.2015.12.003. PubMed DOI
Schon E.A., DiMauro S., Hirano M. Human mitochondrial DNA: roles of inherited and somatic mutations. Nat. Rev. Genet. 2012;13(12):878–890. doi: 10.1038/nrg3275. PubMed DOI PMC
Schon E.A., Przedborski S. Mitochondria: the next (neurode)generation. Neuron. 2011;70(6):1033–1053. doi: 10.1016/j.neuron.2011.06.003. PubMed DOI PMC
Corral-Debrinski M., Horton T., Lott M.T., Shoffner J.M., McKee A.C., Beal M.F., Graham B.H., Wallace D.C. Marked changes in mitochondrial DNA deletion levels in Alzheimer brains. Genomics. 1994;23(2):471–476. doi: 10.1006/geno.1994.1525. PubMed DOI
Coskun P.E., Beal M.F., Wallace D.C. Alzheimer’s brains harbor somatic mtDNA control-region mutations that suppress mitochondrial transcription and replication. Proc. Natl. Acad. Sci. USA. 2004;101(29):10726–10731. doi: 10.1073/pnas.0403649101. PubMed DOI PMC
Chocron E.S., Munkácsy E., Pickering A.M. Cause or casualty: The role of mitochondrial DNA in aging and age-associated disease. Biochim. Biophys. Acta Mol. Basis Dis. 2019;1865(2):285–297. doi: 10.1016/j.bbadis.2018.09.035. PubMed DOI PMC
Swerdlow R.H., Koppel S., Weidling I., Hayley C., Ji Y., Wilkins H.M. Mitochondria, cybrids, aging, and Alzheimer’s disease. Prog. Mol. Biol. Transl. Sci. 2017;146:259–302. doi: 10.1016/bs.pmbts.2016.12.017. PubMed DOI PMC
Lin M.T., Simon D.K., Ahn C.H., Kim L.M., Beal M.F. High aggregate burden of somatic mtDNA point mutations in aging and Alzheimer’s disease brain. Hum. Mol. Genet. 2002;11(2):133–145. doi: 10.1093/hmg/11.2.133. PubMed DOI
Duarte-Jurado A.P., Gopar-Cuevas Y., Saucedo-Cardenas O., Loera-Arias M.J., Montes-de-Oca-Luna R., Garcia-Garcia A., Rodriguez-Rocha H. Antioxidant therapeutics in Parkinson’s disease: Current challenges and opportunities. Antioxidants. 2021;10(3):453. doi: 10.3390/antiox10030453. PubMed DOI PMC
Polyzos A.A., Wood N.I., Williams P., Wipf P., Morton A.J., McMurray C.T. XJB-5-131-mediated improvement in physiology and behaviour of the R6/2 mouse model of Huntington’s disease is age- and sex- dependent. PLoS One. 2018;13(4):e0194580. doi: 10.1371/journal.pone.0194580. PubMed DOI PMC
Jin H., Kanthasamy A., Ghosh A., Anantharam V., Kalyanaraman B., Kanthasamy A.G. Mitochondria-targeted antioxidants for treatment of Parkinson’s disease: preclinical and clinical outcomes. Biochim. Biophys. Acta. 2014;1842(8):1282–1294. doi: 10.1016/j.bbadis.2013.09.007. PubMed DOI PMC
Xun Z., Rivera-Sánchez S., Ayala-Peña S., Lim J., Budworth H., Skoda E.M., Robbins P.D., Niedernhofer L.J., Wipf P., McMurray C.T. Targeting of XJB-5-131 to mitochondria suppresses oxidative DNA damage and motor decline in a mouse model of Huntington’s disease. Cell Rep. 2012;2(5):1137–1142. doi: 10.1016/j.celrep.2012.10.001. PubMed DOI PMC
Reiter R.J., Rosales-Corral S., Tan D.X., Jou M.J., Galano A., Xu B. Melatonin as a mitochondria-targeted antioxidant: one of evolution’s best ideas. Cell. Mol. Life Sci. 2017;74(21):3863–3881. doi: 10.1007/s00018-017-2609-7. PubMed DOI PMC
Carter H.N., Chen C.C., Hood D.A. Mitochondria, muscle health, and exercise with advancing age. Physiology (Bethesda) 2015;30(3):208–223. doi: 10.1152/physiol.00039.2014. PubMed DOI
Flannery P.J., Trushina E. Mitochondrial dynamics and transport in Alzheimer’s disease. Mol. Cell. Neurosci. 2019;98:109–120. doi: 10.1016/j.mcn.2019.06.009. PubMed DOI PMC
Reiter R.J., Mayo J.C., Tan D.X., Sainz R.M., Alatorre-Jimenez M., Qin L. Melatonin as an antioxidant: under promises but over delivers. J. Pineal Res. 2016;61(3):253–278. doi: 10.1111/jpi.12360. PubMed DOI
Reiter R., Tang L., Garcia J.J., Muñoz-Hoyos A. Pharmacological actions of melatonin in oxygen radical pathophysiology. Life Sci. 1997;60(25):2255–2271. doi: 10.1016/S0024-3205(97)00030-1. PubMed DOI
Hock M.B., Kralli A. Transcriptional control of mitochondrial biogenesis and function. Annu. Rev. Physiol. 2009;71:177–203. doi: 10.1146/annurev.physiol.010908.163119. PubMed DOI
Ma K., Chen G., Li W., Kepp O., Zhu Y., Chen Q. Mitophagy, mitochondrial homeostasis, and cell fate. Front. Cell Dev. Biol. 2020;8:467. doi: 10.3389/fcell.2020.00467. PubMed DOI PMC
Gureev A.P., Shaforostova E.A., Popov V.N. Regulation of mitochondrial biogenesis as a way for active longevity: Interaction between the Nrf2 and PGC-1α Signaling Pathways. Front. Genet. 2019;10:435. doi: 10.3389/fgene.2019.00435. PubMed DOI PMC
Mishra P., Chan D.C. Metabolic regulation of mitochondrial dynamics. J. Cell Biol. 2016;212(4):379–387. doi: 10.1083/jcb.201511036. PubMed DOI PMC
Hamacher-Brady A., Brady N.R. Mitophagy programs: mechanisms and physiological implications of mitochondrial targeting by autophagy. Cell. Mol. Life Sci. 2016;73(4):775–795. doi: 10.1007/s00018-015-2087-8. PubMed DOI PMC
Morabito R, Remigante A, Marino A. Melatonin protects band 3 protein in human erythrocytes against H2O2 induced oxidative stress. Molecules. 2019;24:2741. doi: 10.3390/molecules24152741. PubMed DOI PMC
Reiter R.J., Tan D., Kim S.J., Manchester L.C., Qi W., Garcia J.J., Cabrera J.C., El-Sokkary G., Rouvier-Garay V. Augmentation of indices of oxidative damage in life-long melatonin-deficient rats. Mech. Ageing Dev. 1999;110(3):157–173. doi: 10.1016/S0047-6374(99)00058-5. PubMed DOI
R., H., Melatonin, Its Metabolites and Their Interference with Reactive Nitrogen Compounds. Molecules. 2021;26:4015. PubMed PMC
Tan D.X., Manchester L.C., Burkhardt S., Sainz R.M., Mayo J.C., Kohen R., Shohami E., Huo Y.S., Hardeland R., Reiter R.J. N1-acetyl-N2-formyl-5-methoxykynuramine, a biogenic amine and melatonin metabolite, functions as a potent antioxidant. FASEB J. 2001;15(12):2294–2296. doi: 10.1096/fj.01-0309fje. PubMed DOI
Tan D.X., Reiter R.J., Manchester L.C., Yan M.T., El-Sawi M., Sainz R.M., Mayo J.C., Kohen R., Allegra M., Hardeland R. Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger. Curr. Top. Med. Chem. 2002;2(2):181–197. doi: 10.2174/1568026023394443. PubMed DOI
Ressmeyer A.R., Mayo J.C., Zelosko V., Sáinz R.M., Tan D.X., Poeggeler B., Antolín I., Zsizsik B.K., Reiter R.J., Hardeland R. Antioxidant properties of the melatonin metabolite N1-acetyl-5-methoxykynuramine (AMK): scavenging of free radicals and prevention of protein destruction. Redox Rep. 2003;8(4):205–213. doi: 10.1179/135100003225002709. PubMed DOI
Butterfield D.A., Boyd-Kimball D. Amyloid beta-peptide(1-42) contributes to the oxidative stress and neurodegeneration found in Alzheimer disease brain. Brain Pathol. 2004;14(4):426–432. doi: 10.1111/j.1750-3639.2004.tb00087.x. PubMed DOI PMC
García S., Martín Giménez V.M., Mocayar Marón F.J., Reiter R.J., Manucha W. Melatonin and cannabinoids: mitochondrial-targeted molecules that may reduce inflammaging in neurodegenerative diseases. Histol. Histopathol. 2020;35(8):789–800. PubMed
Rosales-Corral S.A., Acuña-Castroviejo D., Coto-Montes A., Boga J.A., Manchester L.C., Fuentes-Broto L., Korkmaz A., Ma S., Tan D.X., Reiter R.J. Alzheimer’s disease: pathological mechanisms and the beneficial role of melatonin. J. Pineal Res. 2012;52(2):167–202. doi: 10.1111/j.1600-079X.2011.00937.x. PubMed DOI
Joshi A.U., Minhas P.S., Liddelow S.A., Haileselassie B., Andreasson K.I., Dorn G.W., II, Mochly-Rosen D. Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. Nat. Neurosci. 2019;22(10):1635–1648. doi: 10.1038/s41593-019-0486-0. PubMed DOI PMC
Palmer C.S., Osellame L.D., Laine D., Koutsopoulos O.S., Frazier A.E., Ryan M.T. MiD49 and MiD51, new components of the mitochondrial fission machinery. EMBO Rep. 2011;12(6):565–573. doi: 10.1038/embor.2011.54. PubMed DOI PMC
Chen H., Chan D.C. Mitochondrial dynamics--fusion, fission, movement, and mitophagy--in neurodegenerative diseases. Hum. Mol. Genet. 2009;18(R2):R169–R176. doi: 10.1093/hmg/ddp326. PubMed DOI PMC
Knott A.B., Perkins G., Schwarzenbacher R., Bossy-Wetzel E. Mitochondrial fragmentation in neurodegeneration. Nat. Rev. Neurosci. 2008;9(7):505–518. doi: 10.1038/nrn2417. PubMed DOI PMC
Jensen M.B., Jasper H. Mitochondrial proteostasis in the control of aging and longevity. Cell Metab. 2014;20(2):214–225. doi: 10.1016/j.cmet.2014.05.006. PubMed DOI PMC
Nargund A.M., Fiorese C.J., Pellegrino M.W., Deng P., Haynes C.M. Mitochondrial and nuclear accumulation of the transcription factor ATFS-1 promotes OXPHOS recovery during the UPR(mt). Mol. Cell. 2015;58(1):123–133. doi: 10.1016/j.molcel.2015.02.008. PubMed DOI PMC
Tian Y., Merkwirth C., Dillin A. Mitochondrial UPR: a double-edged sword. Trends Cell Biol. 2016;26(8):563–565. doi: 10.1016/j.tcb.2016.06.006. PubMed DOI
Pellegrino M.W., Nargund A.M., Haynes C.M. Signaling the mitochondrial unfolded protein response. Biochimica et Biophysica Acta. 2013;(1833):410–6. PubMed PMC
Cassidy-Stone A., Chipuk J.E., Ingerman E., Song C., Yoo C., Kuwana T., Kurth M.J., Shaw J.T., Hinshaw J.E., Green D.R., Nunnari J. Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev. Cell. 2008;14(2):193–204. doi: 10.1016/j.devcel.2007.11.019. PubMed DOI PMC
Joshi A.U., Saw N.L., Shamloo M., Mochly-Rosen D. Drp1/Fis1 interaction mediates mitochondrial dysfunction, bioenergetic failure and cognitive decline in Alzheimer’s disease. Oncotarget. 2017;9(5):6128–6143. doi: 10.18632/oncotarget.23640. PubMed DOI PMC
Walsh J.G., Muruve D.A., Power C. Inflammasomes in the CNS. Nat. Rev. Neurosci. 2014;15(2):84–97. doi: 10.1038/nrn3638. PubMed DOI
Liu Q., Zhang D., Hu D., Zhou X., Zhou Y. The role of mitochondria in NLRP3 inflammasome activation. Mol. Immunol. 2018;103:115–124. doi: 10.1016/j.molimm.2018.09.010. PubMed DOI
Zhou R., Yazdi A.S., Menu P., Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469(7329):221–225. doi: 10.1038/nature09663. PubMed DOI
Nakahira K., Haspel J.A., Rathinam V.A., Lee S.J., Dolinay T., Lam H.C., Englert J.A., Rabinovitch M., Cernadas M., Kim H.P., Fitzgerald K.A., Ryter S.W., Choi A.M. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 2011;12(3):222–230. doi: 10.1038/ni.1980. PubMed DOI PMC
Bahat A., MacVicar T., Langer T. Metabolism and innate immunity meet at the mitochondria. Front. Cell Dev. Biol. 2021;9:720490. doi: 10.3389/fcell.2021.720490. PubMed DOI PMC
Subramanian N., Natarajan K., Clatworthy M.R., Wang Z., Germain R.N. The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation. Cell Death Differ. 2013;153(2):348–361. doi: 10.1016/j.cell.2013.02.054. PubMed DOI PMC
Yan X., Wang B., Hu Y., Wang S., Zhang X. Abnormal mitochondrial quality control in neurodegenerative diseases. Front. Cell. Neurosci. 2020;14:138. doi: 10.3389/fncel.2020.00138. PubMed DOI PMC
Bai H., Zhang Q. Activation of NLRP3 inflammasome and onset of Alzheimer’s disease. Front. Immunol. 2021;12:701282. doi: 10.3389/fimmu.2021.701282. PubMed DOI PMC
Wilkins H.M., Carl S.M., Weber S.G., Ramanujan S.A., Festoff B.W., Linseman D.A., Swerdlow R.H. Mitochondrial lysates induce inflammation and Alzheimer’s disease-relevant changes in microglial and neuronal cells. J. Alzheimers Dis. 2015;45(1):305–318. doi: 10.3233/JAD-142334. PubMed DOI PMC
Shimada K., Crother T.R., Karlin J., Dagvadorj J., Chiba N., Chen S., Ramanujan V.K., Wolf A.J., Vergnes L., Ojcius D.M., Rentsendorj A., Vargas M., Guerrero C., Wang Y., Fitzgerald K.A., Underhill D.M., Town T., Arditi M. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity. 2012;36(3):401–414. doi: 10.1016/j.immuni.2012.01.009. PubMed DOI PMC
Iyer S.S., He Q., Janczy J.R., Elliott E.I., Zhong Z., Olivier A.K., Sadler J.J., Knepper-Adrian V., Han R., Qiao L., Eisenbarth S.C., Nauseef W.M., Cassel S.L., Sutterwala F.S. Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity. 2013;39(2):311–323. doi: 10.1016/j.immuni.2013.08.001. PubMed DOI PMC
Lonskaya I., Hebron M.L., Desforges N.M., Schachter J.B., Moussa C.E. Nilotinib-induced autophagic changes increase endogenous parkin level and ubiquitination, leading to amyloid clearance. J. Mol. Med. (Berl.) 2014;92(4):373–386. doi: 10.1007/s00109-013-1112-3. PubMed DOI PMC
Friedman L.G., Qureshi Y.H., Yu W.H. Promoting autophagic clearance: viable therapeutic targets in Alzheimer’s disease. Neurotherapeutics. 2015;12(1):94–108. doi: 10.1007/s13311-014-0320-z. PubMed DOI PMC
Rubinsztein D.C., Mariño G., Kroemer G. Autophagy and aging. Cell. 2011;146(5):682–695. doi: 10.1016/j.cell.2011.07.030. PubMed DOI
Gómez Morillas A., Besson V.C., Lerouet D. Microglia and neuroinflammation: What place for P2RY12? Int. J. Mol. Sci. 2021;22(4):1636. doi: 10.3390/ijms22041636. PubMed DOI PMC
Inoue K. Microglial activation by purines and pyrimidines. Glia. 2002;40(2):156–163. doi: 10.1002/glia.10150. PubMed DOI
Faroqi A.H., Lim M.J., Kee E.C., Lee J.H., Burgess J.D., Chen R., Di Virgilio F., Delenclos M., McLean P.J. In vivo detection of extracellular adenosine triphosphate in a mouse model of traumatic brain injury. J. Neurotrauma. 2021;38(5):655–664. doi: 10.1089/neu.2020.7226. PubMed DOI PMC
Davalos D., Grutzendler J., Yang G., Kim J.V., Zuo Y., Jung S., Littman D.R., Dustin M.L., Gan W.B. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 2005;8(6):752–758. doi: 10.1038/nn1472. PubMed DOI
Moon S., Muniyappan S., Lee S.B., Lee B.H. Small-molecule inhibitors targeting proteasome-associated deubiquitinases. Int. J. Mol. Sci. 2021;22(12):6213. doi: 10.3390/ijms22126213. PubMed DOI PMC
Lee B.H., Lee M.J., Park S., Oh D.C., Elsasser S., Chen P.C., Gartner C., Dimova N., Hanna J., Gygi S.P., Wilson S.M., King R.W., Finley D. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature. 2010;467(7312):179–184. doi: 10.1038/nature09299. PubMed DOI PMC
Myeku N., Clelland C.L., Emrani S., Kukushkin N.V., Yu W.H., Goldberg A.L., Duff K.E. Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling. Nat. Med. 2016;22(1):46–53. doi: 10.1038/nm.4011. PubMed DOI PMC
Bluhm A., Schrempel S., von Hörsten S., Schulze A., Roßner S. Proteolytic α-synuclein cleavage in health and disease. Int. J. Mol. Sci. 2021;22(11):5450. doi: 10.3390/ijms22115450. PubMed DOI PMC
Huang L., Ho P., Chen C.H. Activation and inhibition of the proteasome by betulinic acid and its derivatives. FEBS Lett. 2007;581(25):4955–4959. doi: 10.1016/j.febslet.2007.09.031. PubMed DOI PMC
Trippier P.C., Zhao K.T., Fox S.G., Schiefer I.T., Benmohamed R., Moran J., Kirsch D.R., Morimoto R.I., Silverman R.B. Proteasome activation is a mechanism for pyrazolone small molecules displaying therapeutic potential in amyotrophic lateral sclerosis. ACS Chem. Neurosci. 2014;5(9):823–829. doi: 10.1021/cn500147v. PubMed DOI PMC
Outeiro T.F., Putcha P., Tetzlaff J.E., Spoelgen R., Koker M., Carvalho F., Hyman B.T., McLean P.J. Formation of toxic oligomeric alpha-synuclein species in living cells. PLoS One. 2008;3(4):e1867. doi: 10.1371/journal.pone.0001867. PubMed DOI PMC
Sahu I., Glickman M.H. Structural insights into substrate recognition and processing by the 20S proteasome. Biomolecules. 2021;11(2):148. doi: 10.3390/biom11020148. PubMed DOI PMC
Leestemaker Y., de Jong A., Witting K.F., Penning R., Schuurman K., Rodenko B., Zaal E.A., van de Kooij B., Laufer S., Heck A.J.R., Borst J., Scheper W., Berkers C.R., Ovaa H. Proteasome activation by small molecules. Cell Chem. Biol. 2017;24(6):725–736.e7. doi: 10.1016/j.chembiol.2017.05.010. PubMed DOI
Lau J.L., Dunn M.K. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg. Med. Chem. 2018;26(10):2700–2707. doi: 10.1016/j.bmc.2017.06.052. PubMed DOI
Gillette T.G., Kumar B., Thompson D., Slaughter C.A., DeMartino G.N. Differential roles of the COOH termini of AAA subunits of PA700 (19 S regulator) in asymmetric assembly and activation of the 26 S proteasome. J. Biol. Chem. 2008;283(46):31813–31822. doi: 10.1074/jbc.M805935200. PubMed DOI PMC
Dal Vechio F.H., Cerqueira F., Augusto O., Lopes R., Demasi M. Peptides that activate the 20S proteasome by gate opening increased oxidized protein removal and reduced protein aggregation. Free Radic. Biol. Med. 2014;67:304–313. doi: 10.1016/j.freeradbiomed.2013.11.017. PubMed DOI
Villavicencio Tejo F., Quintanilla R.A. Contribution of the Nrf2 pathway on oxidative damage and mitochondrial failure in Parkinson and Alzheimer’s disease. Antioxidants. 2021;10(7):1069. doi: 10.3390/antiox10071069. PubMed DOI PMC
Kwak M.K., Wakabayashi N., Greenlaw J.L., Yamamoto M., Kensler T.W. Antioxidants enhance mammalian proteasome expression through the Keap1-Nrf2 signaling pathway. Mol. Cell. Biol. 2003;23(23):8786–8794. doi: 10.1128/MCB.23.23.8786-8794.2003. PubMed DOI PMC
Ryu D., Mouchiroud L., Andreux P.A., Katsyuba E., Moullan N., Nicolet-Dit-Félix A.A., Williams E.G., Jha P., Lo Sasso G., Huzard D., Aebischer P., Sandi C., Rinsch C., Auwerx J. Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat. Med. 2016;22(8):879–888. doi: 10.1038/nm.4132. PubMed DOI
Pietrocola F., Lachkar S., Enot D.P., Niso-Santano M., Bravo-San Pedro J.M., Sica V., Izzo V., Maiuri M.C., Madeo F., Mariño G., Kroemer G. Spermidine induces autophagy by inhibiting the acetyltransferase EP300. Cell Death Differ. 2015;22(3):509–516. doi: 10.1038/cdd.2014.215. PubMed DOI PMC
Qi Y., Qiu Q., Gu X., Tian Y., Zhang Y. ATM mediates spermidine-induced mitophagy via PINK1 and Parkin regulation in human fibroblasts. Sci. Rep. 2016;6:24700. doi: 10.1038/srep24700. PubMed DOI PMC
Eisenberg T., Abdellatif M., Schroeder S., Primessnig U., Stekovic S., Pendl T., Harger A., Schipke J., Zimmermann A., Schmidt A., Tong M., Ruckenstuhl C., Dammbrueck C., Gross A.S., Herbst V., Magnes C., Trausinger G., Narath S., Meinitzer A., Hu Z., Kirsch A., Eller K., Carmona-Gutierrez D., Büttner S., Pietrocola F., Knittelfelder O., Schrepfer E., Rockenfeller P., Simonini C., Rahn A., Horsch M., Moreth K., Beckers J., Fuchs H., Gailus-Durner V., Neff F., Janik D., Rathkolb B., Rozman J., de Angelis M.H., Moustafa T., Haemmerle G., Mayr M., Willeit P., von Frieling-Salewsky M., Pieske B., Scorrano L., Pieber T., Pechlaner R., Willeit J., Sigrist S.J., Linke W.A., Mühlfeld C., Sadoshima J., Dengjel J., Kiechl S., Kroemer G., Sedej S., Madeo F. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat. Med. 2016;22(12):1428–1438. doi: 10.1038/nm.4222. PubMed DOI PMC
Gupta V.K., Scheunemann L., Eisenberg T., Mertel S., Bhukel A., Koemans T.S., Kramer J.M., Liu K.S., Schroeder S., Stunnenberg H.G., Sinner F., Magnes C., Pieber T.R., Dipt S., Fiala A., Schenck A., Schwaerzel M., Madeo F., Sigrist S.J. Restoring polyamines protects from age-induced memory impairment in an autophagy-dependent manner. Nat. Neurosci. 2013;16(10):1453–1460. doi: 10.1038/nn.3512. PubMed DOI
Chondrogianni N., Voutetakis K., Kapetanou M., Delitsikou V., Papaevgeniou N., Sakellari M., Lefaki M., Filippopoulou K., Gonos E.S. Proteasome activation: An innovative promising approach for delaying aging and retarding age-related diseases. Ageing Res. Rev. 2015;23(Pt A):37–55. doi: 10.1016/j.arr.2014.12.003. PubMed DOI
Losón O.C., Song Z., Chen H., Chan D.C. Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol. Biol. Cell. 2013;24(5):659–667. doi: 10.1091/mbc.e12-10-0721. PubMed DOI PMC
Palmer C.S., Elgass K.D., Parton R.G., Osellame L.D., Stojanovski D., Ryan M.T. Adaptor proteins MiD49 and MiD51 can act independently of Mff and Fis1 in Drp1 recruitment and are specific for mitochondrial fission. J. Biol. Chem. 2013;288(38):27584–27593. doi: 10.1074/jbc.M113.479873. PubMed DOI PMC
Zhang L., Zhang S., Maezawa I., Trushin S., Minhas P., Pinto M., Jin L.W., Prasain K., Nguyen T.D., Yamazaki Y., Kanekiyo T., Bu G., Gateno B., Chang K.O., Nath K.A., Nemutlu E., Dzeja P., Pang Y.P., Hua D.H., Trushina E. Modulation of mitochondrial complex I activity averts cognitive decline in multiple animal models of familial Alzheimer’s Disease. EBioMedicine. 2015;2(4):294–305. doi: 10.1016/j.ebiom.2015.03.009. PubMed DOI PMC
Lin L., Huang Q.X., Yang S.S., Chu J., Wang J.Z., Tian Q. Melatonin in Alzheimer’s disease. Int. J. Mol. Sci. 2013;14(7):14575–14593. doi: 10.3390/ijms140714575. PubMed DOI PMC
Espino J., Bejarano I., Redondo P.C., Rosado J.A., Barriga C., Reiter R.J., Pariente J.A., Rodríguez A.B. Melatonin reduces apoptosis induced by calcium signaling in human leukocytes: Evidence for the involvement of mitochondria and Bax activation. J. Membr. Biol. 2010;233(1-3):105–118. doi: 10.1007/s00232-010-9230-0. PubMed DOI
Liu P., Smith B.R., Montonye M.L., Kemper L.J., Leinonen-Wright K., Nelson K.M., Higgins L., Guerrero C.R., Markowski T.W., Zhao X., Petersen A.J., Knopman D.S., Petersen R.C., Ashe K.H. A soluble truncated tau species related to cognitive dysfunction is elevated in the brain of cognitively impaired human individuals. Sci. Rep. 2020;10(1):3869. doi: 10.1038/s41598-020-60777-x. PubMed DOI PMC
Shimohama S., Tanino H., Fujimoto S. Changes in caspase expression in Alzheimer’s disease: comparison with development and aging. Biochem. Biophys. Res. Commun. 1999;256(2):381–384. doi: 10.1006/bbrc.1999.0344. PubMed DOI
Louneva N., Cohen J.W., Han L.Y., Talbot K., Wilson R.S., Bennett D.A., Trojanowski J.Q., Arnold S.E. Caspase-3 is enriched in postsynaptic densities and increased in Alzheimer’s disease. Am. J. Pathol. 2008;173(5):1488–1495. doi: 10.2353/ajpath.2008.080434. PubMed DOI PMC
Kim W., Ma L., Lomoio S., Willen R., Lombardo S., Dong J., Haydon P.G., Tesco G. BACE1 elevation engendered by GGA3 deletion increases β-amyloid pathology in association with APP elevation and decreased CHL1 processing in 5XFAD mice. Mol. Neurodegener. 2018;13(1):6. doi: 10.1186/s13024-018-0239-7. PubMed DOI PMC
Hossain M.F., Uddin M.S., Uddin G.M.S., Sumsuzzman D.M., Islam M.S., Barreto G.E., Mathew B., Ashraf G.M. Melatonin in Alzheimer’s disease: A latent endogenous regulator of neurogenesis to mitigate Alzheimer’s neuropathology. Mol. Neurobiol. 2019;56(12):8255–8276. doi: 10.1007/s12035-019-01660-3. PubMed DOI
Tesco G., Koh Y.H., Kang E.L., Cameron A.N., Das S., Sena-Esteves M., Hiltunen M., Yang S.H., Zhong Z., Shen Y., Simpkins J.W., Tanzi R.E. Depletion of GGA3 stabilizes BACE and enhances beta-secretase activity. Neuron. 2007;54(5):721–737. doi: 10.1016/j.neuron.2007.05.012. PubMed DOI PMC
Ling X., Zhang L.M., Lu S.D., Li X.J., Sun F.Y. Protective effect of melatonin on injuried cerebral neurons is associated with bcl-2 protein over-expression. Chung Kuo Yao Li Hsueh Pao. 1999;20(5):409–414. PubMed
Tadokoro K., Ohta Y., Inufusa H., Loon A.F.N., Abe K. Prevention of cognitive decline in Alzheimer’s disease by novel antioxidative supplements. Int. J. Mol. Sci. 2020;21(6):1974. doi: 10.3390/ijms21061974. PubMed DOI PMC
Poeggeler B., Miravalle L., Zagorski M.G., Wisniewski T., Chyan Y.J., Zhang Y., Shao H., Bryant-Thomas T., Vidal R., Frangione B., Ghiso J., Pappolla M.A. Melatonin reverses the profibrillogenic activity of apolipoprotein E4 on the Alzheimer amyloid Abeta peptide. Biochemistry. 2001;40(49):14995–15001. doi: 10.1021/bi0114269. PubMed DOI
Feng Z., Zhang J.T. Protective effect of melatonin on beta-amyloid-induced apoptosis in rat astroglioma C6 cells and its mechanism. Free Radic. Biol. Med. 2004;37(11):1790–1801. doi: 10.1016/j.freeradbiomed.2004.08.023. PubMed DOI
Vincent B. Protective roles of melatonin against the amyloid-dependent development of Alzheimer’s disease: A critical review. Pharmacol. Res. 2018;134:223–237. doi: 10.1016/j.phrs.2018.06.011. PubMed DOI
Li Y., Zhang J., Wan J., Liu A., Sun J. Melatonin regulates Aβ production/clearance balance and Aβ neurotoxicity: A potential therapeutic molecule for Alzheimer’s disease. Biomed. Pharmacother. 2020;132:110887. doi: 10.1016/j.biopha.2020.110887. PubMed DOI
Feng Z., Qin C., Chang Y., Zhang J.T. Early melatonin supplementation alleviates oxidative stress in a transgenic mouse model of Alzheimer’s disease. Free Radic. Biol. Med. 2006;40(1):101–109. doi: 10.1016/j.freeradbiomed.2005.08.014. PubMed DOI
Pappolla M.A., Chyan Y.J., Poeggeler B., Frangione B., Wilson G., Ghiso J., Reiter R.J. An assessment of the antioxidant and the antiamyloidogenic properties of melatonin: implications for Alzheimer’s disease. J. Neural Transm. (Vienna) 2000;107(2):203–231. doi: 10.1007/s007020050018. PubMed DOI
Matsubara E., Bryant-Thomas T., Pacheco Quinto J., Henry T.L., Poeggeler B., Herbert D., Cruz-Sanchez F., Chyan Y.J., Smith M.A., Perry G., Shoji M., Abe K., Leone A., Grundke-Ikbal I., Wilson G.L., Ghiso J., Williams C., Refolo L.M., Pappolla M.A., Chain D.G., Neria E. Melatonin increases survival and inhibits oxidative and amyloid pathology in a transgenic model of Alzheimer’s disease. J. Neurochem. 2003;85(5):1101–1108. doi: 10.1046/j.1471-4159.2003.01654.x. PubMed DOI
Kerr J.S., Adriaanse B.A., Greig N.H., Mattson M.P., Cader M.Z., Bohr V.A., Fang E.F. Mitophagy and Alzheimer’s disease: Cellular and molecular mechanisms. Trends Neurosci. 2017;40(3):151–166. doi: 10.1016/j.tins.2017.01.002. PubMed DOI PMC
Martín-Maestro P., Gargini R., Perry G., Avila J., García-Escudero V. PARK2 enhancement is able to compensate mitophagy alterations found in sporadic Alzheimer’s disease. Hum. Mol. Genet. 2016;25(4):792–806. doi: 10.1093/hmg/ddv616. PubMed DOI PMC
Wang Y., Liu N., Lu B. Mechanisms and roles of mitophagy in neurodegenerative diseases. CNS Neurosci. Ther. 2019;25(7):859–875. doi: 10.1111/cns.13140. PubMed DOI PMC
Ding W.X., Yin X.M. Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol. Chem. 2012;393(7):547–564. doi: 10.1515/hsz-2012-0119. PubMed DOI PMC
Devine M.J., Kittler J.T. Mitochondria at the neuronal presynapse in health and disease. Nat. Rev. Neurosci. 2018;19(2):63–80. doi: 10.1038/nrn.2017.170. PubMed DOI
Springer M.Z., Macleod K.F. In Brief: Mitophagy: mechanisms and role in human disease. J. Pathol. 2016;240(3):253–255. doi: 10.1002/path.4774. PubMed DOI PMC
Kann O., Kovács R. Mitochondria and neuronal activity. Am. J. Physiol. Cell Physiol. 2007;292(2):C641–C657. doi: 10.1152/ajpcell.00222.2006. PubMed DOI
Brini M., Calì T., Ottolini D., Carafoli E. Neuronal calcium signaling: function and dysfunction. Cell. Mol. Life Sci. 2014;71(15):2787–2814. doi: 10.1007/s00018-013-1550-7. PubMed DOI PMC
Depp C., Bas-Orth C., Schroeder L., Hellwig A., Bading H. Synaptic activity protects neurons against calciummediated oxidation and contraction of mitochondria during excitotoxicity. Antioxid. Redox Signal. 2018;29(12):1109–1124. doi: 10.1089/ars.2017.7092. PubMed DOI
Silzer T.K., Phillips N.R. Etiology of type 2 diabetes and Alzheimer’s disease: Exploring the mitochondria. Mitochondrion. 2018;43:16–24. doi: 10.1016/j.mito.2018.04.004. PubMed DOI
Kubli D.A., Gustafsson Å.B. Mitochondria and mitophagy: the yin and yang of cell death control. Circ. Res. 2012;111(9):1208–1221. doi: 10.1161/CIRCRESAHA.112.265819. PubMed DOI PMC
Song Y.M., Lee Y.H., Kim J.W., Ham D.S., Kang E.S., Cha B.S., Lee H.C., Lee B.W. Metformin alleviates hepatosteatosis by restoring SIRT1-mediated autophagy induction via an AMP-activated protein kinase-independent pathway. Autophagy. 2015;11(1):46–59. doi: 10.4161/15548627.2014.984271. PubMed DOI PMC
East D.A., Fagiani F., Crosby J., Georgakopoulos N.D., Bertrand H., Schaap M., Fowkes A., Wells G., Campanella M. PMI: a ΔΨm independent pharmacological regulator of mitophagy. Chem. Biol. 2014;21(11):1585–1596. doi: 10.1016/j.chembiol.2014.09.019. PubMed DOI PMC
Yogalingam G., Hwang S., Ferreira J.C., Mochly-Rosen D. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) phosphorylation by protein kinase Cδ (PKCδ) inhibits mitochondria elimination by lysosomal-like structures following ischemia and reoxygenation-induced injury. J. Biol. Chem. 2013;288(26):18947–18960. doi: 10.1074/jbc.M113.466870. PubMed DOI PMC
Ross J.M., Olson L., Coppotelli G. Mitochondrial and ubiquitin proteasome system dysfunction in ageing and disease: two sides of the same coin? Int. J. Mol. Sci. 2015;16(8):19458–19476. doi: 10.3390/ijms160819458. PubMed DOI PMC
Riederer B.M., Leuba G., Vernay A., Riederer I.M. The role of the ubiquitin proteasome system in Alzheimer’s disease. Exp. Biol. Med. (Maywood) 2011;236(3):268–276. doi: 10.1258/ebm.2010.010327. PubMed DOI
Bonet-Costa V., Pomatto L.C., Davies K.J. The proteasome and oxidative stress in Alzheimer’s disease. Antioxid. Redox Signal. 2016;25(16):886–901. doi: 10.1089/ars.2016.6802. PubMed DOI PMC
Dantuma N.P., Bott L.C. The ubiquitin-proteasome system in neurodegenerative diseases: precipitating factor, yet part of the solution. Front. Mol. Neurosci. 2014;7:70. doi: 10.3389/fnmol.2014.00070. PubMed DOI PMC
Szeto H.H. First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics. Br. J. Pharmacol. 2014;171(8):2029–2050. doi: 10.1111/bph.12461. PubMed DOI PMC
Wu J., Zhang M., Li H., Sun X., Hao S., Ji M., Yang J., Li K. BDNF pathway is involved in the protective effects of SS-31 on isoflurane-induced cognitive deficits in aging mice. Behav. Brain Res. 2016;305:115–121. doi: 10.1016/j.bbr.2016.02.036. PubMed DOI
Calkins M.J., Manczak M., Reddy P.H. Mitochondria-targeted antiox- idant SS31 prevents amyloid beta-induced mitochondrial abnormalities and synaptic degeneration in Alzheimer’s disease. Pharmaceuticals (Basel) 2012;5(10):1103–1119. doi: 10.3390/ph5101103. PubMed DOI PMC
Colell A., García-Ruiz C., Lluis J.M., Coll O., Mari M., Fernández-Checa J.C. Cholesterol impairs the adenine nucleotide translocator-mediated mitochondrial permeability transition through altered membrane fluidity. J. Biol. Chem. 2003;278(36):33928–33935. doi: 10.1074/jbc.M210943200. PubMed DOI
Kennedy B.E., Madreiter C.T., Vishnu N., Malli R., Graier W.F., Karten B. Adaptations of energy metabolism associated with increased levels of mitochondrial cholesterol in Niemann-Pick type C1-deficient cells. J. Biol. Chem. 2014;289(23):16278–16289. doi: 10.1074/jbc.M114.559914. PubMed DOI PMC
Martin L.A., Kennedy B.E., Karten B. Mitochondrial cholesterol: mechanisms of import and effects on mitochondrial function. J. Bioenerg. Biomembr. 2016;48(2):137–151. doi: 10.1007/s10863-014-9592-6. PubMed DOI
Yu W., Gong J.S., Ko M., Garver W.S., Yanagisawa K., Michikawa M. Altered cholesterol metabolism in Niemann-Pick type C1 mouse brains affects mitochondrial function. J. Biol. Chem. 2005;280(12):11731–11739. doi: 10.1074/jbc.M412898200. PubMed DOI
Echegoyen S., Oliva E.B., Sepulveda J., Díaz-Zagoya J.C., Espinosa-García M.T., Pardo J.P., Martínez F. Cholesterol increase in mitochondria: its effect on inner-membrane functions, submitochondrial localization and ultrastructural morphology. Biochem. J. 1993;289(Pt 3):703–708. doi: 10.1042/bj2890703. PubMed DOI PMC
Marí M., Caballero F., Colell A., Morales A., Caballeria J., Fernandez A., Enrich C., Fernandez-Checa J.C., García-Ruiz C. Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis. Cell Metab. 2006;4(3):185–198. doi: 10.1016/j.cmet.2006.07.006. PubMed DOI
Garcia-Ruiz C., Mari M., Colell A., Morales A., Caballero F., Montero J., Terrones O., Basañez G., Fernández-Checa J.C. Mitochondrial cholesterol in health and disease. Histol. Histopathol. 2009;24(1):117–132. PubMed
Aufschnaiter A., Kohler V., Diessl J., Peselj C., Carmona-Gutierrez D., Keller W., Büttner S. Mitochondrial lipids in neurodegeneration. Cell Tissue Res. 2017;367(1):125–140. doi: 10.1007/s00441-016-2463-1. PubMed DOI PMC
Barbero-Camps E., Fernández A., Baulies A., Martinez L., Fernández-Checa J.C., Colell A. Endoplasmic reticulum stress mediates amyloid β neurotoxicity via mitochondrial cholesterol trafficking. Am. J. Pathol. 2014;184(7):2066–2081. doi: 10.1016/j.ajpath.2014.03.014. PubMed DOI PMC
Barbero-Camps E., Fernández A., Martínez L., Fernández-Checa J.C., Colell A. APP/PS1 mice overexpressing SREBP-2 exhibit combined Aβ accumulation and tau pathology underlying Alzheimer’s disease. Hum. Mol. Genet. 2013;22(17):3460–3476. doi: 10.1093/hmg/ddt201. PubMed DOI PMC
Rosales-Corral S.A., Lopez-Armas G., Cruz-Ramos J., Melnikov V.G., Tan D.X., Manchester L.C., Munoz R., Reiter R.J. Alterations in lipid levels of mitochondrial membranes induced by amyloid-β: A protective role of melatonin. Int. J. Alzheimers Dis. 2012;2012:459806. doi: 10.1155/2012/459806. PubMed DOI PMC
Kågedal K., Kim W.S., Appelqvist H., Chan S., Cheng D., Agholme L., Barnham K., McCann H., Halliday G., Garner B. Increased expression of the lysosomal cholesterol transporter NPC1 in Alzheimer’s disease. Biochim. Biophys. Acta. 2010;1801(8):831–838. doi: 10.1016/j.bbalip.2010.05.005. PubMed DOI
Arenas F., Castro F., Nuñez S., Gay G., Garcia-Ruiz C., Fernandez-Checa J.C. STARD1 and NPC1 expression as pathological markers associated with astrogliosis in post-mortem brains from patients with Alzheimer’s disease and Down syndrome. Aging (Albany NY) 2020;12(1):571–592. doi: 10.18632/aging.102641. PubMed DOI PMC
Webber K.M., Stocco D.M., Casadesus G., Bowen R.L., Atwood C.S., Previll L.A., Harris P.L., Zhu X., Perry G., Smith M.A. Steroidogenic acute regulatory protein (StAR): evidence of gonadotropin-induced steroidogenesis in Alzheimer disease. Mol. Neurodegener. 2006;1:14. doi: 10.1186/1750-1326-1-14. PubMed DOI PMC
Singhal A., Szente L., Hildreth J.E.K., Song B. Hydroxypropyl-beta and -gamma cyclodextrins rescue cholesterol accumulation in Niemann-Pick C1 mutant cell via lysosome-associated membrane protein 1. Cell Death Dis. 2018;9(10):1019. doi: 10.1038/s41419-018-1056-1. PubMed DOI PMC
Yalcin A., Soddu E., Turunc Bayrakdar E., Uyanikgil Y., Kanit L., Armagan G., Rassu G., Gavini E., Giunchedi P. Neuroprotective effects of engineered polymeric nasal microspheres containing hydroxypropyl-β-cyclodextrin on β-amyloid (1-42)-induced toxicity. J. Pharm. Sci. 2016;105(8):2372–2380. doi: 10.1016/j.xphs.2016.05.017. PubMed DOI
Djelti F., Braudeau J., Hudry E., Dhenain M., Varin J., Bièche I., Marquer C., Chali F., Ayciriex S., Auzeil N., Alves S., Langui D., Potier M.C., Laprevote O., Vidaud M., Duyckaerts C., Miles R., Aubourg P., Cartier N. CYP46A1 inhibition, brain cholesterol accumulation and neurodegeneration pave the way for Alzheimer’s disease. Brain. 2015;138(Pt 8):2383–2398. doi: 10.1093/brain/awv166. PubMed DOI
Paumgartner G., Beuers U. Ursodeoxycholic acid in cholestatic liver disease: mechanisms of action and therapeutic use revisited. Hepatology. 2002;36(3):525–531. doi: 10.1053/jhep.2002.36088. PubMed DOI
Zangerolamo L., Vettorazzi J.F., Rosa L.R.O., Carneiro E.M., Barbosa H.C.L. The bile acid TUDCA and neurodegenerative disorders: An overview. Life Sci. 2021;272:119252. doi: 10.1016/j.lfs.2021.119252. PubMed DOI
Nũnes A.F., Amaral J.D., Lo A.C., Fonseca M.B., Viana R.J., Callaerts-Vegh Z., D’Hooge R., Rodrigues C.M. TUDCA, a bile acid, attenuates amyloid precursor protein processing and amyloid-β deposition in APP/PS1 mice. Mol. Neurobiol. 2012;45(3):440–454. doi: 10.1007/s12035-012-8256-y. PubMed DOI
Lo A.C., Callaerts-Vegh Z., Nunes A.F., Rodrigues C.M., D’Hooge R. Tauroursodeoxycholic acid (TUDCA) supplementation prevents cognitive impairment and amyloid deposition in APP/PS1 mice. Neurobiol. Dis. 2013;50:21–29. doi: 10.1016/j.nbd.2012.09.003. PubMed DOI
Viana R.J., Nunes A.F., Castro R.E., Ramalho R.M., Meyerson J., Fossati S., Ghiso J., Rostagno A., Rodrigues C.M. Tauroursodeoxycholic acid prevents E22Q Alzheimer’s Abeta toxicity in human cerebral endothelial cells. Cell. Mol. Life Sci. 2009;66(6):1094–1104. doi: 10.1007/s00018-009-8746-x. PubMed DOI PMC
Ramalho R.M., Borralho P.M., Castro R.E., Solá S., Steer C.J., Rodrigues C.M. Tauroursodeoxycholic acid modulates p53-mediated apoptosis in Alzheimer’s disease mutant neuroblastoma cells. J. Neurochem. 2006;98(5):1610–1618. doi: 10.1111/j.1471-4159.2006.04007.x. PubMed DOI
Dionísio P.A., Amaral J.D., Ribeiro M.F., Lo A.C., D’Hooge R., Rodrigues C.M. Amyloid-β pathology is attenuated by tauroursodeoxycholic acid treatment in APP/PS1 mice after disease onset. Neurobiol. Aging. 2015;36(1):228–240. doi: 10.1016/j.neurobiolaging.2014.08.034. PubMed DOI
Bell S.M., Barnes K., Clemmens H., Al-Rafiah A.R., Al-Ofi E.A., Leech V., Bandmann O., Shaw P.J., Blackburn D.J., Ferraiuolo L., Mortiboys H. Ursodeoxycholic acid improves mitochondrial function and redistributes Drp1 in fibroblasts from patients with either sporadic or familial Alzheimer’s disease. J. Mol. Biol. 2018;430(21):3942–3953. doi: 10.1016/j.jmb.2018.08.019. PubMed DOI PMC
Delgado-Morales R., Agís-Balboa R.C., Esteller M., Berdasco M. Epigenetic mechanisms during ageing and neurogenesis as novel therapeutic avenues in human brain disorders. Clin. Epigenetics. 2017;9:67. doi: 10.1186/s13148-017-0365-z. PubMed DOI PMC
Griñán-Ferré C., Sarroca S., Ivanova A., Puigoriol-Illamola D., Aguado F., Camins A., Sanfeliu C., Pallàs M. Epigenetic mechanisms underlying cognitive impairment and Alzheimer disease hallmarks in 5XFAD mice. Aging (Albany NY) 2016;8(4):664–684. doi: 10.18632/aging.100906. PubMed DOI PMC
Yang J., He J., Ismail M., Tweeten S., Zeng F., Gao L., Ballinger S., Young M., Prabhu S.D., Rowe G.C., Zhang J., Zhou L., Xie M. HDAC inhibition induces autophagy and mitochondrial biogenesis to maintain mitochondrial homeostasis during cardiac ischemia/reperfusion injury. J. Mol. Cell. Cardiol. 2019;130:36–48. doi: 10.1016/j.yjmcc.2019.03.008. PubMed DOI PMC
Maes T., et al. First-in-human phase I results show safety, tolerability and brain penetrance of ORY-2001, an epigenetic drug targeting LSD1 and MAO-B. Alzheimers Dement. 2017;13:P1573–P1574. doi: 10.1016/j.jalz.2017.07.739. DOI
Colman R.J., Beasley T.M., Kemnitz J.W., Johnson S.C., Weindruch R., Anderson R.M. Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. Nat. Commun. 2014;5:3557. doi: 10.1038/ncomms4557. PubMed DOI PMC
Cerqueira F.M., Cunha F.M., Laurindo F.R., Kowaltowski A.J. Calorie restriction increases cerebral mitochondrial respiratory capacity in a NO•-mediated mechanism: impact on neuronal survival. Free Radic. Biol. Med. 2012;52(7):1236–1241. doi: 10.1016/j.freeradbiomed.2012.01.011. PubMed DOI
Onyango I.G., Lu J., Rodova M., Lezi E., Crafter A.B., Swerdlow R.H. Regulation of neuron mitochondrial biogenesis and relevance to brain health. Biochim. Biophys. Acta. 2010;1802(1):228–234. doi: 10.1016/j.bbadis.2009.07.014. PubMed DOI
Bhatti G.K., Reddy A.P., Reddy P.H., Bhatti J.S. Lifestyle modifications and nutritional interventions in aging-associated cognitive decline and Alzheimer’s disease. Front. Aging Neurosci. 2020;11:369. doi: 10.3389/fnagi.2019.00369. PubMed DOI PMC
Luo H., Chiang H.H., Louw M., Susanto A., Chen D. Nutrient sensing and the oxidative stress response. Trends Endocrinol. Metab. 2017;28(6):449–460. doi: 10.1016/j.tem.2017.02.008. PubMed DOI PMC
Menshikova E.V., Ritov V.B., Dube J.J., Amati F., Stefanovic-Racic M., Toledo F.G.S., Coen P.M., Goodpaster B.H. Calorie restriction-induced weight loss and exercise have differential effects on skeletal muscle mitochondria despite similar effects on insulin sensitivity. J. Gerontol. A Biol. Sci. Med. Sci. 2017;73(1):81–87. doi: 10.1093/gerona/glw328. PubMed DOI PMC
Barja G. Endogenous oxidative stress: relationship to aging, longevity and caloric restriction. Ageing Res. Rev. 2002;1(3):397–411. doi: 10.1016/S1568-1637(02)00008-9. PubMed DOI
Civitarese A.E., Carling S., Heilbronn L.K., Hulver M.H., Ukropcova B., Deutsch W.A., Smith S.R., Ravussin E., CALERIE Pennington Team Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med. 2007;4(3):e76. doi: 10.1371/journal.pmed.0040076. PubMed DOI PMC
Mercken E.M., Crosby S.D., Lamming D.W., JeBailey L., Krzysik-Walker S., Villareal D.T., Capri M., Franceschi C., Zhang Y., Becker K., Sabatini D.M., de Cabo R., Fontana L. Calorie restriction in humans inhibits the PI3K/AKT pathway and induces a younger transcription profile. Aging Cell. 2013;12(4):645–651. doi: 10.1111/acel.12088. PubMed DOI PMC
Amigo I., Menezes-Filho S.L., Luévano-Martínez L.A., Chausse B., Kowaltowski A.J. Caloric restriction increases brain mitochondrial calcium retention capacity and protects against excitotoxicity. Aging Cell. 2017;16(1):73–81. doi: 10.1111/acel.12527. PubMed DOI PMC
Chen W.W., Zhang X., Huang W.J. Role of physical exercise in Alzheimer’s disease. Biomed. Rep. 2016;4(4):403–407. doi: 10.3892/br.2016.607. [Review]. PubMed DOI PMC
Paillard T., Rolland Y., de Souto Barreto P. Protective effects of physical exercise in Alzheimer’s disease and Parkinson’s disease: A narrative review. J. Clin. Neurol. 2015;11(3):212–219. doi: 10.3988/jcn.2015.11.3.212. PubMed DOI PMC
Koo J.H., Kang E-B., Kwon I-S., Jang J.C., Kim E-J., Lee Y., Cho I-H., Cho J-Y. Endurance exercise confers neuroprotective mitochondrial phenotypes in the brain of Alzheimer’s disease mice. FASEB J. 2015;29(S1):1055.35. doi: 10.1096/fasebj.29.1_supplement.1055.35. DOI
Steiner J.L., Murphy E.A., McClellan J.L., Carmichael M.D., Davis J.M. Exercise training increases mitochondrial biogenesis in the brain. J. Appl. Physiol. 2011;111(4):1066–1071. doi: 10.1152/japplphysiol.00343.2011. PubMed DOI
Radak Z., Suzuki K., Higuchi M., Balogh L., Boldogh I., Koltai E. Physical exercise, reactive oxygen species and neuroprotection. Free Radic. Biol. Med. 2016;98:187–196. doi: 10.1016/j.freeradbiomed.2016.01.024. PubMed DOI
Intlekofer K.A., Cotman C.W. Exercise counteracts declining hippocampal function in aging and Alzheimer’s disease. Neurobiol. Dis. 2013;57:47–55. doi: 10.1016/j.nbd.2012.06.011. PubMed DOI
Andrews Z.B., Diano S., Horvath T.L. Mitochondrial uncoupling proteins in the CNS: in support of function and survival. Nat. Rev. Neurosci. 2005;6(11):829–840. doi: 10.1038/nrn1767. PubMed DOI
Wang R., Holsinger R.M.D. Exercise-induced brain-derived neurotrophic factor expression: Therapeutic implications for Alzheimer’s dementia. Ageing Res. Rev. 2018;48:109–121. doi: 10.1016/j.arr.2018.10.002. PubMed DOI
Vaynman S., Ying Z., Wu A., Gomez-Pinilla F. Coupling energy metabolism with a mechanism to support brain-derived neurotrophic factor-mediated synaptic plasticity. Neuroscience. 2006;139(4):1221–1234. doi: 10.1016/j.neuroscience.2006.01.062. PubMed DOI
Gusdon A.M., Callio J., Distefano G., O’Doherty R.M., Goodpaster B.H., Coen P.M., Chu C.T. Exercise increases mitochondrial complex I activity and DRP1 expression in the brains of aged mice. Exp. Gerontol. 2017;90:1–13. doi: 10.1016/j.exger.2017.01.013. PubMed DOI PMC
Wang Z., Guo Y., Myers K.G., Heintz R., Peng Y.H., Maarek J.M., Holschneider D.P. Exercise alters resting-state functional connectivity of motor circuits in parkinsonian rats. Neurobiol. Aging. 2015;36(1):536–544. doi: 10.1016/j.neurobiolaging.2014.08.016. PubMed DOI PMC
Braga R.R., Crisol B.M., Brícola R.S., Sant’ana M.R., Nakandakari S.C.B.R., Costa S.O., Prada P.O., da Silva A.S.R., Moura L.P., Pauli J.R., Cintra D.E., Ropelle E.R. Exercise alters the mitochondrial proteostasis and induces the mitonuclear imbalance and UPRmt in the hypothalamus of mice. Sci. Rep. 2021;11(1):3813. doi: 10.1038/s41598-021-82352-8. PubMed DOI PMC
Taylor M.K., Swerdlow R.H., Burns J.M., Sullivan D.K. An experimental ketogenic diet for Alzheimer disease was nutritionally dense and rich in vegetables and avocado. Curr. Dev. Nutr. 2019;3(4):nzz003. doi: 10.1093/cdn/nzz003. PubMed DOI PMC
Cahill G.F.J., Jr, Herrera M.G., Morgan A.P., Soeldner J.S., Steinke J., Levy P.L., Reichard G.A., Jr, Kipnis D.M. Hormone-fuel interrelationships during fasting. J. Clin. Invest. 1966;45(11):1751–1769. doi: 10.1172/JCI105481. PubMed DOI PMC
Yang H., Shan W., Zhu F., Wu J., Wang Q. Ketone bodies in neurological diseases: Focus on neuroprotection and underlying mechanisms. Front. Neurol. 2019;10:585. doi: 10.3389/fneur.2019.00585. PubMed DOI PMC
Gasior M., Rogawski M.A., Hartman A.L. Neuroprotective and disease-modifying effects of the ketogenic diet. Behav. Pharmacol. 2006;17(5-6):431–439. doi: 10.1097/00008877-200609000-00009. PubMed DOI PMC
McNally M.A., Hartman A.L. Ketone bodies in epilepsy. J. Neurochem. 2012;121(1):28–35. doi: 10.1111/j.1471-4159.2012.07670.x. PubMed DOI PMC
McDonald T.J.W., Cervenka M.C. Ketogenic diets for adult neurological disorders. Neurotherapeutics. 2018;15(4):1018–1031. doi: 10.1007/s13311-018-0666-8. PubMed DOI PMC
Van der Auwera I., Wera S., Van Leuven F., Henderson S.T. A ketogenic diet reduces amyloid beta 40 and 42 in a mouse model of Alzheimer’s disease. Nutr. Metab. (Lond.) 2005;2:28. doi: 10.1186/1743-7075-2-28. PubMed DOI PMC
Hughes S.D., Kanabus M., Anderson G., Hargreaves I.P., Rutherford T., O’Donnell M., Cross J.H., Rahman S., Eaton S., Heales S.J. The ketogenic diet component decanoic acid increases mitochondrial citrate synthase and complex I activity in neuronal cells. J. Neurochem. 2014;129(3):426–433. doi: 10.1111/jnc.12646. PubMed DOI
Rho J.M., Rogawski M.A. The ketogenic diet: stoking the powerhouse of the cell. Epilepsy Curr. 2007;7(2):58–60. doi: 10.1111/j.1535-7511.2007.00170.x. PubMed DOI PMC
Yin J.X., Maalouf M., Han P., Zhao M., Gao M., Dharshaun T., Ryan C., Whitelegge J., Wu J., Eisenberg D., Reiman E.M., Schweizer F.E., Shi J. Ketones block amyloid entry and improve cognition in an Alzheimer’s model. Neurobiol. Aging. 2016;39:25–37. doi: 10.1016/j.neurobiolaging.2015.11.018. PubMed DOI
Swerdlow R.H. Mitochondria and cell bioenergetics: increasingly recognized components and a possible etiologic cause of Alzheimer’s disease. Antioxid. Redox Signal. 2012;16(12):1434–1455. doi: 10.1089/ars.2011.4149. PubMed DOI PMC
Hasebe N., Fujita Y., Ueno M., Yoshimura K., Fujino Y., Yamashita T. Soluble β-amyloid precursor protein alpha binds to p75 neurotrophin receptor to promote neurite outgrowth. PLoS One. 2013;8(12):e82321. doi: 10.1371/journal.pone.0082321. PubMed DOI PMC
Bough K.J., Wetherington J., Hassel B., Pare J.F., Gawryluk J.W., Greene J.G., Shaw R., Smith Y., Geiger J.D., Dingledine R.J. Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Ann. Neurol. 2006;60(2):223–235. doi: 10.1002/ana.20899. PubMed DOI
Masino S.A., Kawamura M., Wasser C.D., Pomeroy L.T., Ruskin D.N. Adenosine, ketogenic diet and epilepsy: the emerging therapeutic relationship between metabolism and brain activity. Curr. Neuropharmacol. 2009;7(3):257–268. doi: 10.2174/157015909789152164. PubMed DOI PMC
Kovács Z., Brunner B., Ari C. Beneficial effects of exogenous ketogenic supplements on aging processes and age-related neurodegenerative diseases. Nutrients. 2021;13(7):2197. doi: 10.3390/nu13072197. PubMed DOI PMC
Kashiwaya Y., Takeshima T., Mori N., Nakashima K., Clarke K., Veech R.L. D-β-hydroxybutyrate protects neurons in models of Alzheimer’s and Parkinson’s disease. Proc. Natl. Acad. Sci. USA. 2000;97(10):5440–5444. doi: 10.1073/pnas.97.10.5440. PubMed DOI PMC
Lilamand M., Porte B., Cognat E., Hugon J., Mouton-Liger F., Paquet C. Are ketogenic diets promising for Alzheimer’s disease? A translational review. Alzheimers Res. Ther. 2020;12(1):42. doi: 10.1186/s13195-020-00615-4. PubMed DOI PMC
Yao J., Chen S., Mao Z., Cadenas E., Brinton R.D. 2-Deoxy-D-glucose treatment induces ketogenesis, sustains mitochondrial function, and reduces pathology in female mouse model of Alzheimer’s disease. PLoS One. 2011;6(7):e21788. doi: 10.1371/journal.pone.0021788. PubMed DOI PMC
Chen Q., Prior M., Dargusch R., Roberts A., Riek R., Eichmann C., Chiruta C., Akaishi T., Abe K., Maher P., Schubert D. A novel neurotrophic drug for cognitive enhancement and Alzheimer’s disease. PLoS One. 2011;6(12):e27865. doi: 10.1371/journal.pone.0027865. PubMed DOI PMC
Prior M., Dargusch R., Ehren J.L., Chiruta C., Schubert D. The neurotrophic compound J147 reverses cognitive impairment in aged Alzheimer’s disease mice. Alzheimers Res. Ther. 2013;5(3):25. doi: 10.1186/alzrt179. PubMed DOI PMC
Daugherty D., Goldberg J., Fischer W., Dargusch R., Maher P., Schubert D. A novel Alzheimer’s disease drug candidate targeting inflammation and fatty acid metabolism. Alzheimers Res. Ther. 2017;9(1):50. doi: 10.1186/s13195-017-0277-3. PubMed DOI PMC
Rusek M., Pluta R., Ułamek-Kozioł M., Czuczwar S.J. Ketogenic diet in Alzheimer’s disease. Int. J. Mol. Sci. 2019;20(16):20. doi: 10.3390/ijms20163892. PubMed DOI PMC