Rheological and Flow Behaviour of Yolk, Albumen and Liquid Whole Egg from Eggs of Six Different Poultry Species

. 2021 Dec 17 ; 10 (12) : . [epub] 20211217

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34945681

Grantová podpora
AF-IGA-2020-TP006 Mendel University in Brno

Liquid egg products are one of the basic raw materials for the food industry. Knowledge of their rheological and flow behaviour in real technical elements is absolutely necessary for the selection of suitable technological equipment for their processing. In this article, the rheological properties of liquid egg products were determined. Eggs from six different species of poultry are used: domestic hen (Gallus gallus domesticus) hybrid Hisex Brown; Japanese quail (Coturnix japonica); German carrier goose (Anser anser f. domestica); domestic ducks (Anas platyrhynchos f. domestica); domestic guinea fowl (Numida meleagris f. domestica); and domestic turkeys (Meleagris gallopavo f. domestica). Liquid egg products showed pseudoplastic behaviour in range of shear strain rates from 0.2 up to 200 s-1 and at the temperature of 18 °C. Thus, the flow curves were constructed using the Ostwald-de Waele rheological model, with respect to the pseudoplastic behaviour of liquid egg products. According to the values of the coefficients of determination (R2), the sum of squared estimate of errors (SSE) and the root mean square error (RMSE), this model was appropriately chosen. Using the consistency coefficient K, the flow index n and the adjusted equations for the flow rate of technical and biological fluids in standard pipelines, the 3D velocity profiles of liquid egg products were successfully modelled. The values of the Reynolds number of the individual liquid egg products were calculated, and the type of flow was also determined. A turbulent flow has been detected for some liquid egg products.

Zobrazit více v PubMed

Hasler C.M. The changing face of functional foods. J. Am. Coll. Nutr. 2000;19:499–506. doi: 10.1080/07315724.2000.10718972. PubMed DOI

De Jesús M.N., Zanqui A.B., Valderrama P., Tanamati A., Maruyama S.A., de Souza N.E., Matsushita M. Sensory and physico-chemical characteristics of desserts prepared with egg products processed by freeze and spray drying. Food Sci. Technol. 2013;33:549–554. doi: 10.1590/S0101-20612013005000083. DOI

Juszczak L., Fortuna T., Kośla A. Sensory and rheological properties of Polish commercial mayonnaise. Nahrung. 2003;47:232–235. doi: 10.1002/food.200390054. PubMed DOI

Kumbár V., Nedomová Š., Trnka J., Buchar J., Pytel R. Effect of storage duration on the rheological properties of goose liquid egg products and eggshell membranes. Poult. Sci. 2016;95:1693–1701. doi: 10.3382/ps/pew094. PubMed DOI

Telis-Romero J., Thomaz C.E.P., Bernardi M., Telis V.R.N., Gabas A.L. Rheological properties and fluid dynamics of egg yolk. J. Food Eng. 2006;74:191–197. doi: 10.1016/j.jfoodeng.2005.01.044. DOI

Cabral R.A.F., Telis V.R.N., Park K.J., Telis-Romero J. Friction losses in valves and fittings for liquid food products. Food Bioprod. Process. 2011;89:375–382. doi: 10.1016/j.fbp.2010.08.002. DOI

Kumbár V., Strnková J., Nedomová Š., Buchar J. Fluid dynamics of liquid egg products. J. Biol. Phys. 2015;41:303–311. doi: 10.1007/s10867-015-9380-5. PubMed DOI PMC

Aguilar J.M., Batista A.P., Nunes M.C., Cordobés F., Raymundo A., Guerrero A. From egg yolk/κ-Carrageenan dispersions to gel systems: Linear viscoelasticity and texture analysis. Food Hydrocoll. 2011;25:654–658. doi: 10.1016/j.foodhyd.2010.08.006. DOI

Telis V.R.N., Kieckbusch T.G. Viscoelasticity of frozen/thawed egg yolk. J. Food Sci. 1997;62:548–550. doi: 10.1111/j.1365-2621.1997.tb04427.x. DOI

Tserveni-Goussi A., Fortomaris P. Production and Quality of Quail, Pheasant, Goose and Turkey Eggs for Uses Other Than Human Consumption. In: Nys Y., Bain M., Van Imerseel F., editors. Improving the Safety and Quality of Eggs and Egg Products. 1st ed. Woodhead Publishing; Cambridge, UK: 2011. pp. 509–537. DOI

Ketyam B., Imsilp K., Poapolathep A., Poapolathep S., Jermnak U., Phaochoosak N., Tanhan P. Health risk associated with the consumption of duck egg containing endosulfan residues. Environ. Monit. Assess. 2016;188:270. doi: 10.1007/s10661-016-5268-5. PubMed DOI

Kokoszyński D. Guinea Fowl, Goose, Turkey, Ostrich, and Emu Eggs. In: Hester P., editor. Egg Innovations and Strategies for Improvements. 1st ed. Volume 4. Academic Press; Cambridge, MA, USA: 2016. pp. 33–43.

Song K.T., Choi S.H., Oh H.R. A comparison of egg quality of pheasant, chukar, quail and guinea fowl. Asian-Australas. J. Anim. Sci. 2000;13:986–990. doi: 10.5713/ajas.2000.986. DOI

Techathuvanan C., D’Souza D.H. High intensity ultrasound for Salmonella enteritidis inactivation in culture and liquid whole eggs. J. Food Sci. 2018;83:1733–1739. doi: 10.1111/1750-3841.14185. PubMed DOI

Hemphill T., Campos W., Pilehvari A. Yield-power law model more accurately predicts mud rheology. Oil Gas J. 1993;91:45–50.

Alamprese C., Iametti S., Rossi M., Bergonzi D. Role of pasteurisation heat treatments on rheological and protein structural characteristics of fresh egg pasta. Eur. Food Res. Technol. 2005;221:759–767. doi: 10.1007/s00217-005-0024-z. DOI

Nguyen Q.H., Nguyen N.D. Incompressible Non-Newtonian Fluid Flows. In: Gan Y., editor. Continuum Mechanics—Progress in Fundamentals and Engineering Applications. 1st ed. InTech; Shanghai, China: 2012. pp. 47–72.

Přidal A., Trávníček P., Kudělka J., Nedomová Š., Ondrušíková S., Trost D., Kumbár V. A Rheological analysis of biomaterial behaviour as a tool to detect the dilution of heather honey. Materials. 2021;14:2472. doi: 10.3390/ma14102472. PubMed DOI PMC

Parington E. Stainless Steels in the Food and Beverage Industry. 1st ed. Euro Inox; Luxembourg: 2008. pp. 1–24.

Meuer H., Egbers C. Changes in density and viscosity of chicken egg albumen and yolk during incubation. J. Exp. Zoöl. 1990;255:16–21. doi: 10.1002/jez.1402550104. DOI

Cao D., Feng F., Xiong C., Li J., Xue H., Zhao Y., Wang Y., Tu Y., Zhao Y. Changes in lipid properties of duck egg yolks under extreme processing conditions. Poult. Sci. 2021;100:101140. doi: 10.1016/j.psj.2021.101140. PubMed DOI PMC

Cybulska J., Mierczyńska J., Pieczywek P., Stasiak M., Zdunek A. Effect of divalent metal ions on rheological properties of polysaccharide matrix from apple pomace. Food Sci. Technol. Qual. 2016;22:103–113. doi: 10.15193/zntj/2015/99/025. DOI

Panaite T.D., Mironeasa S., Iuga M., Vlaicu P.A. Liquid egg products characterization during storage as a response of novel phyto-additives added in hens diet. Emir. J. Food Agric. 2019;31:304–314. doi: 10.9755/ejfa.2019.v31.i4.1937. DOI

Kumbár V., Kouřilová V., Dufková R., Votava J., Hřivna L. Rheological and pipe flow properties of chocolate masses at different temperatures. Foods. 2021;10:2519. doi: 10.3390/foods10112519. PubMed DOI PMC

Wijedasa W.M.R.M., Wickramasinghe Y.H.S.T., Vidanarachchi J.K., Himali S.M.C. Comparison of egg quality characteristics of different poultry species. J. Agric. Sci. 2020;12:331–342. doi: 10.5539/jas.v12n11p331. DOI

Bondoc O.L., Ebron A.O., Ramos A.R., Santiago R.C. Comparison of egg quality traits in different poultry species and breeds. Philipp. J. Vet. Med. 2020;57:2020–2235.

Lichovnikova M. The effect of dietary calcium source, concentration and particle size on calcium retention, eggshell quality and overall calcium requirement in laying hens. Br. Poult. Sci. 2007;48:71–75. doi: 10.1080/00071660601148203. PubMed DOI

Liu W., Wang F., Guo L., Huang L., Zhao W., Lu X. Design and performance test of low-temperature pasteurization equipment for experiment. Trans. Chin. Soc. Agric. Mach. 2013;44:158–160. doi: 10.6041/j.issn.1000-1298.2013.03.029. DOI

Gut J.A.W., Pinto J.M., Gabas A.L., Telis-Romero J. Continuous pasteurization of egg yolk: Thermophysical properties and process simulation. J. Food Process Eng. 2005;28:181–203. doi: 10.1111/j.1745-4530.2005.00416.x. DOI

Icier F., Bozkurt H. Ohmic heating of liquid whole egg: Rheological behaviour and fluid dynamics. Food Bioprocess Technol. 2011;4:1253–1263. doi: 10.1007/s11947-009-0229-4. DOI

Bozkurt H., Icier F. The change of apparent viscosity of liquid whole egg during ohmic and conventional heating. J. Food Process Eng. 2012;35:120–133. doi: 10.1111/j.1745-4530.2010.00575.x. DOI

Denys S., Pieters J.G., Dewettinck K. Computational fluid dynamics analysis of combined conductive and convective heat transfer in model eggs. J. Food Eng. 2004;63:281–290. doi: 10.1016/j.jfoodeng.2003.06.002. DOI

Singh J., Sharma H.K., Premi M., Kumari K. Effect of storage conditions of egg on rheological properties of liquid whole egg. J. Food Sci. Technol. 2014;51:543–550. doi: 10.1007/s13197-011-0509-7. PubMed DOI PMC

Dodge D.W., Metzner A.B. Turbulent flow of non-Newtonian systems. AIChE J. 1959;5:189–204. doi: 10.1002/aic.690050214. DOI

Shahsavand A., Nozari Y. Simulation of a continuous thermal sterilization process in the presence of solid particles. Sci. Iran. 2009;16:29–40.

Meister C., Velten K., Methner F. Modelling and simulation of bottle rinsing. Int. J. Food Sci. Technol. 2012;47:1468–1478. doi: 10.1111/j.1365-2621.2012.02994.x. DOI

Laca A., Paredes B., Díaz M. Thermal behaviour of lyophilized egg yolk and egg yolk fractions. J. Food Eng. 2011;102:77–86. doi: 10.1016/j.jfoodeng.2010.08.007. DOI

Martynenko A., Astatkie T., Satanina V. Novel hydrothermodynamic food processing technology. J. Food Eng. 2015;152:8–16. doi: 10.1016/j.jfoodeng.2014.11.016. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...