Oxidative Stress in the Brain: Basic Concepts and Treatment Strategies in Stroke

. 2021 Nov 25 ; 10 (12) : . [epub] 20211125

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34942989

Grantová podpora
MUNI/A/1698/2020 Masaryk University
MUNI/11/SUP/24/2020 Masaryk University

The production of free radicals is inevitably associated with metabolism and other enzymatic processes. Under physiological conditions, however, free radicals are effectively eliminated by numerous antioxidant mechanisms. Oxidative stress occurs due to an imbalance between the production and elimination of free radicals under pathological conditions. Oxidative stress is also associated with ageing. The brain is prone to oxidative damage because of its high metabolic activity and high vulnerability to ischemic damage. Oxidative stress, thus, plays a major role in the pathophysiology of both acute and chronic pathologies in the brain, such as stroke, traumatic brain injury or neurodegenerative diseases. The goal of this article is to summarize the basic concepts of oxidative stress and its significance in brain pathologies, as well as to discuss treatment strategies for dealing with oxidative stress in stroke.

Zobrazit více v PubMed

Lobo V., Patil A., Phatak A., Chandra N. Free Radicals, Antioxidants and Functional Foods: Impact on Human Health. Pharmacogn. Rev. 2010;4:10. doi: 10.4103/0973-7847.70902. PubMed DOI PMC

Ozkul A., Akyol A., Yenisey C., Arpaci E., Kiylioglu N., Tataroglu C. Oxidative Stress in Acute Ischemic Stroke. J. Clin. Neurosci. 2007;14:1062–1066. doi: 10.1016/j.jocn.2006.11.008. PubMed DOI

Sanderson T.H., Reynolds C.A., Kumar R., Przyklenk K., Hüttemann M. Molecular Mechanisms of Ischemia–Reperfusion Injury in Brain: Pivotal Role of the Mitochondrial Membrane Potential in Reactive Oxygen Species Generation. Mol. Neurobiol. 2013;47:9–23. doi: 10.1007/s12035-012-8344-z. PubMed DOI PMC

Kahles T., Brandes R.P. NADPH Oxidases as Therapeutic Targets in Ischemic Stroke. Cell. Mol. Life Sci. 2012;69:2345–2363. doi: 10.1007/s00018-012-1011-8. PubMed DOI PMC

Vergeade A., Mulder P., Vendeville C., Ventura-Clapier R., Thuillez C., Monteil C. Xanthine Oxidase Contributes to Mitochondrial ROS Generation in an Experimental Model of Cocaine-Induced Diastolic Dysfunction. J. Cardiovasc. Pharmacol. 2012;60:538–543. doi: 10.1097/FJC.0b013e318271223c. PubMed DOI

Bogdan C. Nitric Oxide and the Immune Response. Nat. Immunol. 2001;2:907–916. doi: 10.1038/ni1001-907. PubMed DOI

Montfort W.R., Wales J.A., Weichsel A. Structure and Activation of Soluble Guanylyl Cyclase, the Nitric Oxide Sensor. Antioxid. Redox Signal. 2017;26:107–121. doi: 10.1089/ars.2016.6693. PubMed DOI PMC

Picón-Pagès P., Garcia-Buendia J., Muñoz F.J. Functions and Dysfunctions of Nitric Oxide in Brain. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2019;1865:1949–1967. doi: 10.1016/j.bbadis.2018.11.007. PubMed DOI

Hishiki T., Yamamoto T., Morikawa T., Kubo A., Kajimura M., Suematsu M. Carbon Monoxide: Impact on Remethylation/Transsulfuration Metabolism and Its Pathophysiologic Implications. J. Mol. Med. 2012;90:245–254. doi: 10.1007/s00109-012-0875-2. PubMed DOI PMC

Kudryavtseva A.V., Krasnov G.S., Dmitriev A.A., Alekseev B.Y., Kardymon O.L., Sadritdinova A.F., Fedorova M.S., Pokrovsky A.V., Melnikova N.V., Kaprin A.D., et al. Mitochondrial Dysfunction and Oxidative Stress in Aging and Cancer. Oncotarget. 2016;7:44879–44905. doi: 10.18632/oncotarget.9821. PubMed DOI PMC

Sinha K., Das J., Pal P.B., Sil P.C. Oxidative Stress: The Mitochondria-Dependent and Mitochondria-Independent Pathways of Apoptosis. Arch. Toxicol. 2013;87:1157–1180. doi: 10.1007/s00204-013-1034-4. PubMed DOI

Kagan V.E., Tyurina Y.Y. Recycling and Redox Cycling of Phenolic Antioxidants. Annals N. Y. Acad. Sci. 1998;854:425–434. doi: 10.1111/j.1749-6632.1998.tb09921.x. PubMed DOI

Lauridsen C. From Oxidative Stress to Inflammation: Redox Balance and Immune System. Poult. Sci. 2019;98:4240–4246. doi: 10.3382/ps/pey407. PubMed DOI

Herb M., Gluschko A., Wiegmann K., Farid A., Wolf A., Utermöhlen O., Krut O., Krönke M., Schramm M. Mitochondrial Reactive Oxygen Species Enable Proinflammatory Signaling through Disulfide Linkage of NEMO. Sci. Signal. 2019;12:eaar5926. doi: 10.1126/scisignal.aar5926. PubMed DOI

Williams A.J., Barry R.E. Free Radical Generation by Neutrophils: A Potential Mechanism of Cellular Injury in Acute Alcoholic Hepatitis. Gut. 1987;28:1157–1161. doi: 10.1136/gut.28.9.1157. PubMed DOI PMC

Lushchak V.I. Free Radicals, Reactive Oxygen Species, Oxidative Stress and Its Classification. Chem. Biol. Interact. 2014;224:164–175. doi: 10.1016/j.cbi.2014.10.016. PubMed DOI

Sies H. Oxidative Stress: A Concept in Redox Biology and Medicine. Redox Biol. 2015;4:180–183. doi: 10.1016/j.redox.2015.01.002. PubMed DOI PMC

Bjørklund G., Chirumbolo S. Role of Oxidative Stress and Antioxidants in Daily Nutrition and Human Health. Nutrition. 2017;33:311–321. doi: 10.1016/j.nut.2016.07.018. PubMed DOI

Margaritelis N.V., Paschalis V., Theodorou A.A., Kyparos A., Nikolaidis M.G. Antioxidants in Personalized Nutrition and Exercise. Adv. Nutr. 2018;9:813–823. doi: 10.1093/advances/nmy052. PubMed DOI PMC

Orellana-Urzúa S., Claps G., Rodrigo R. Improvement of a Novel Proposal for Antioxidant Treatment Against Brain Damage Occurring in Ischemic Stroke Patients. CNS Neurol. Disord. Drug Targets. 2021;20:3–21. doi: 10.2174/1871527319666200910153431. PubMed DOI

Beckman K.B., Ames B.N. The Free Radical Theory of Aging Matures. Physiol. Rev. 1998;78:547–581. doi: 10.1152/physrev.1998.78.2.547. PubMed DOI

Liguori I., Russo G., Curcio F., Bulli G., Aran L., Della-Morte D., Gargiulo G., Testa G., Cacciatore F., Bonaduce D., et al. Oxidative Stress, Aging, and Diseases. Clin. Interv. Aging. 2018;13:757–772. doi: 10.2147/CIA.S158513. PubMed DOI PMC

Shirley R., Ord E., Work L. Oxidative Stress and the Use of Antioxidants in Stroke. Antioxidants. 2014;3:472–501. doi: 10.3390/antiox3030472. PubMed DOI PMC

Kirkland R.A., Windelborn J.A., Kasprzak J.M., Franklin J.L. A Bax-Induced Pro-Oxidant State Is Critical for Cytochrome c Release during Programmed Neuronal Death. J. Neurosci. 2002;22:6480–6490. doi: 10.1523/JNEUROSCI.22-15-06480.2002. PubMed DOI PMC

Hayes J.D., Dinkova-Kostova A.T., Tew K.D. Oxidative Stress in Cancer. Cancer Cell. 2020;38:167–197. doi: 10.1016/j.ccell.2020.06.001. PubMed DOI PMC

Klaunig J.E. Oxidative Stress and Cancer. Curr. Pharm. Des. 2019;24:4771–4778. doi: 10.2174/1381612825666190215121712. PubMed DOI

Saeed S.A., Shad K.F., Saleem T., Javed F., Khan M.U. Some New Prospects in the Understanding of the Molecular Basis of the Pathogenesis of Stroke. Exp. Brain Res. 2007;182:1–10. doi: 10.1007/s00221-007-1050-9. PubMed DOI

Rodrigo R., Fernandez-Gajardo R., Gutierrez R., Matamala J., Carrasco R., Miranda-Merchak A., Feuerhake W. Oxidative Stress and Pathophysiology of Ischemic Stroke: Novel Therapeutic Opportunities. CNS Neurol. Disord. Drug Targets. 2013;12:698–714. doi: 10.2174/1871527311312050015. PubMed DOI

Margaill I., Plotkine M., Lerouet D. Antioxidant Strategies in the Treatment of Stroke. Free. Radic. Biol. Med. 2005;39:429–443. doi: 10.1016/j.freeradbiomed.2005.05.003. PubMed DOI

Yang Q., Huang Q., Hu Z., Tang X. Potential Neuroprotective Treatment of Stroke: Targeting Excitotoxicity, Oxidative Stress, and Inflammation. Front. Neurosci. 2019;13:1036. doi: 10.3389/fnins.2019.01036. PubMed DOI PMC

Genovese T., Mazzon E., Paterniti I., Esposito E., Bramanti P., Cuzzocrea S. Modulation of NADPH Oxidase Activation in Cerebral Ischemia/Reperfusion Injury in Rats. Brain Res. 2011;1372:92–102. doi: 10.1016/j.brainres.2010.11.088. PubMed DOI

Tang L., Ye K., Yang X., Zheng J. Apocynin Attenuates Cerebral Infarction after Transient Focal Ischaemia in Rats. J. Int. Med. Res. 2007;35:517–522. doi: 10.1177/147323000703500411. PubMed DOI

Heumüller S., Wind S., Barbosa-Sicard E., Schmidt H.H.H.W., Busse R., Schröder K., Brandes R.P. Apocynin Is Not an Inhibitor of Vascular NADPH Oxidases but an Antioxidant. Hypertension. 2008;51:211–217. doi: 10.1161/HYPERTENSIONAHA.107.100214. PubMed DOI

Schluter T., Steinbach A.C., Steffen A., Rettig R., Grisk O. Apocynin-Induced Vasodilation Involves Rho Kinase Inhibition but Not NADPH Oxidase Inhibition. Cardiovasc. Res. 2008;80:271–279. doi: 10.1093/cvr/cvn185. PubMed DOI

Touyz R.M. Apocynin, NADPH Oxidase, and Vascular Cells: A Complex Matter. Hypertension. 2008;51:172–174. doi: 10.1161/HYPERTENSIONAHA.107.103200. PubMed DOI

Kleinschnitz C., Grund H., Wingler K., Armitage M.E., Jones E., Mittal M., Barit D., Schwarz T., Geis C., Kraft P., et al. Post-Stroke Inhibition of Induced NADPH Oxidase Type 4 Prevents Oxidative Stress and Neurodegeneration. PLoS Biol. 2010;8:e1000479. doi: 10.1371/journal.pbio.1000479. PubMed DOI PMC

Casas A.I., Geuss E., Kleikers P.W.M., Mencl S., Herrmann A.M., Buendia I., Egea J., Meuth S.G., Lopez M.G., Kleinschnitz C., et al. NOX4-Dependent Neuronal Autotoxicity and BBB Breakdown Explain the Superior Sensitivity of the Brain to Ischemic Damage. Proc. Natl. Acad. Sci. USA. 2017;114:12315–12320. doi: 10.1073/pnas.1705034114. PubMed DOI PMC

Casas A.I., Kleikers P.W.M., Geuss E., Langhauser F., Adler T., Busch D.H., Gailus-Durner V., de Angelis M.H., Egea J., Lopez M.G., et al. Calcium-Dependent Blood-Brain Barrier Breakdown by NOX5 Limits Postreperfusion Benefit in Stroke. J. Clin. Investig. 2019;129:1772–1778. doi: 10.1172/JCI124283. PubMed DOI PMC

Dao V.T.-V., Elbatreek M.H., Altenhöfer S., Casas A.I., Pachado M.P., Neullens C.T., Knaus U.G., Schmidt H.H.H.W. Isoform-Selective NADPH Oxidase Inhibitor Panel for Pharmacological Target Validation. Free. Radic. Biol. Med. 2020;148:60–69. doi: 10.1016/j.freeradbiomed.2019.12.038. PubMed DOI

Duan J., Gao S., Tu S., Lenahan C., Shao A., Sheng J. Pathophysiology and Therapeutic Potential of NADPH Oxidases in Ischemic Stroke-Induced Oxidative Stress. Oxidative Med. Cell. Longev. 2021;2021:1–11. doi: 10.1155/2021/6631805. PubMed DOI PMC

Reynolds A., Laurie C., Lee Mosley R., Gendelman H.E. International Review of Neurobiology. Volume 82. Elsevier; Amsterdam, The Netherlands: 2007. Oxidative Stress and the Pathogenesis of Neurodegenerative Disorders; pp. 297–325. PubMed

Tsutsumi Z., Moriwaki Y., Takahashi S., Ka T., Yamamoto T. Oxidized Low-Density Lipoprotein Autoantibodies in Patients with Primary Gout: Effect of Urate-Lowering Therapy. Clin. Chim. Acta. 2004;339:117–122. doi: 10.1016/j.cccn.2003.09.019. PubMed DOI

Luo J., Yan D., Li S., Liu S., Zeng F., Cheung C.W., Liu H., Irwin M.G., Huang H., Xia Z. Allopurinol Reduces Oxidative Stress and Activates Nrf2/P62 to Attenuate Diabetic Cardiomyopathy in Rats. J. Cell. Mol. Med. 2020;24:1760–1773. doi: 10.1111/jcmm.14870. PubMed DOI PMC

Martz D., Rayos G., Schielke G.P., Betz A.L. Allopurinol and Dimethylthiourea Reduce Brain Infarction Following Middle Cerebral Artery Occlusion in Rats. Stroke. 1989;20:488–494. doi: 10.1161/01.STR.20.4.488. PubMed DOI

Choi W., Villegas V., Istre H., Heppler B., Gonzalez N., Brusman N., Snider L., Hogle E., Tucker J., Oñate A., et al. Synthesis and Characterization of CAPE Derivatives as Xanthine Oxidase Inhibitors with Radical Scavenging Properties. Bioorganic Chem. 2019;86:686–695. doi: 10.1016/j.bioorg.2019.02.049. PubMed DOI PMC

Chen S., Chen H., Du Q., Shen J. Targeting Myeloperoxidase (MPO) Mediated Oxidative Stress and Inflammation for Reducing Brain Ischemia Injury: Potential Application of Natural Compounds. Front. Physiol. 2020;11:433. doi: 10.3389/fphys.2020.00433. PubMed DOI PMC

Annapurna A., Ansari M.A., Manjunath P.M. Partial Role of Multiple Pathways in Infarct Size Limiting Effect of Quercetin and Rutin against Cerebral Ischemia-Reperfusion Injury in Rats. Eur. Rev. Med. Pharmacol. Sci. 2013;17:491–500. PubMed

Lei J., Tu X., Wang Y., Tu D., Shi S. Resveratrol Downregulates the TLR4 Signaling Pathway to Reduce Brain Damage in a Rat Model of Focal Cerebral Ischemia. Exp. Ther. Med. 2019;17:3215–3221. doi: 10.3892/etm.2019.7324. PubMed DOI PMC

Pravalika K., Sarmah D., Kaur H., Vats K., Saraf J., Wanve M., Kalia K., Borah A., Yavagal D.R., Dave K.R., et al. Trigonelline Therapy Confers Neuroprotection by Reduced Glutathione Mediated Myeloperoxidase Expression in Animal Model of Ischemic Stroke. Life Sci. 2019;216:49–58. doi: 10.1016/j.lfs.2018.11.014. PubMed DOI

Tu X., Yang W., Chen J., Chen Y., Ouyang L., Xu Y., Shi S. Curcumin Inhibits TLR2/4-NF-ΚB Signaling Pathway and Attenuates Brain Damage in Permanent Focal Cerebral Ischemia in Rats. Inflammation. 2014;37:1544–1551. doi: 10.1007/s10753-014-9881-6. PubMed DOI

Yang X.-Y., Jiang S.-Q., Zhang L., Liu Q.-N., Gong P.-L. Inhibitory Effect of Dauricine on Inflammatory Process Following Focal Cerebral Ischemia/Reperfusion in Rats. Am. J. Chin. Med. 2007;35:477–486. doi: 10.1142/S0192415X07004990. PubMed DOI

Zhou X., Yang J., Zhou M., Zhang Y., Liu Y., Hou P., Zeng X., Yi L., Mi M. Resveratrol Attenuates Endothelial Oxidative Injury by Inducing Autophagy via the Activation of Transcription Factor EB. Nutr. Metab. 2019;16:42. doi: 10.1186/s12986-019-0371-6. PubMed DOI PMC

Sena E., Wheble P., Sandercock P., Macleod M. Systematic Review and Meta-Analysis of the Efficacy of Tirilazad in Experimental Stroke. Stroke. 2007;38:388–394. doi: 10.1161/01.STR.0000254462.75851.22. PubMed DOI

Otomo E., Tohgi H., Takakura K., Hirai S. Gotoh Effect of a Novel Free Radical Scavenger, Edaravone (MCI-186), on Acute Brain Infarction. Cerebrovasc. Dis. 2003;15:222–229. doi: 10.1159/000069318. PubMed DOI

Fujimura M., Morita-Fujimura Y., Noshita N., Sugawara T., Kawase M., Chan P.H. The Cytosolic Antioxidant Copper/Zinc-Superoxide Dismutase Prevents the Early Release of Mitochondrial Cytochrome c in Ischemic Brain after Transient Focal Cerebral Ischemia in Mice. J. Neurosci. 2000;20:2817–2824. doi: 10.1523/JNEUROSCI.20-08-02817.2000. PubMed DOI PMC

Sugawara T., Lewén A., Gasche Y., Yu F., Chan P.H. Overexpression of SOD1 Protects Vulnerable Motor Neurons after Spinal Cord Injury by Attenuating Mitochondrial Cytochrome c Release. FASEB J. 2002;16:1997–1999. doi: 10.1096/fj.02-0251fje. PubMed DOI

Atochin D.N., Wang A., Liu V.W.T., Critchlow J.D., Dantas A.P.V., Looft-Wilson R., Murata T., Salomone S., Shin H.K., Ayata C., et al. The Phosphorylation State of ENOS Modulates Vascular Reactivity and Outcome of Cerebral Ischemia in Vivo. J. Clin. Invest. 2007;117:1961–1967. doi: 10.1172/JCI29877. PubMed DOI PMC

Aronowski J., Strong R., Grotta J.C. Treatment of Experimental Focal Ischemia in Rats with Lubeluzole. Neuropharmacology. 1996;35:689–693. doi: 10.1016/0028-3908(96)84640-5. PubMed DOI

Diener H.C. Multinational Randomised Controlled Trial of Lubeluzole in Acute Ischaemic Stroke. Cerebrovasc. Dis. 1998;8:172–181. doi: 10.1159/000015847. PubMed DOI

Niatsetskaya Z.V., Sosunov S.A., Matsiukevich D., Utkina-Sosunova I.V., Ratner V.I., Starkov A.A., Ten V.S. The Oxygen Free Radicals Originating from Mitochondrial Complex I Contribute to Oxidative Brain Injury Following Hypoxia-Ischemia in Neonatal Mice. J. Neurosci. 2012;32:3235–3244. doi: 10.1523/JNEUROSCI.6303-11.2012. PubMed DOI PMC

Murphy M.P. Antioxidants as Therapies: Can We Improve on Nature? Free. Radic. Biol. Med. 2014;66:20–23. doi: 10.1016/j.freeradbiomed.2013.04.010. PubMed DOI

Fock E.M., Parnova R.G. Protective Effect of Mitochondria-Targeted Antioxidants against Inflammatory Response to Lipopolysaccharide Challenge: A Review. Pharmaceutics. 2021;13:144. doi: 10.3390/pharmaceutics13020144. PubMed DOI PMC

Morelli M.B., Gambardella J., Castellanos V., Trimarco V., Santulli G. Vitamin C and Cardiovascular Disease: An Update. Antioxidants. 2020;9:1227. doi: 10.3390/antiox9121227. PubMed DOI PMC

Mishima K., Tanaka T., Pu F., Egashira N., Iwasaki K., Hidaka R., Matsunaga K., Takata J., Karube Y., Fujiwara M. Vitamin E Isoforms A-Tocotrienol and g-Tocopherol Prevent Cerebral Infarction in Mice. Neurosci. Lett. 2003;5:56–60. doi: 10.1016/S0304-3940(02)01293-4. PubMed DOI

Loh H.C., Lim R., Lee K.W., Ooi C.Y., Chuan D.R., Looi I., Kah Hay Y., Abdul Karim Khan N. Effects of Vitamin E on Stroke: A Systematic Review with Meta-Analysis and Trial Sequential Analysis. Stroke Vasc. Neurol. 2021;6:109–120. doi: 10.1136/svn-2020-000519. PubMed DOI PMC

Cheng P., Wang L., Ning S., Liu Z., Lin H., Chen S., Zhu J. Vitamin E Intake and Risk of Stroke: A Meta-Analysis. Br. J. Nutr. 2018;120:1181–1188. doi: 10.1017/S0007114518002647. PubMed DOI

Hou Y., Wang K., Wan W., Cheng Y., Pu X., Ye X. Resveratrol Provides Neuroprotection by Regulating the JAK2/STAT3/PI3K/AKT/MTOR Pathway after Stroke in Rats. Genes Dis. 2018;5:245–255. doi: 10.1016/j.gendis.2018.06.001. PubMed DOI PMC

Inoue H. Brain Protection by Resveratrol and Fenofibrate against Stroke Requires Peroxisome Proliferator-Activated Receptor α in Mice. Neurosci. Lett. 2003;352:203–206. doi: 10.1016/j.neulet.2003.09.001. PubMed DOI

Fraga C.G., Croft K.D., Kennedy D.O., Tomás-Barberán F.A. The Effects of Polyphenols and Other Bioactives on Human Health. Food Funct. 2019;10:514–528. doi: 10.1039/C8FO01997E. PubMed DOI

Dringen R. Glutathione Metabolism and Oxidative Stress in Neurodegeneration. Eur. J. Biochem. 2000;267:4903. doi: 10.1046/j.1432-1327.2000.01651.x. PubMed DOI

Khan M., Sekhon B., Giri S., Jatana M., Gilg A.G., Ayasolla K., Elango C., Singh A.K., Singh I. S -Nitrosoglutathione Reduces Inflammation and Protects Brain against Focal Cerebral Ischemia in a Rat Model of Experimental Stroke. J. Cereb. Blood Flow Metab. 2005;25:177–192. doi: 10.1038/sj.jcbfm.9600012. PubMed DOI

Ahmad A., Khan M.M., Javed H., Raza S.S., Ishrat T., Badruzzaman Khan M., Safhi M.M., Islam F. Edaravone Ameliorates Oxidative Stress Associated Cholinergic Dysfunction and Limits Apoptotic Response Following Focal Cerebral Ischemia in Rat. Mol. Cell Biochem. 2012;367:215–225. doi: 10.1007/s11010-012-1335-6. PubMed DOI

Ritz M.-F., Curin Y., Mendelowitsch A., Andriantsitohaina R. Acute Treatment with Red Wine Polyphenols Protects from Ischemia-Induced Excitotoxicity, Energy Failure and Oxidative Stress in Rats. Brain Res. 2008;1239:226–234. doi: 10.1016/j.brainres.2008.08.073. PubMed DOI

Zhang Z., Peng D., Zhu H., Wang X. Experimental Evidence of Ginkgo Biloba Extract EGB as a Neuroprotective Agent in Ischemia Stroke Rats. Brain Res. Bull. 2012;87:193–198. doi: 10.1016/j.brainresbull.2011.11.002. PubMed DOI

Duan X., Wen Z., Shen H., Shen M., Chen G. Intracerebral Hemorrhage, Oxidative Stress, and Antioxidant Therapy. Oxidative Med. Cell. Longev. 2016;2016:1–17. doi: 10.1155/2016/1203285. PubMed DOI PMC

Guerrero-Beltrán C.E., Calderón-Oliver M., Pedraza-Chaverri J., Chirino Y.I. Protective Effect of Sulforaphane against Oxidative Stress: Recent Advances. Exp. Toxicol. Pathol. 2012;64:503–508. doi: 10.1016/j.etp.2010.11.005. PubMed DOI

Lu H., Shen J., Song X., Ge J., Cai R., Dai A., Jiang Z. Protective Effect of Pyrroloquinoline Quinone (PQQ) in Rat Model of Intracerebral Hemorrhage. Cell. Mol. Neurobiol. 2015;35:921–930. doi: 10.1007/s10571-015-0187-5. PubMed DOI PMC

Wang Z., Ma C., Meng C.-J., Zhu G.-Q., Sun X.-B., Huo L., Zhang J., Liu H.-X., He W.-C., Shen X.-M., et al. Melatonin Activates the Nrf2-ARE Pathway When It Protects against Early Brain Injury in a Subarachnoid Hemorrhage Model: Melatonin and Nrf2-ARE Pathway in SAH. J. Pineal Res. 2012;53:129–137. doi: 10.1111/j.1600-079X.2012.00978.x. PubMed DOI

Zhang T. Ursolic Acid Reduces Oxidative Stress to Alleviate Early Brain Injury Following Experimental Subarachnoid Hemorrhage. Neurosci. Lett. 2014;579:12–17. doi: 10.1016/j.neulet.2014.07.005. PubMed DOI

Jelinek M., Jurajda M., Duris K. The Role of Oxidative Stress in Early Brain Injury after Subarachnoid Hemorrhage. Oxidative Med. Cell. Longev. 2020;2020:1–9. doi: 10.1155/2020/8877116. DOI

Xie Y.-K., Zhou X., Yuan H.-T., Qiu J., Xin D.-Q., Chu X.-L., Wang D.-C., Wang Z. Resveratrol Reduces Brain Injury after Subarachnoid Hemorrhage by Inhibiting Oxidative Stress and Endoplasmic Reticulum Stress. Neural Regen. Res. 2019;14:1734. doi: 10.4103/1673-5374.257529. PubMed DOI PMC

Ord E.N., Shirley R., McClure J.D., McCabe C., Kremer E.J., Macrae I.M., Work L.M. Combined Antiapoptotic and Antioxidant Approach to Acute Neuroprotection for Stroke in Hypertensive Rats. J. Cereb. Blood Flow Metab. 2013;33:1215–1224. doi: 10.1038/jcbfm.2013.70. PubMed DOI PMC

Alper B.S., Foster G., Thabane L., Rae A., Malone M., Manheimer E. Thrombolysis with Alteplase 3–4.5 Hours after Acute Ischaemic Stroke: Trial Reanalysis Adjusted for Baseline Imbalances. BMJ Evid. Based Med. 2020;25:8. doi: 10.1136/bmjebm-2020-111386. PubMed DOI PMC

Baker A.H., Sica V., Work L.M., Williams-Ignarro S., de Nigris F., Lerman L.O., Casamassimi A., Lanza A., Schiano C., Rienzo M., et al. Brain Protection Using Autologous Bone Marrow Cell, Metalloproteinase Inhibitors, and Metabolic Treatment in Cerebral Ischemia. Proc. Natl. Acad. Sci. USA. 2007;104:3597–3602. doi: 10.1073/pnas.0611112104. PubMed DOI PMC

O’Collins V.E., Macleod M.R., Donnan G.A., Howells D.W. Evaluation of Combination Therapy in Animal Models of Cerebral Ischemia. J. Cereb. Blood Flow Metab. 2012;32:585–597. doi: 10.1038/jcbfm.2011.203. PubMed DOI PMC

Song G., Zhao M., Chen H., Lenahan C., Zhou X., Ou Y., He Y. The Role of Nanomaterials in Stroke Treatment: Targeting Oxidative Stress. Oxidative Med. Cell. Longev. 2021;2021:1–15. doi: 10.1155/2021/8857486. PubMed DOI PMC

Salatin S., Maleki Dizaj S., Yari Khosroushahi A. Effect of the Surface Modification, Size, and Shape on Cellular Uptake of Nanoparticles: Cellular Uptake of Nanoparticles. Cell Biol. Int. 2015;39:881–890. doi: 10.1002/cbin.10459. PubMed DOI

Baranoski J.F., Ducruet A.F. Nanoparticle-Facilitated Delivery of Antioxidant Therapy Following Aneurysmal Subarachnoid Hemorrhage. Neurosurgery. 2019;85:E174–E175. doi: 10.1093/neuros/nyz031. PubMed DOI

Jeong H.-G., Cha B.G., Kang D.-W., Kim D.Y., Ki S.K., Kim S.I., Han J.h., Yang W., Kim C.K., Kim J., et al. Ceria Nanoparticles Synthesized With Aminocaproic Acid for the Treatment of Subarachnoid Hemorrhage. Stroke. 2018;49:3030–3038. doi: 10.1161/STROKEAHA.118.022631. PubMed DOI

He J., Liu J., Huang Y., Tang X., Xiao H., Hu Z. Oxidative Stress, Inflammation, and Autophagy: Potential Targets of Mesenchymal Stem Cells-Based Therapies in Ischemic Stroke. Front. Neurosci. 2021;15:641157. doi: 10.3389/fnins.2021.641157. PubMed DOI PMC

Boshuizen M.C.S., Steinberg G.K. Stem Cell–Based Immunomodulation After Stroke: Effects on Brain Repair Processes. Stroke. 2018;49:1563–1570. doi: 10.1161/STROKEAHA.117.020465. PubMed DOI PMC

Tadokoro K., Fukui Y., Yamashita T., Liu X., Tsunoda K., Shang J., Morihara R., Nakano Y., Tian F., Sasaki R., et al. Bone Marrow Stromal Cell Transplantation Drives Molecular Switch from Autophagy to the Ubiquitin-Proteasome System in Ischemic Stroke Mice. J. Stroke Cerebrovasc. Dis. 2020;29:104743. doi: 10.1016/j.jstrokecerebrovasdis.2020.104743. PubMed DOI

Steinhubl S.R. Why Have Antioxidants Failed in Clinical Trials? Am. J. Cardiol. 2008;101:S14–S19. doi: 10.1016/j.amjcard.2008.02.003. PubMed DOI

Miller E.R., Pastor-Barriuso R., Dalal D., Riemersma R.A., Appel L.J., Guallar E. Meta-Analysis: High-Dosage Vitamin E Supplementation May Increase All-Cause Mortality. Ann. Intern. Med. 2005;142:37–46. doi: 10.7326/0003-4819-142-1-200501040-00110. PubMed DOI

Palacio C., Mooradian A.D. Clinical Trials and Antioxidant Outcomes. In: Armstrong D., Stratton R.D., editors. Oxidative Stress and Antioxidant Protection. John Wiley & Sons, Inc; Hoboken, NJ, USA: 2016. pp. 493–506.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...