Oxidative Stress in the Brain: Basic Concepts and Treatment Strategies in Stroke
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
MUNI/A/1698/2020
Masaryk University
MUNI/11/SUP/24/2020
Masaryk University
PubMed
34942989
PubMed Central
PMC8698986
DOI
10.3390/antiox10121886
PII: antiox10121886
Knihovny.cz E-zdroje
- Klíčová slova
- RNS, ROS, antioxidants, brain, free radicals, oxidative stress, scavengers, stroke,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The production of free radicals is inevitably associated with metabolism and other enzymatic processes. Under physiological conditions, however, free radicals are effectively eliminated by numerous antioxidant mechanisms. Oxidative stress occurs due to an imbalance between the production and elimination of free radicals under pathological conditions. Oxidative stress is also associated with ageing. The brain is prone to oxidative damage because of its high metabolic activity and high vulnerability to ischemic damage. Oxidative stress, thus, plays a major role in the pathophysiology of both acute and chronic pathologies in the brain, such as stroke, traumatic brain injury or neurodegenerative diseases. The goal of this article is to summarize the basic concepts of oxidative stress and its significance in brain pathologies, as well as to discuss treatment strategies for dealing with oxidative stress in stroke.
Department of Experimental Biology Faculty of Science Masaryk University 62500 Brno Czech Republic
Department of Pathophysiology Faculty of Medicine Masaryk University 62500 Brno Czech Republic
Zobrazit více v PubMed
Lobo V., Patil A., Phatak A., Chandra N. Free Radicals, Antioxidants and Functional Foods: Impact on Human Health. Pharmacogn. Rev. 2010;4:10. doi: 10.4103/0973-7847.70902. PubMed DOI PMC
Ozkul A., Akyol A., Yenisey C., Arpaci E., Kiylioglu N., Tataroglu C. Oxidative Stress in Acute Ischemic Stroke. J. Clin. Neurosci. 2007;14:1062–1066. doi: 10.1016/j.jocn.2006.11.008. PubMed DOI
Sanderson T.H., Reynolds C.A., Kumar R., Przyklenk K., Hüttemann M. Molecular Mechanisms of Ischemia–Reperfusion Injury in Brain: Pivotal Role of the Mitochondrial Membrane Potential in Reactive Oxygen Species Generation. Mol. Neurobiol. 2013;47:9–23. doi: 10.1007/s12035-012-8344-z. PubMed DOI PMC
Kahles T., Brandes R.P. NADPH Oxidases as Therapeutic Targets in Ischemic Stroke. Cell. Mol. Life Sci. 2012;69:2345–2363. doi: 10.1007/s00018-012-1011-8. PubMed DOI PMC
Vergeade A., Mulder P., Vendeville C., Ventura-Clapier R., Thuillez C., Monteil C. Xanthine Oxidase Contributes to Mitochondrial ROS Generation in an Experimental Model of Cocaine-Induced Diastolic Dysfunction. J. Cardiovasc. Pharmacol. 2012;60:538–543. doi: 10.1097/FJC.0b013e318271223c. PubMed DOI
Bogdan C. Nitric Oxide and the Immune Response. Nat. Immunol. 2001;2:907–916. doi: 10.1038/ni1001-907. PubMed DOI
Montfort W.R., Wales J.A., Weichsel A. Structure and Activation of Soluble Guanylyl Cyclase, the Nitric Oxide Sensor. Antioxid. Redox Signal. 2017;26:107–121. doi: 10.1089/ars.2016.6693. PubMed DOI PMC
Picón-Pagès P., Garcia-Buendia J., Muñoz F.J. Functions and Dysfunctions of Nitric Oxide in Brain. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2019;1865:1949–1967. doi: 10.1016/j.bbadis.2018.11.007. PubMed DOI
Hishiki T., Yamamoto T., Morikawa T., Kubo A., Kajimura M., Suematsu M. Carbon Monoxide: Impact on Remethylation/Transsulfuration Metabolism and Its Pathophysiologic Implications. J. Mol. Med. 2012;90:245–254. doi: 10.1007/s00109-012-0875-2. PubMed DOI PMC
Kudryavtseva A.V., Krasnov G.S., Dmitriev A.A., Alekseev B.Y., Kardymon O.L., Sadritdinova A.F., Fedorova M.S., Pokrovsky A.V., Melnikova N.V., Kaprin A.D., et al. Mitochondrial Dysfunction and Oxidative Stress in Aging and Cancer. Oncotarget. 2016;7:44879–44905. doi: 10.18632/oncotarget.9821. PubMed DOI PMC
Sinha K., Das J., Pal P.B., Sil P.C. Oxidative Stress: The Mitochondria-Dependent and Mitochondria-Independent Pathways of Apoptosis. Arch. Toxicol. 2013;87:1157–1180. doi: 10.1007/s00204-013-1034-4. PubMed DOI
Kagan V.E., Tyurina Y.Y. Recycling and Redox Cycling of Phenolic Antioxidants. Annals N. Y. Acad. Sci. 1998;854:425–434. doi: 10.1111/j.1749-6632.1998.tb09921.x. PubMed DOI
Lauridsen C. From Oxidative Stress to Inflammation: Redox Balance and Immune System. Poult. Sci. 2019;98:4240–4246. doi: 10.3382/ps/pey407. PubMed DOI
Herb M., Gluschko A., Wiegmann K., Farid A., Wolf A., Utermöhlen O., Krut O., Krönke M., Schramm M. Mitochondrial Reactive Oxygen Species Enable Proinflammatory Signaling through Disulfide Linkage of NEMO. Sci. Signal. 2019;12:eaar5926. doi: 10.1126/scisignal.aar5926. PubMed DOI
Williams A.J., Barry R.E. Free Radical Generation by Neutrophils: A Potential Mechanism of Cellular Injury in Acute Alcoholic Hepatitis. Gut. 1987;28:1157–1161. doi: 10.1136/gut.28.9.1157. PubMed DOI PMC
Lushchak V.I. Free Radicals, Reactive Oxygen Species, Oxidative Stress and Its Classification. Chem. Biol. Interact. 2014;224:164–175. doi: 10.1016/j.cbi.2014.10.016. PubMed DOI
Sies H. Oxidative Stress: A Concept in Redox Biology and Medicine. Redox Biol. 2015;4:180–183. doi: 10.1016/j.redox.2015.01.002. PubMed DOI PMC
Bjørklund G., Chirumbolo S. Role of Oxidative Stress and Antioxidants in Daily Nutrition and Human Health. Nutrition. 2017;33:311–321. doi: 10.1016/j.nut.2016.07.018. PubMed DOI
Margaritelis N.V., Paschalis V., Theodorou A.A., Kyparos A., Nikolaidis M.G. Antioxidants in Personalized Nutrition and Exercise. Adv. Nutr. 2018;9:813–823. doi: 10.1093/advances/nmy052. PubMed DOI PMC
Orellana-Urzúa S., Claps G., Rodrigo R. Improvement of a Novel Proposal for Antioxidant Treatment Against Brain Damage Occurring in Ischemic Stroke Patients. CNS Neurol. Disord. Drug Targets. 2021;20:3–21. doi: 10.2174/1871527319666200910153431. PubMed DOI
Beckman K.B., Ames B.N. The Free Radical Theory of Aging Matures. Physiol. Rev. 1998;78:547–581. doi: 10.1152/physrev.1998.78.2.547. PubMed DOI
Liguori I., Russo G., Curcio F., Bulli G., Aran L., Della-Morte D., Gargiulo G., Testa G., Cacciatore F., Bonaduce D., et al. Oxidative Stress, Aging, and Diseases. Clin. Interv. Aging. 2018;13:757–772. doi: 10.2147/CIA.S158513. PubMed DOI PMC
Shirley R., Ord E., Work L. Oxidative Stress and the Use of Antioxidants in Stroke. Antioxidants. 2014;3:472–501. doi: 10.3390/antiox3030472. PubMed DOI PMC
Kirkland R.A., Windelborn J.A., Kasprzak J.M., Franklin J.L. A Bax-Induced Pro-Oxidant State Is Critical for Cytochrome c Release during Programmed Neuronal Death. J. Neurosci. 2002;22:6480–6490. doi: 10.1523/JNEUROSCI.22-15-06480.2002. PubMed DOI PMC
Hayes J.D., Dinkova-Kostova A.T., Tew K.D. Oxidative Stress in Cancer. Cancer Cell. 2020;38:167–197. doi: 10.1016/j.ccell.2020.06.001. PubMed DOI PMC
Klaunig J.E. Oxidative Stress and Cancer. Curr. Pharm. Des. 2019;24:4771–4778. doi: 10.2174/1381612825666190215121712. PubMed DOI
Saeed S.A., Shad K.F., Saleem T., Javed F., Khan M.U. Some New Prospects in the Understanding of the Molecular Basis of the Pathogenesis of Stroke. Exp. Brain Res. 2007;182:1–10. doi: 10.1007/s00221-007-1050-9. PubMed DOI
Rodrigo R., Fernandez-Gajardo R., Gutierrez R., Matamala J., Carrasco R., Miranda-Merchak A., Feuerhake W. Oxidative Stress and Pathophysiology of Ischemic Stroke: Novel Therapeutic Opportunities. CNS Neurol. Disord. Drug Targets. 2013;12:698–714. doi: 10.2174/1871527311312050015. PubMed DOI
Margaill I., Plotkine M., Lerouet D. Antioxidant Strategies in the Treatment of Stroke. Free. Radic. Biol. Med. 2005;39:429–443. doi: 10.1016/j.freeradbiomed.2005.05.003. PubMed DOI
Yang Q., Huang Q., Hu Z., Tang X. Potential Neuroprotective Treatment of Stroke: Targeting Excitotoxicity, Oxidative Stress, and Inflammation. Front. Neurosci. 2019;13:1036. doi: 10.3389/fnins.2019.01036. PubMed DOI PMC
Genovese T., Mazzon E., Paterniti I., Esposito E., Bramanti P., Cuzzocrea S. Modulation of NADPH Oxidase Activation in Cerebral Ischemia/Reperfusion Injury in Rats. Brain Res. 2011;1372:92–102. doi: 10.1016/j.brainres.2010.11.088. PubMed DOI
Tang L., Ye K., Yang X., Zheng J. Apocynin Attenuates Cerebral Infarction after Transient Focal Ischaemia in Rats. J. Int. Med. Res. 2007;35:517–522. doi: 10.1177/147323000703500411. PubMed DOI
Heumüller S., Wind S., Barbosa-Sicard E., Schmidt H.H.H.W., Busse R., Schröder K., Brandes R.P. Apocynin Is Not an Inhibitor of Vascular NADPH Oxidases but an Antioxidant. Hypertension. 2008;51:211–217. doi: 10.1161/HYPERTENSIONAHA.107.100214. PubMed DOI
Schluter T., Steinbach A.C., Steffen A., Rettig R., Grisk O. Apocynin-Induced Vasodilation Involves Rho Kinase Inhibition but Not NADPH Oxidase Inhibition. Cardiovasc. Res. 2008;80:271–279. doi: 10.1093/cvr/cvn185. PubMed DOI
Touyz R.M. Apocynin, NADPH Oxidase, and Vascular Cells: A Complex Matter. Hypertension. 2008;51:172–174. doi: 10.1161/HYPERTENSIONAHA.107.103200. PubMed DOI
Kleinschnitz C., Grund H., Wingler K., Armitage M.E., Jones E., Mittal M., Barit D., Schwarz T., Geis C., Kraft P., et al. Post-Stroke Inhibition of Induced NADPH Oxidase Type 4 Prevents Oxidative Stress and Neurodegeneration. PLoS Biol. 2010;8:e1000479. doi: 10.1371/journal.pbio.1000479. PubMed DOI PMC
Casas A.I., Geuss E., Kleikers P.W.M., Mencl S., Herrmann A.M., Buendia I., Egea J., Meuth S.G., Lopez M.G., Kleinschnitz C., et al. NOX4-Dependent Neuronal Autotoxicity and BBB Breakdown Explain the Superior Sensitivity of the Brain to Ischemic Damage. Proc. Natl. Acad. Sci. USA. 2017;114:12315–12320. doi: 10.1073/pnas.1705034114. PubMed DOI PMC
Casas A.I., Kleikers P.W.M., Geuss E., Langhauser F., Adler T., Busch D.H., Gailus-Durner V., de Angelis M.H., Egea J., Lopez M.G., et al. Calcium-Dependent Blood-Brain Barrier Breakdown by NOX5 Limits Postreperfusion Benefit in Stroke. J. Clin. Investig. 2019;129:1772–1778. doi: 10.1172/JCI124283. PubMed DOI PMC
Dao V.T.-V., Elbatreek M.H., Altenhöfer S., Casas A.I., Pachado M.P., Neullens C.T., Knaus U.G., Schmidt H.H.H.W. Isoform-Selective NADPH Oxidase Inhibitor Panel for Pharmacological Target Validation. Free. Radic. Biol. Med. 2020;148:60–69. doi: 10.1016/j.freeradbiomed.2019.12.038. PubMed DOI
Duan J., Gao S., Tu S., Lenahan C., Shao A., Sheng J. Pathophysiology and Therapeutic Potential of NADPH Oxidases in Ischemic Stroke-Induced Oxidative Stress. Oxidative Med. Cell. Longev. 2021;2021:1–11. doi: 10.1155/2021/6631805. PubMed DOI PMC
Reynolds A., Laurie C., Lee Mosley R., Gendelman H.E. International Review of Neurobiology. Volume 82. Elsevier; Amsterdam, The Netherlands: 2007. Oxidative Stress and the Pathogenesis of Neurodegenerative Disorders; pp. 297–325. PubMed
Tsutsumi Z., Moriwaki Y., Takahashi S., Ka T., Yamamoto T. Oxidized Low-Density Lipoprotein Autoantibodies in Patients with Primary Gout: Effect of Urate-Lowering Therapy. Clin. Chim. Acta. 2004;339:117–122. doi: 10.1016/j.cccn.2003.09.019. PubMed DOI
Luo J., Yan D., Li S., Liu S., Zeng F., Cheung C.W., Liu H., Irwin M.G., Huang H., Xia Z. Allopurinol Reduces Oxidative Stress and Activates Nrf2/P62 to Attenuate Diabetic Cardiomyopathy in Rats. J. Cell. Mol. Med. 2020;24:1760–1773. doi: 10.1111/jcmm.14870. PubMed DOI PMC
Martz D., Rayos G., Schielke G.P., Betz A.L. Allopurinol and Dimethylthiourea Reduce Brain Infarction Following Middle Cerebral Artery Occlusion in Rats. Stroke. 1989;20:488–494. doi: 10.1161/01.STR.20.4.488. PubMed DOI
Choi W., Villegas V., Istre H., Heppler B., Gonzalez N., Brusman N., Snider L., Hogle E., Tucker J., Oñate A., et al. Synthesis and Characterization of CAPE Derivatives as Xanthine Oxidase Inhibitors with Radical Scavenging Properties. Bioorganic Chem. 2019;86:686–695. doi: 10.1016/j.bioorg.2019.02.049. PubMed DOI PMC
Chen S., Chen H., Du Q., Shen J. Targeting Myeloperoxidase (MPO) Mediated Oxidative Stress and Inflammation for Reducing Brain Ischemia Injury: Potential Application of Natural Compounds. Front. Physiol. 2020;11:433. doi: 10.3389/fphys.2020.00433. PubMed DOI PMC
Annapurna A., Ansari M.A., Manjunath P.M. Partial Role of Multiple Pathways in Infarct Size Limiting Effect of Quercetin and Rutin against Cerebral Ischemia-Reperfusion Injury in Rats. Eur. Rev. Med. Pharmacol. Sci. 2013;17:491–500. PubMed
Lei J., Tu X., Wang Y., Tu D., Shi S. Resveratrol Downregulates the TLR4 Signaling Pathway to Reduce Brain Damage in a Rat Model of Focal Cerebral Ischemia. Exp. Ther. Med. 2019;17:3215–3221. doi: 10.3892/etm.2019.7324. PubMed DOI PMC
Pravalika K., Sarmah D., Kaur H., Vats K., Saraf J., Wanve M., Kalia K., Borah A., Yavagal D.R., Dave K.R., et al. Trigonelline Therapy Confers Neuroprotection by Reduced Glutathione Mediated Myeloperoxidase Expression in Animal Model of Ischemic Stroke. Life Sci. 2019;216:49–58. doi: 10.1016/j.lfs.2018.11.014. PubMed DOI
Tu X., Yang W., Chen J., Chen Y., Ouyang L., Xu Y., Shi S. Curcumin Inhibits TLR2/4-NF-ΚB Signaling Pathway and Attenuates Brain Damage in Permanent Focal Cerebral Ischemia in Rats. Inflammation. 2014;37:1544–1551. doi: 10.1007/s10753-014-9881-6. PubMed DOI
Yang X.-Y., Jiang S.-Q., Zhang L., Liu Q.-N., Gong P.-L. Inhibitory Effect of Dauricine on Inflammatory Process Following Focal Cerebral Ischemia/Reperfusion in Rats. Am. J. Chin. Med. 2007;35:477–486. doi: 10.1142/S0192415X07004990. PubMed DOI
Zhou X., Yang J., Zhou M., Zhang Y., Liu Y., Hou P., Zeng X., Yi L., Mi M. Resveratrol Attenuates Endothelial Oxidative Injury by Inducing Autophagy via the Activation of Transcription Factor EB. Nutr. Metab. 2019;16:42. doi: 10.1186/s12986-019-0371-6. PubMed DOI PMC
Sena E., Wheble P., Sandercock P., Macleod M. Systematic Review and Meta-Analysis of the Efficacy of Tirilazad in Experimental Stroke. Stroke. 2007;38:388–394. doi: 10.1161/01.STR.0000254462.75851.22. PubMed DOI
Otomo E., Tohgi H., Takakura K., Hirai S. Gotoh Effect of a Novel Free Radical Scavenger, Edaravone (MCI-186), on Acute Brain Infarction. Cerebrovasc. Dis. 2003;15:222–229. doi: 10.1159/000069318. PubMed DOI
Fujimura M., Morita-Fujimura Y., Noshita N., Sugawara T., Kawase M., Chan P.H. The Cytosolic Antioxidant Copper/Zinc-Superoxide Dismutase Prevents the Early Release of Mitochondrial Cytochrome c in Ischemic Brain after Transient Focal Cerebral Ischemia in Mice. J. Neurosci. 2000;20:2817–2824. doi: 10.1523/JNEUROSCI.20-08-02817.2000. PubMed DOI PMC
Sugawara T., Lewén A., Gasche Y., Yu F., Chan P.H. Overexpression of SOD1 Protects Vulnerable Motor Neurons after Spinal Cord Injury by Attenuating Mitochondrial Cytochrome c Release. FASEB J. 2002;16:1997–1999. doi: 10.1096/fj.02-0251fje. PubMed DOI
Atochin D.N., Wang A., Liu V.W.T., Critchlow J.D., Dantas A.P.V., Looft-Wilson R., Murata T., Salomone S., Shin H.K., Ayata C., et al. The Phosphorylation State of ENOS Modulates Vascular Reactivity and Outcome of Cerebral Ischemia in Vivo. J. Clin. Invest. 2007;117:1961–1967. doi: 10.1172/JCI29877. PubMed DOI PMC
Aronowski J., Strong R., Grotta J.C. Treatment of Experimental Focal Ischemia in Rats with Lubeluzole. Neuropharmacology. 1996;35:689–693. doi: 10.1016/0028-3908(96)84640-5. PubMed DOI
Diener H.C. Multinational Randomised Controlled Trial of Lubeluzole in Acute Ischaemic Stroke. Cerebrovasc. Dis. 1998;8:172–181. doi: 10.1159/000015847. PubMed DOI
Niatsetskaya Z.V., Sosunov S.A., Matsiukevich D., Utkina-Sosunova I.V., Ratner V.I., Starkov A.A., Ten V.S. The Oxygen Free Radicals Originating from Mitochondrial Complex I Contribute to Oxidative Brain Injury Following Hypoxia-Ischemia in Neonatal Mice. J. Neurosci. 2012;32:3235–3244. doi: 10.1523/JNEUROSCI.6303-11.2012. PubMed DOI PMC
Murphy M.P. Antioxidants as Therapies: Can We Improve on Nature? Free. Radic. Biol. Med. 2014;66:20–23. doi: 10.1016/j.freeradbiomed.2013.04.010. PubMed DOI
Fock E.M., Parnova R.G. Protective Effect of Mitochondria-Targeted Antioxidants against Inflammatory Response to Lipopolysaccharide Challenge: A Review. Pharmaceutics. 2021;13:144. doi: 10.3390/pharmaceutics13020144. PubMed DOI PMC
Morelli M.B., Gambardella J., Castellanos V., Trimarco V., Santulli G. Vitamin C and Cardiovascular Disease: An Update. Antioxidants. 2020;9:1227. doi: 10.3390/antiox9121227. PubMed DOI PMC
Mishima K., Tanaka T., Pu F., Egashira N., Iwasaki K., Hidaka R., Matsunaga K., Takata J., Karube Y., Fujiwara M. Vitamin E Isoforms A-Tocotrienol and g-Tocopherol Prevent Cerebral Infarction in Mice. Neurosci. Lett. 2003;5:56–60. doi: 10.1016/S0304-3940(02)01293-4. PubMed DOI
Loh H.C., Lim R., Lee K.W., Ooi C.Y., Chuan D.R., Looi I., Kah Hay Y., Abdul Karim Khan N. Effects of Vitamin E on Stroke: A Systematic Review with Meta-Analysis and Trial Sequential Analysis. Stroke Vasc. Neurol. 2021;6:109–120. doi: 10.1136/svn-2020-000519. PubMed DOI PMC
Cheng P., Wang L., Ning S., Liu Z., Lin H., Chen S., Zhu J. Vitamin E Intake and Risk of Stroke: A Meta-Analysis. Br. J. Nutr. 2018;120:1181–1188. doi: 10.1017/S0007114518002647. PubMed DOI
Hou Y., Wang K., Wan W., Cheng Y., Pu X., Ye X. Resveratrol Provides Neuroprotection by Regulating the JAK2/STAT3/PI3K/AKT/MTOR Pathway after Stroke in Rats. Genes Dis. 2018;5:245–255. doi: 10.1016/j.gendis.2018.06.001. PubMed DOI PMC
Inoue H. Brain Protection by Resveratrol and Fenofibrate against Stroke Requires Peroxisome Proliferator-Activated Receptor α in Mice. Neurosci. Lett. 2003;352:203–206. doi: 10.1016/j.neulet.2003.09.001. PubMed DOI
Fraga C.G., Croft K.D., Kennedy D.O., Tomás-Barberán F.A. The Effects of Polyphenols and Other Bioactives on Human Health. Food Funct. 2019;10:514–528. doi: 10.1039/C8FO01997E. PubMed DOI
Dringen R. Glutathione Metabolism and Oxidative Stress in Neurodegeneration. Eur. J. Biochem. 2000;267:4903. doi: 10.1046/j.1432-1327.2000.01651.x. PubMed DOI
Khan M., Sekhon B., Giri S., Jatana M., Gilg A.G., Ayasolla K., Elango C., Singh A.K., Singh I. S -Nitrosoglutathione Reduces Inflammation and Protects Brain against Focal Cerebral Ischemia in a Rat Model of Experimental Stroke. J. Cereb. Blood Flow Metab. 2005;25:177–192. doi: 10.1038/sj.jcbfm.9600012. PubMed DOI
Ahmad A., Khan M.M., Javed H., Raza S.S., Ishrat T., Badruzzaman Khan M., Safhi M.M., Islam F. Edaravone Ameliorates Oxidative Stress Associated Cholinergic Dysfunction and Limits Apoptotic Response Following Focal Cerebral Ischemia in Rat. Mol. Cell Biochem. 2012;367:215–225. doi: 10.1007/s11010-012-1335-6. PubMed DOI
Ritz M.-F., Curin Y., Mendelowitsch A., Andriantsitohaina R. Acute Treatment with Red Wine Polyphenols Protects from Ischemia-Induced Excitotoxicity, Energy Failure and Oxidative Stress in Rats. Brain Res. 2008;1239:226–234. doi: 10.1016/j.brainres.2008.08.073. PubMed DOI
Zhang Z., Peng D., Zhu H., Wang X. Experimental Evidence of Ginkgo Biloba Extract EGB as a Neuroprotective Agent in Ischemia Stroke Rats. Brain Res. Bull. 2012;87:193–198. doi: 10.1016/j.brainresbull.2011.11.002. PubMed DOI
Duan X., Wen Z., Shen H., Shen M., Chen G. Intracerebral Hemorrhage, Oxidative Stress, and Antioxidant Therapy. Oxidative Med. Cell. Longev. 2016;2016:1–17. doi: 10.1155/2016/1203285. PubMed DOI PMC
Guerrero-Beltrán C.E., Calderón-Oliver M., Pedraza-Chaverri J., Chirino Y.I. Protective Effect of Sulforaphane against Oxidative Stress: Recent Advances. Exp. Toxicol. Pathol. 2012;64:503–508. doi: 10.1016/j.etp.2010.11.005. PubMed DOI
Lu H., Shen J., Song X., Ge J., Cai R., Dai A., Jiang Z. Protective Effect of Pyrroloquinoline Quinone (PQQ) in Rat Model of Intracerebral Hemorrhage. Cell. Mol. Neurobiol. 2015;35:921–930. doi: 10.1007/s10571-015-0187-5. PubMed DOI PMC
Wang Z., Ma C., Meng C.-J., Zhu G.-Q., Sun X.-B., Huo L., Zhang J., Liu H.-X., He W.-C., Shen X.-M., et al. Melatonin Activates the Nrf2-ARE Pathway When It Protects against Early Brain Injury in a Subarachnoid Hemorrhage Model: Melatonin and Nrf2-ARE Pathway in SAH. J. Pineal Res. 2012;53:129–137. doi: 10.1111/j.1600-079X.2012.00978.x. PubMed DOI
Zhang T. Ursolic Acid Reduces Oxidative Stress to Alleviate Early Brain Injury Following Experimental Subarachnoid Hemorrhage. Neurosci. Lett. 2014;579:12–17. doi: 10.1016/j.neulet.2014.07.005. PubMed DOI
Jelinek M., Jurajda M., Duris K. The Role of Oxidative Stress in Early Brain Injury after Subarachnoid Hemorrhage. Oxidative Med. Cell. Longev. 2020;2020:1–9. doi: 10.1155/2020/8877116. DOI
Xie Y.-K., Zhou X., Yuan H.-T., Qiu J., Xin D.-Q., Chu X.-L., Wang D.-C., Wang Z. Resveratrol Reduces Brain Injury after Subarachnoid Hemorrhage by Inhibiting Oxidative Stress and Endoplasmic Reticulum Stress. Neural Regen. Res. 2019;14:1734. doi: 10.4103/1673-5374.257529. PubMed DOI PMC
Ord E.N., Shirley R., McClure J.D., McCabe C., Kremer E.J., Macrae I.M., Work L.M. Combined Antiapoptotic and Antioxidant Approach to Acute Neuroprotection for Stroke in Hypertensive Rats. J. Cereb. Blood Flow Metab. 2013;33:1215–1224. doi: 10.1038/jcbfm.2013.70. PubMed DOI PMC
Alper B.S., Foster G., Thabane L., Rae A., Malone M., Manheimer E. Thrombolysis with Alteplase 3–4.5 Hours after Acute Ischaemic Stroke: Trial Reanalysis Adjusted for Baseline Imbalances. BMJ Evid. Based Med. 2020;25:8. doi: 10.1136/bmjebm-2020-111386. PubMed DOI PMC
Baker A.H., Sica V., Work L.M., Williams-Ignarro S., de Nigris F., Lerman L.O., Casamassimi A., Lanza A., Schiano C., Rienzo M., et al. Brain Protection Using Autologous Bone Marrow Cell, Metalloproteinase Inhibitors, and Metabolic Treatment in Cerebral Ischemia. Proc. Natl. Acad. Sci. USA. 2007;104:3597–3602. doi: 10.1073/pnas.0611112104. PubMed DOI PMC
O’Collins V.E., Macleod M.R., Donnan G.A., Howells D.W. Evaluation of Combination Therapy in Animal Models of Cerebral Ischemia. J. Cereb. Blood Flow Metab. 2012;32:585–597. doi: 10.1038/jcbfm.2011.203. PubMed DOI PMC
Song G., Zhao M., Chen H., Lenahan C., Zhou X., Ou Y., He Y. The Role of Nanomaterials in Stroke Treatment: Targeting Oxidative Stress. Oxidative Med. Cell. Longev. 2021;2021:1–15. doi: 10.1155/2021/8857486. PubMed DOI PMC
Salatin S., Maleki Dizaj S., Yari Khosroushahi A. Effect of the Surface Modification, Size, and Shape on Cellular Uptake of Nanoparticles: Cellular Uptake of Nanoparticles. Cell Biol. Int. 2015;39:881–890. doi: 10.1002/cbin.10459. PubMed DOI
Baranoski J.F., Ducruet A.F. Nanoparticle-Facilitated Delivery of Antioxidant Therapy Following Aneurysmal Subarachnoid Hemorrhage. Neurosurgery. 2019;85:E174–E175. doi: 10.1093/neuros/nyz031. PubMed DOI
Jeong H.-G., Cha B.G., Kang D.-W., Kim D.Y., Ki S.K., Kim S.I., Han J.h., Yang W., Kim C.K., Kim J., et al. Ceria Nanoparticles Synthesized With Aminocaproic Acid for the Treatment of Subarachnoid Hemorrhage. Stroke. 2018;49:3030–3038. doi: 10.1161/STROKEAHA.118.022631. PubMed DOI
He J., Liu J., Huang Y., Tang X., Xiao H., Hu Z. Oxidative Stress, Inflammation, and Autophagy: Potential Targets of Mesenchymal Stem Cells-Based Therapies in Ischemic Stroke. Front. Neurosci. 2021;15:641157. doi: 10.3389/fnins.2021.641157. PubMed DOI PMC
Boshuizen M.C.S., Steinberg G.K. Stem Cell–Based Immunomodulation After Stroke: Effects on Brain Repair Processes. Stroke. 2018;49:1563–1570. doi: 10.1161/STROKEAHA.117.020465. PubMed DOI PMC
Tadokoro K., Fukui Y., Yamashita T., Liu X., Tsunoda K., Shang J., Morihara R., Nakano Y., Tian F., Sasaki R., et al. Bone Marrow Stromal Cell Transplantation Drives Molecular Switch from Autophagy to the Ubiquitin-Proteasome System in Ischemic Stroke Mice. J. Stroke Cerebrovasc. Dis. 2020;29:104743. doi: 10.1016/j.jstrokecerebrovasdis.2020.104743. PubMed DOI
Steinhubl S.R. Why Have Antioxidants Failed in Clinical Trials? Am. J. Cardiol. 2008;101:S14–S19. doi: 10.1016/j.amjcard.2008.02.003. PubMed DOI
Miller E.R., Pastor-Barriuso R., Dalal D., Riemersma R.A., Appel L.J., Guallar E. Meta-Analysis: High-Dosage Vitamin E Supplementation May Increase All-Cause Mortality. Ann. Intern. Med. 2005;142:37–46. doi: 10.7326/0003-4819-142-1-200501040-00110. PubMed DOI
Palacio C., Mooradian A.D. Clinical Trials and Antioxidant Outcomes. In: Armstrong D., Stratton R.D., editors. Oxidative Stress and Antioxidant Protection. John Wiley & Sons, Inc; Hoboken, NJ, USA: 2016. pp. 493–506.