How do genetic relatedness and spatial proximity shape African swine fever infections in wild boar?

. 2022 Sep ; 69 (5) : 2656-2666. [epub] 20220110

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34902218

Grantová podpora
2014/15/B/NZ9/01933 National Science Centre, Poland
QK1910462 Ministry of Agriculture, Czech Republic

The importance of social and spatial structuring of wildlife populations for disease spread, though widely recognized, is still poorly understood in many host-pathogen systems. In particular, system-specific kin relationships among hosts can create contact heterogeneities and differential disease transmission rates. Here, we investigate how distance-dependent infection risk is influenced by genetic relatedness in a novel host-pathogen system: wild boar (Sus scrofa) and African swine fever (ASF). We hypothesized that infection risk would correlate positively with proximity and relatedness to ASF-infected individuals but expected those relationships to weaken with the distance between individuals due to decay in contact rates and genetic similarity. We genotyped 323 wild boar samples (243 ASF-negative and 80 ASF-positive) collected in north-eastern Poland in 2014-2016 and modelled the effects of geographic distance, genetic relatedness and ASF virus transmission mode (direct or carcass-based) on the probability of ASF infection. Infection risk was positively associated with spatial proximity and genetic relatedness to infected individuals with generally stronger effect of distance. In the high-contact zone (0-2 km), infection risk was shaped by the presence of infected individuals rather than by relatedness to them. In the medium-contact zone (2-5 km), infection risk decreased but was still associated with relatedness and paired infections were more frequent among relatives. At farther distances, infection risk further declined with relatedness and proximity to positive individuals, and was 60% lower among un-related individuals in the no-contact zone (33% in10-20 km) compared among relatives in the high-contact zone (93% in 0-2 km). Transmission mode influenced the relationship between proximity or relatedness and infection risk. Our results indicate that the presence of nearby infected individuals is most important for shaping ASF infection rates through carcass-based transmission, while relatedness plays an important role in shaping transmission rates between live animals.

Zobrazit více v PubMed

Albery, G. F., Kirkpatrick, L., Firth, J. A., & Bansal, S. (2021). Unifying spatial and social network analysis in disease ecology. Journal of Animal Ecology, 90, 45-61.

Altizer, S., Nunn, C. L., Thrall, P. H., Gittleman, J. L., Antonovics, J., Cunningham, A. A., Dobson, A. P., Ezenwa, V., Jones, K. E., Pedersen, A. B., Poss, M., & Pulliam, J. R. C. (2003). Social organization and parasite risk in mammals: Integrating theory and empirical studies. Annual Review of Ecology, Evolution, and Systematics, 34, 517-547.

Andrzejewski, R., & Jezierski, W. (1978). Management of a wild boar population and its effects on commercial land. Acta Theriologica, 23, 309-339.

Archie, E. A., Hollister-Smith, J. A., Poole, J. H., Lee, P. C., Moss, C. J., Maldonado, J. E., Fleischer, R. C., & Alberts, S. C. (2007). Behavioural inbreeding avoidance in wild African elephants. Molecular Ecology, 16, 4138-4148.

Archie, E. A., Moss, C. J., & Alberts, S. C. (2006). The ties that bind: Genetic relatedness predicts the fission and fusion of social groups in wild African elephants. Proceedings of the Royal Society B: Biological Sciences, 273, 513-522.

Benton, C. H., Delahay, R. J., Robertson, A., Mcdonald, R. A., Wilson, A. J., Burke, T. A., & Hodgson, D. (2016). Blood thicker than water: Kinship, disease prevalence and group size drive divergent patterns of infection risk in a social mammal. Proceedings of the Royal Society of London B: Biological Sciences, 283, 20160798.

Biosa, D., Grignolio, S., Sica, N., Pagon, N., Scandura, M., & Apollonio, M. (2015) Do relatives like to stay closer? Spatial organization and genetic relatedness in a mountain roe deer population. Journal of Zoology, 296, 30-37.

Blanchong, J. A., Scribner, K. T., Kravchenko, A. N., & Winterstein, S. R. (2007). TB-infected deer are more closely related than non-infected deer. Biology Letters, 3, 104-106.

Blome, S., Gabriel, C., & Beer, M. (2013). Pathogenesis of African swine fever in domestic pigs and European wild boar. Virus Research, 173, 122-130.

Carter, K. D., Seddon, J. M., Frère, C. H., Carter, J. K., & Goldizen, A. W. (2013). Fission-fusion dynamics in wild giraffes may be driven by kinship, spatial overlap and individual social preferences. Animal Behaviour, 85, 385-394.

Chenais, E., Ståhl, K., Guberti, V., & Depner, K. (2018) Identification of wild boar-habitat epidemiologic cycle in African swine fever epizootic. Emerging Infectious Diseases, 24, 810-812.

Cukor, J., Linda, R., Václavek, P., Mahlerová, K., Šatrán, P., & Havránek, F. (2020). Confirmed cannibalism in wild boar and its possible role in African swine fever transmission. Transboundary and Emerging Diseases, 67(3), 1068-1073.

Delahay, R. J., Langton, S., Smith, G. C., Clifton-Hadley, R. S., & Cheeseman, C. L. (2000). The spatio-temporal distribution of Mycobacterium bovis (Bovine tuberculosis) infection in a high-density badger population. Journal of Animal Ecology, 69, 428-441.

Dellicour, S., Desmecht, D., Paternostre, J., Malengreaux, C., Licoppe, A., Gilbert, M., & Linden, A. (2020). Unravelling the dispersal dynamics and ecological drivers of the African swine fever outbreak in Belgium. Journal of Applied Ecology, 57, 1619-1629.

Dougherty, E. R., Seidel, D. P., Carlson, C. J., Spiegel, O., & Getz, W. M. (2018). Going through the motions: Incorporating movement analyses into disease research. Ecology Letters, 21, 588-604.

Fischer, M., Hühr, J., Blome, S., Conraths, F. J., & Probst, C. (2020) Stability of African swine fever virus in carcasses of domestic pigs and wild boar experimentally infected with the ASFV “Estonia 2014” Isolate. Viruses, 12, 1118.

Gabor, T. M., Hellgren, E. C., Bussche, R. A., & Silvy, N. J. (1999). Demography, sociospatial behaviour and genetics of feral pigs (Sus scrofa) in a semi-arid environment. Journal of Zoology, 247, 311-322.

Gallardo, C., Soler, A., Nieto, R., Cano, C., Pelayo, V., Sánchez, M. A., Pridotkas, G., Fernandez-Pinero, J., Briones, V., & Arias, M. (2017) Experimental infection of domestic pigs with African swine fever virus Lithuania 2014 Genotype II field isolate. Transboundary and Emerging Diseases, 64, 300-304.

Grear, D. A., Samuel, M. D., Scribner, K. T., Weckworth, B. V., & Langenberg, J. A. (2010). Influence of genetic relatedness and spatial proximity on chronic wasting disease infection among female white-tailed deer. Journal of Applied Ecology, 47, 532-540.

Goudet, J. (1995). fstat (Version 1.2): A computer program to calculate F-statistics. Journal of Heredity, 86, 485-486.

Hirsch, B. T., Prange, S., Hauver, S. A., & Gehrt, S. D. (2013). Genetic relatedness does not predict racoon social network structure. Animal Behaviour, 85, 463-470.

Hoffman, J. I., Forcada, J., Trathan, P. N., & Amos, W. (2007). Female fur seals show active choice for males that are heterozygous and unrelated. Nature, 445, 912-914.

Iglesias, I., Martínez, M., Montes, F., & De La Torre, A. (2019). Velocity of ASF spread in wild boar in the European Union (2014-2017). International Journal of Infectious Diseases, 79, 69.

Kaminski, G., Brandt, S., Baubet, E., & Baudoin, C. (2005). Life-history patterns in female wild boars (Sus scrofa): Mother-daughter postweaning associations. Canadian Journal of Zoology, 83, 474-480.

Keuling, O., Lauterbach, K., Stier, N., & Roth, M. (2010). Hunter feedback of individually marked wild boar Sus scrofa L.: Dispersal and efficiency of hunting in northeastern Germany. European Journal of Wildlife Research, 56, 159-167.

Lange, M., & Thulke, H. -. H. (2016). Elucidating transmission parameters of African swine fever through wild boar carcasses by combining spatio-temporal notification data and agent-based modelling. Stochastic Environmental Research and Risk Assessment,:31, 379-391.

Manly, B. F. J. (1997). Randomization, bootstrap and Monte Carlo methods in biology. (2nd edn.). Chapman and Hall.

Mejía-Salazar, M. F., Goldizen, A. W., Menz, C. S., Dwyer, R. G., Blomberg, S. P., Waldner, C. L., Cullingham, C. I., & Bollinger, T. K. (2017). Mule deer spatial association patterns and potential implications for transmission of an epizootic disease. Plos One, 12, e0175385.

Morelle, K., Bubnicki, J., Churski, M., Gryz, J., Podgórski, T., & Kuijper, D. P. J. (2020). Disease-induced mortality outweighs hunting in causing wild boar population crash after African swine fever outbreak. Frontiers in Veterinary Science, 7.

Morelle, K., Jezek, M., Licoppe, A., & Podgorski, T. (2019) Deathbed choice by ASF-infected wild boar can help find carcasses. Transboundary and Emerging Diseases, 66, 1821-1826.

Nurmoja, I., Schulz, K., Staubach, C., Sauter-Louis, C., Depner, K., Conraths, F. J., & Viltrop, A. (2017). Development of African swine fever epidemic among wild boar in Estonia - two different areas in the epidemiological focus. Scientific Reports, 7, 12562.

Peakall, R., & Smouse, P. E. (2006). genalex 6: Genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6, 288-295.

Pepin, K. M., & Vercauteren, K. C. (2016). Disease-emergence dynamics and control in a socially-structured wildlife species. Scientific Reports, 6, 25150.

Pepin, K. M., Davis, A. J., Beasley, J., Boughton, R., Campbell, T., Cooper, S. M., Gaston, W., Hartley, S., Kilgo, J. C., Wisely, S. M., Wyckoff, C., & Vercauteren, K. C. (2016). Contact heterogeneities in feral swine: Implications for disease management and future research. Ecosphere, 7, e01230.

Pepin, K. M., Golnar, A. J., Abdo, Z., & Podgórski, T. (2020). Ecological drivers of African swine fever virus persistence in wild boar populations: Insight for control. Ecology and Evolution, 10, 2846-2859.

Pepin, K. M., Golnar, A. J., & Podgórski, T. (2021). Social structure defines spatial transmission of African swine fever in wild boar. Journal of the Royal Society Interface, 18, 20200761.

Pietschmann, J., Guinat, C., Beer, M., Pronin, V., Tauscher, K., Petrov, A., Keil, G., & Blome, S. (2015). Course and transmission characteristics of oral low-dose infection of domestic pigs and European wild boar with a Caucasian African swine fever virus isolate. Archives of Virology, 160, 1657-1667.

Podgórski, T., Baś, G., Jędrzejewska, B., Sönnichsen, L., Śnieżko, S., Jędrzejewski, W., & Okarma, H. (2013). Spatiotemporal behavioral plasticity of wild boar (Sus scrofa) under contrasting conditions of human pressure: Primeval forest and metropolitan area. Journal of Mammalogy, 94, 109-119.

Podgórski, T., & Śmietanka, K. (2018). Do wild boar movements drive the spread of African Swine Fever? Transboundary and Emerging Diseases, 65, 1588-1596.

Podgórski, T., Apollonio, M., & Keuling, O. (2018). Contact rates in wild boar populations: Implications for disease transmission. Journal of Wildlife Management, 82, 1210-1218.

Podgórski, T., Borowik, T., Łyjak, M., & Woźniakowski, G. (2020). Spatial epidemiology of African swine fever: Host, landscape and anthropogenic drivers of disease occurrence in wild boar. Preventive Veterinary Medicine, 177, 104691.

Podgórski, T., Lusseau, D., Scandura, M., Sönnichsen, L., & Jędrzejewska, B. (2014). Long-lasting, kin-directed female interactions in a spatially structured wild boar social network. Plos One, 9, e99875.

Podgórski, T., Scandura, M., & Jędrzejewska, B. (2014). Next of kin next door-Philopatry and socio-genetic population structure in wild boar. Journal of Zoology, 294, 190-197.

Poteaux, C., Baubet, E., Kaminski, G., Brandt, S., Dobson, F. S., & Baudoin, C. (2009). Socio-genetic structure and mating system of a wild boar population. Journal of Zoology, 278, 116-125.

Prévot, C., & Licoppe, A. (2013). Comparing red deer (Cervus elaphus L.) and wild boar (Sus scrofa L.) dispersal patterns in southern Belgium. European Journal of Wildlife Research, 59, 795-803.

Probst, C., Globig, A., Knoll, B., Conraths, F. J., & Depner, K. (2017). Behaviour of free ranging wild boar towards their dead fellows: Potential implications for the transmission of African swine fever. Royal Society Open Science, 4, 170054.

Probst, C., Gethmann, J., Amendt, J., Lutz, L., Teifke, J. P., & Conraths, F. J. (2020). Estimating the postmortem interval of wild boar carcasses. Veterinary Sciences, 7, 6.

Queller, D. C., & Goodnight, K. F. (1989). Estimating realtedness using genetic markers. Evolution; Internation Journal of Organic Evolution, 43, 258-275.

R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

Raymond, M., & Rousset, F. (1995). Population genetics software for exact tests and ecumenicism. Journal of Heredity, 86, 248-249.

Rice, W. R. (1989). Analysing tables of statistical tests. Evolution; Internation Journal of Organic Evolution, 43, 223-225.

Riley, S. (2007). Large-scale spatial-transmission models of infectious disease. Science, 316, 1298-1301.

Rossiter, S. J., Zubaid, A., Mohd-Adnan, A., Struebig, M. J., Kunz, T. H., Gopal, S., Petit, E. J., & Kingston, T. (2012). Social organization and genetic structure: Insights from codistributed bat populations. Molecular Ecology, 21(3), 647-661.

Sah, P., Mann, J., & Bansal, S. (2018). Disease implications of animal social network structure: A synthesis across social systems. Journal of Animal Ecology, 87, 546-558.

Taylor, R. A., Podgórski, T., Simons, R. R. L., Ip, S., Gale, P., Kelly, L. A., & Snary, E. L. (2021). Predicting spread and effective control measures for African swine fever-Should we blame the boars? Transboundary and Emerging Diseases, 68, 397-416.

Vander Wal, E., Paquet, P. C., & Andrés, J. A. (2012) Influence of landscape and social interactions on transmission of disease in a social cervid. Molecular Ecology, 21, 1271-1282.

Vanderwaal, K. L., & Ezenwa, V. O. (2016). Heterogeneity in pathogen transmission: Mechanisms and methodology. Functional Ecology, 30, 1606-1622.

Wood, S. (2020). mgcv (R package version 1.8-33). https://CRAN.R-project.org/package=mgcv

Woźniakowski, G., Kozak, E., Kowalczyk, A., Łyjak, M., Pomorska-Mól, M., Niemczuk, K., & Pejsak, Z. (2016). Current status of African swine fever virus in a population of wild boar in eastern Poland (2014-2015). Archives of Virology, 161, 189-195.

Yang, A., Schlichting, P., Wight, B., Anderson, W. M., Chinn, S. M., Wilber, M. Q., Miller, R. S., Beasley, J. C., Boughton, R. K., Vercauteren, K. C., Wittemyer, G., & Pepin, K. M. (2020). Effects of social structure and management on risk of disease establishment in wild pigs. Journal of Animal Ecology, 90, 820-833.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Risk of African swine fever virus transmission among wild boar and domestic pigs in Poland

. 2023 ; 10 () : 1295127. [epub] 20231106

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...