Rheological and Flow Behaviour of Yolk, Albumen and Liquid Whole Egg from Eggs of Six Different Poultry Species
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
AF-IGA-2020-TP006
Mendel University in Brno
PubMed
34945681
PubMed Central
PMC8701099
DOI
10.3390/foods10123130
PII: foods10123130
Knihovny.cz E-zdroje
- Klíčová slova
- egg, flow, poultry species, rheology, velocity,
- Publikační typ
- časopisecké články MeSH
Liquid egg products are one of the basic raw materials for the food industry. Knowledge of their rheological and flow behaviour in real technical elements is absolutely necessary for the selection of suitable technological equipment for their processing. In this article, the rheological properties of liquid egg products were determined. Eggs from six different species of poultry are used: domestic hen (Gallus gallus domesticus) hybrid Hisex Brown; Japanese quail (Coturnix japonica); German carrier goose (Anser anser f. domestica); domestic ducks (Anas platyrhynchos f. domestica); domestic guinea fowl (Numida meleagris f. domestica); and domestic turkeys (Meleagris gallopavo f. domestica). Liquid egg products showed pseudoplastic behaviour in range of shear strain rates from 0.2 up to 200 s-1 and at the temperature of 18 °C. Thus, the flow curves were constructed using the Ostwald-de Waele rheological model, with respect to the pseudoplastic behaviour of liquid egg products. According to the values of the coefficients of determination (R2), the sum of squared estimate of errors (SSE) and the root mean square error (RMSE), this model was appropriately chosen. Using the consistency coefficient K, the flow index n and the adjusted equations for the flow rate of technical and biological fluids in standard pipelines, the 3D velocity profiles of liquid egg products were successfully modelled. The values of the Reynolds number of the individual liquid egg products were calculated, and the type of flow was also determined. A turbulent flow has been detected for some liquid egg products.
Zobrazit více v PubMed
Hasler C.M. The changing face of functional foods. J. Am. Coll. Nutr. 2000;19:499–506. doi: 10.1080/07315724.2000.10718972. PubMed DOI
De Jesús M.N., Zanqui A.B., Valderrama P., Tanamati A., Maruyama S.A., de Souza N.E., Matsushita M. Sensory and physico-chemical characteristics of desserts prepared with egg products processed by freeze and spray drying. Food Sci. Technol. 2013;33:549–554. doi: 10.1590/S0101-20612013005000083. DOI
Juszczak L., Fortuna T., Kośla A. Sensory and rheological properties of Polish commercial mayonnaise. Nahrung. 2003;47:232–235. doi: 10.1002/food.200390054. PubMed DOI
Kumbár V., Nedomová Š., Trnka J., Buchar J., Pytel R. Effect of storage duration on the rheological properties of goose liquid egg products and eggshell membranes. Poult. Sci. 2016;95:1693–1701. doi: 10.3382/ps/pew094. PubMed DOI
Telis-Romero J., Thomaz C.E.P., Bernardi M., Telis V.R.N., Gabas A.L. Rheological properties and fluid dynamics of egg yolk. J. Food Eng. 2006;74:191–197. doi: 10.1016/j.jfoodeng.2005.01.044. DOI
Cabral R.A.F., Telis V.R.N., Park K.J., Telis-Romero J. Friction losses in valves and fittings for liquid food products. Food Bioprod. Process. 2011;89:375–382. doi: 10.1016/j.fbp.2010.08.002. DOI
Kumbár V., Strnková J., Nedomová Š., Buchar J. Fluid dynamics of liquid egg products. J. Biol. Phys. 2015;41:303–311. doi: 10.1007/s10867-015-9380-5. PubMed DOI PMC
Aguilar J.M., Batista A.P., Nunes M.C., Cordobés F., Raymundo A., Guerrero A. From egg yolk/κ-Carrageenan dispersions to gel systems: Linear viscoelasticity and texture analysis. Food Hydrocoll. 2011;25:654–658. doi: 10.1016/j.foodhyd.2010.08.006. DOI
Telis V.R.N., Kieckbusch T.G. Viscoelasticity of frozen/thawed egg yolk. J. Food Sci. 1997;62:548–550. doi: 10.1111/j.1365-2621.1997.tb04427.x. DOI
Tserveni-Goussi A., Fortomaris P. Production and Quality of Quail, Pheasant, Goose and Turkey Eggs for Uses Other Than Human Consumption. In: Nys Y., Bain M., Van Imerseel F., editors. Improving the Safety and Quality of Eggs and Egg Products. 1st ed. Woodhead Publishing; Cambridge, UK: 2011. pp. 509–537. DOI
Ketyam B., Imsilp K., Poapolathep A., Poapolathep S., Jermnak U., Phaochoosak N., Tanhan P. Health risk associated with the consumption of duck egg containing endosulfan residues. Environ. Monit. Assess. 2016;188:270. doi: 10.1007/s10661-016-5268-5. PubMed DOI
Kokoszyński D. Guinea Fowl, Goose, Turkey, Ostrich, and Emu Eggs. In: Hester P., editor. Egg Innovations and Strategies for Improvements. 1st ed. Volume 4. Academic Press; Cambridge, MA, USA: 2016. pp. 33–43.
Song K.T., Choi S.H., Oh H.R. A comparison of egg quality of pheasant, chukar, quail and guinea fowl. Asian-Australas. J. Anim. Sci. 2000;13:986–990. doi: 10.5713/ajas.2000.986. DOI
Techathuvanan C., D’Souza D.H. High intensity ultrasound for Salmonella enteritidis inactivation in culture and liquid whole eggs. J. Food Sci. 2018;83:1733–1739. doi: 10.1111/1750-3841.14185. PubMed DOI
Hemphill T., Campos W., Pilehvari A. Yield-power law model more accurately predicts mud rheology. Oil Gas J. 1993;91:45–50.
Alamprese C., Iametti S., Rossi M., Bergonzi D. Role of pasteurisation heat treatments on rheological and protein structural characteristics of fresh egg pasta. Eur. Food Res. Technol. 2005;221:759–767. doi: 10.1007/s00217-005-0024-z. DOI
Nguyen Q.H., Nguyen N.D. Incompressible Non-Newtonian Fluid Flows. In: Gan Y., editor. Continuum Mechanics—Progress in Fundamentals and Engineering Applications. 1st ed. InTech; Shanghai, China: 2012. pp. 47–72.
Přidal A., Trávníček P., Kudělka J., Nedomová Š., Ondrušíková S., Trost D., Kumbár V. A Rheological analysis of biomaterial behaviour as a tool to detect the dilution of heather honey. Materials. 2021;14:2472. doi: 10.3390/ma14102472. PubMed DOI PMC
Parington E. Stainless Steels in the Food and Beverage Industry. 1st ed. Euro Inox; Luxembourg: 2008. pp. 1–24.
Meuer H., Egbers C. Changes in density and viscosity of chicken egg albumen and yolk during incubation. J. Exp. Zoöl. 1990;255:16–21. doi: 10.1002/jez.1402550104. DOI
Cao D., Feng F., Xiong C., Li J., Xue H., Zhao Y., Wang Y., Tu Y., Zhao Y. Changes in lipid properties of duck egg yolks under extreme processing conditions. Poult. Sci. 2021;100:101140. doi: 10.1016/j.psj.2021.101140. PubMed DOI PMC
Cybulska J., Mierczyńska J., Pieczywek P., Stasiak M., Zdunek A. Effect of divalent metal ions on rheological properties of polysaccharide matrix from apple pomace. Food Sci. Technol. Qual. 2016;22:103–113. doi: 10.15193/zntj/2015/99/025. DOI
Panaite T.D., Mironeasa S., Iuga M., Vlaicu P.A. Liquid egg products characterization during storage as a response of novel phyto-additives added in hens diet. Emir. J. Food Agric. 2019;31:304–314. doi: 10.9755/ejfa.2019.v31.i4.1937. DOI
Kumbár V., Kouřilová V., Dufková R., Votava J., Hřivna L. Rheological and pipe flow properties of chocolate masses at different temperatures. Foods. 2021;10:2519. doi: 10.3390/foods10112519. PubMed DOI PMC
Wijedasa W.M.R.M., Wickramasinghe Y.H.S.T., Vidanarachchi J.K., Himali S.M.C. Comparison of egg quality characteristics of different poultry species. J. Agric. Sci. 2020;12:331–342. doi: 10.5539/jas.v12n11p331. DOI
Bondoc O.L., Ebron A.O., Ramos A.R., Santiago R.C. Comparison of egg quality traits in different poultry species and breeds. Philipp. J. Vet. Med. 2020;57:2020–2235.
Lichovnikova M. The effect of dietary calcium source, concentration and particle size on calcium retention, eggshell quality and overall calcium requirement in laying hens. Br. Poult. Sci. 2007;48:71–75. doi: 10.1080/00071660601148203. PubMed DOI
Liu W., Wang F., Guo L., Huang L., Zhao W., Lu X. Design and performance test of low-temperature pasteurization equipment for experiment. Trans. Chin. Soc. Agric. Mach. 2013;44:158–160. doi: 10.6041/j.issn.1000-1298.2013.03.029. DOI
Gut J.A.W., Pinto J.M., Gabas A.L., Telis-Romero J. Continuous pasteurization of egg yolk: Thermophysical properties and process simulation. J. Food Process Eng. 2005;28:181–203. doi: 10.1111/j.1745-4530.2005.00416.x. DOI
Icier F., Bozkurt H. Ohmic heating of liquid whole egg: Rheological behaviour and fluid dynamics. Food Bioprocess Technol. 2011;4:1253–1263. doi: 10.1007/s11947-009-0229-4. DOI
Bozkurt H., Icier F. The change of apparent viscosity of liquid whole egg during ohmic and conventional heating. J. Food Process Eng. 2012;35:120–133. doi: 10.1111/j.1745-4530.2010.00575.x. DOI
Denys S., Pieters J.G., Dewettinck K. Computational fluid dynamics analysis of combined conductive and convective heat transfer in model eggs. J. Food Eng. 2004;63:281–290. doi: 10.1016/j.jfoodeng.2003.06.002. DOI
Singh J., Sharma H.K., Premi M., Kumari K. Effect of storage conditions of egg on rheological properties of liquid whole egg. J. Food Sci. Technol. 2014;51:543–550. doi: 10.1007/s13197-011-0509-7. PubMed DOI PMC
Dodge D.W., Metzner A.B. Turbulent flow of non-Newtonian systems. AIChE J. 1959;5:189–204. doi: 10.1002/aic.690050214. DOI
Shahsavand A., Nozari Y. Simulation of a continuous thermal sterilization process in the presence of solid particles. Sci. Iran. 2009;16:29–40.
Meister C., Velten K., Methner F. Modelling and simulation of bottle rinsing. Int. J. Food Sci. Technol. 2012;47:1468–1478. doi: 10.1111/j.1365-2621.2012.02994.x. DOI
Laca A., Paredes B., Díaz M. Thermal behaviour of lyophilized egg yolk and egg yolk fractions. J. Food Eng. 2011;102:77–86. doi: 10.1016/j.jfoodeng.2010.08.007. DOI
Martynenko A., Astatkie T., Satanina V. Novel hydrothermodynamic food processing technology. J. Food Eng. 2015;152:8–16. doi: 10.1016/j.jfoodeng.2014.11.016. DOI